inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages i11-i12

Poly[[hexa-μ-cyanido-manganese(II)iron(III)] penta­hydrate]

aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, bDepartment of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, cPRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan, and dRigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

(Received 16 November 2007; accepted 31 December 2007; online 9 January 2008)

The structure of the title compound, MnII[FeIII(CN)6]2/3·5H2O, features a face-centered cubic –Mn—NC—Fe– framework with both Mn and Fe having site symmetry m[\overline{3}]m. Since one-third of the [Fe(CN)6]3− units are missing for a given formula in order to maintain charge neutrality, each Mn atom around such a vacancy is coordinated not only by the N atoms of the CN groups but also by the O atoms of the ligand water mol­ecules. In addition to ligand water mol­ecules, two types of non-coordinated water mol­ecules, so-called zeolitic water mol­ecules, exist in the inter­stitial sites of the –Mn—NC—Fe– framework. The positions of the O atoms of the zeolitic water mol­ecules are fixed by the linkage via hydrogen bonds between ligand water and zeolitic water mol­ecules. The structure is related to a recently reported rubidium manganese hexa­cyano­ferrate. Site occupancy factors for Fe, C, N are 0.67; for two O atoms the value is 0.83 and for one O atom is 0.17.

Related literature

For structure and properties of the related rubidium manganese hexa­cyano­ferrate, see: Kato et al. (2003[Kato, K., Moritomo, Y., Takata, M., Sakata, M., Umekawa, M., Hamada, N., Ohkoshi, S., Tokoro, H. & Hashimoto, K. (2003). Phys. Rev. Lett. 91, 2555021-2555024.]); Tokoro et al. (2007[Tokoro, H., Shiro, M., Hashimoto, K. & Ohkoshi, S. (2007). Z. Anorg. Allg. Chem. 633, 1134-1136.]). For general background on Prussian blue compounds, see: Ludi & Güdel (1973[Ludi, A. & Güdel, H. U. (1973). Struct. Bonding (Berlin), 14, 1-21.]). For related literature, see: Egan et al. (2006[Egan, L., Kamenev, K., Papanikolaou, D., Takabayashi, Y. & Margadonna, S. (2006). J. Am. Chem. Soc. 128, 6034-6035.]); Ferlay et al. (1995[Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701-703.]); Güdel et al. (1973[Güdel, H. U., Stucki, H. & Ludi, A. (1973). Inorg. Chim. Acta, 7, 121-124.]); Gadet et al. (1992[Gadet, V., Mallah, T., Castro, I. & Verdaguer, M. (1992). J. Am. Chem. Soc. 114, 9213-9214.]); Hatlevik et al. (1999[Hatlevik, Ø., Buschmann, W. E., Zhang, J., Manson, J. L. & Miller, J. S. (1999). Adv. Mater. 11, 914-918.]); Holmes & Girolami (1999[Holmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593-5594.]); Ludi et al. (1970[Ludi, A., Güdel, H. U. & Rüegg, M. (1970). Inorg. Chem. 9, 2224-2227.]); Margadonna et al. (2004[Margadonna, S., Prassides, K. & Fitch, A. N. (2004). J. Am. Chem. Soc. 126, 15390-15391.]); Ohkoshi & Hashimoto (2001[Ohkoshi, S. & Hashimoto, K. (2001). J. Photochem. Photobiol. Photochem. Rev. C2, 71-88.]); Ohkoshi et al. (1997[Ohkoshi, S., Yorozu, S., Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1997). Appl. Phys. Lett. 70, 1040-1042.], 2000[Ohkoshi, S., Mizuno, M., Hung, G. J. & Hashimoto, K. (2000). J. Phys. Chem. B, 104, 9365-9367.], 2004[Ohkoshi, S., Arai, K., Sato, Y. & Hashimoto, K. (2004). Nat. Mater. 3, 857-861.], 2005[Ohkoshi, S., Matsuda, T., Tokoro, H. & Hashimoto, K. (2005). Chem. Mater. 17, 81-84.]); Sato et al. (1996[Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 272, 704-705.]); Tokoro et al. (2003[Tokoro, H., Ohkoshi, S. & Hashimoto, K. (2003). Appl. Phys. Lett. 82, 1245-1247.], 2004[Tokoro, H., Ohkoshi, S., Matsuda, T. & Hashimoto, K. (2004). Inorg. Chem. 43, 5231-5236.]); Zeigler et al. (1999[Zeigler, B., Witzel, M., Schwarten, M. & Babel, D. (1999). Z. Naturforsch. Teil B, 54, 870-876.]).

Experimental

Crystal data
  • Mn[Fe(CN)6]2/3·5H2O

  • Mr = 286.50

  • Cubic, [F m \overline 3m ]

  • a = 10.3859 (13) Å

  • V = 1120.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 90 (1) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.655, Tmax = 0.739

  • 15777 measured reflections

  • 278 independent reflections

  • 268 reflections with F2 > 2σ(F2)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.37

  • 278 reflections

  • 21 parameters

  • H-atom parameters not defined

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—C1 1.918 (8)
Mn1—N1 2.105 (13)
N1—C1 1.169 (15)
Mn1—O1 2.247 (12)
O1—Mn1—O1i 87.8 (4)
O1—Mn1—O1ii 157.4 (3)
O1—Mn1—O1iii 180
O1—Mn1—N1iv 78.69 (14)
O1—Mn1—N1v 163.90 (14)
Symmetry codes: (i) y, z, -x+1; (ii) -x+1, y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) y, z, x; (v) x, y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Version 3.80. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: VESTA (Momma & Izumi, 2006[Momma, K. & Izumi, F. (2006). IUCr Commission on Crystallographic Computing Newsletter, 130, 106-119.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the last decade, various interesting magnetic functionalities have been reported with Prussian blue analogs, e.g., high Curie temperatures (TC) (Ferlay et al., 1995; Holmes & Girolami, 1999; Hatlevik et al., 1999; Ohkoshi et al., 2000), humidity-response (Ohkoshi et al., 2004), photomagnetism (Ohkoshi & Hashimoto, 2001; Sato et al., 1996; Ohkoshi et al.,1997), and zero thermal expansion (Margadonna et al., 2004). Prussian blue analogs have two types of crystal structures, MA[MB(CN)6]2/3.zH2O (Ludi et al., 1970; Ludi & Güdel, 1973; Güdel et al., 1973) and AMA[MB(CN)6] (Gadet et al., 1992; Zeigler et al., 1999; Kato et al., 2003), where MA and MB are transition metal ions and A is an alkali metal ion. Recently, rubidium manganese hexacyanoferrate, RbxMn[Fe(CN)6](x + 2)/3.zH2O, has received attention due to its various functionalities such as a charge-transfer phase transition (Tokoro et al., 2004; Ohkoshi et al., 2005), a pressure-induced magnetic pole inversion (Egan et al., 2006), and a photomagnetic effect (Tokoro et al., 2003). Although the crystal structure of rubidium manganese hexacyanoferrate was determined (Kato et al., 2003; Tokoro et al., 2007), the structure of manganese hexacyanoferrate of MA[MB(CN)6]2/3.zH2O has not been determined yet. In this work, we successfully synthesized a single-crystal of Mn[Fe(CN)6]2/3.5H2O and analyzed the crystal structure.

The crystal structure of the title compound consists of MnII and FeIII with cyanide bridges to form a three-dimensional face-centered cubic structure (space group; Fm3m), containing ligand water and zeolitic water molecules (Fig. 1). Fe, Mn, C, and N atoms occupy the positions 4a (0, 0, 0), 4 b (1/2, 1/2, 1/2), 24 e (0.1847 (8), 0,0), and 24 e (0.2973 (12), 0, 0), respectively. The Fe atoms are coordinated to six C atoms with octahedral geometries. On the other hand, the Mn atoms are coordinated to four N atoms and two O1 atoms of ligand water, since there are vacancies of 1/3 × [Fe(CN)6]3- to maintain charge neutrality. The O1 atoms occupy the 96k (0.4576 (10), 0.4576 (10), 0.2922 (11)) positions with occupancy of 1/12. The coordination geometry in the MnNxO6 - x (x = 0–5) moiety is octahedral with some potentially large distortions [O1—Mn—N bond angles of 78.19 (14)°, and 163.9 (2)°] due to the location of the disordered O1 water molecule. The oxygen atoms (O2 and O3) of zeolitic waters occupy 8c (1/4, 1/4, 1/4) positions with occupancy of 5/6 and 32f (0.1550 (16), 0.1550 (16), 0.1550 (16)) positions with occupancy of 1/6. The contact distances of 3.081 (11), 2.76 (2), 2.79 (2) Å between O1—O2i, O1—O3, and O3—O3ii [Symmetry codes: (i) 1 - x, y, z; (ii) 1 - z, 1 - x, y], respectively, suggest the existence of hydrogen bonds.

The structure of the title compound differs from that of the rubidium phase in the position of the O1 atom of the ligand water. This atom occupies the 96k position in Mn[Fe(CN)6]2/3.5H2O and the 24 e position in Rb0.61Mn[Fe(CN)6]0.87.1.7H2O (Tokoro et al., 2007). This difference may be explained by the hydrogen bonding between ligand water and zeolitic water in the title compound. The O2 atom of the zeolitic water exists on the 8c (1/4, 1/4, 1/4) position in Mn[Fe(CN)6]2/3.5H2O. The shortest length between the 8c and 24 e positions is 3.67 Å which is rather far to construct a hydrogen bond. In our refinement with the O1 atom in the 96k position, the distance of 3.081 (11) Å between O1 and O2i [Symmetry code: (i) 1 - x, y, z] is acceptable as a hydrogen bond. By contrast, in Rb0.61Mn[Fe(CN)6]0.87.1.7H2O, since the Rb cation is contained in the channels between the –Mn–NC–Fe– framework and the amount of vacant space is thus less than in Mn[Fe(CN)6]2/3.5H2O, the O2 atom of zeolitic water does not exist on the 8c position in the Rb compound, so no similar O1···O2 interaction occurs.

Related literature top

For structure and properties of the related rubidium manganese hexacyanoferrate, see: Kato et al. (2003); Tokoro et al. (2007). For general background on Prussian blue compounds, see: Ludi & Güdel (1973). For related literature, see: Egan et al. (2006); Ferlay et al. (1995); Güdel et al. (1973); Gadet et al. (1992); Hatlevik et al. (1999); Holmes & Girolami (1999); Ludi et al. (1970); Margadonna et al. (2004); Ohkoshi & Hashimoto (2001); Ohkoshi et al. (1997, 2000, 2004, 2005); Sato et al. (1996); Tokoro et al. (2003, 2004); Zeigler et al. (1999).

Experimental top

Single crystals of Mn[Fe(CN)6]2/3.5H2O were prepared by slow diffusion of aqueous solutions of MnCl2.5H2O (0.1 mmol) and K3[Fe(CN)6] (0.07 mmol) at 40 °C. After one month, dark brown block-shaped crystals were obtained. Elemental analysis of Mn and Fe was performed using inductively coupled plasma mass spectrometry (ICP-MS). The observed ratio of metal ions was Mn:Fe = 0.67:1.00. The density measured by the flotation method in toluene and tetrabromoethane was 1.64 (1) g cm-3, which is consistent with the expected value of 1.63 g cm-3 calculated considering the lattice constant of 10.480 Å at 293 K. The CN stretching vibrations are observed at 2151 cm-1 in the IR spectrum.

Refinement top

The H atoms of the water molecules could not be located. The site occupancy factors for Fe, C, and N were constrained to 2/3. The O1 atoms of the coordinated water molecules were located in a difference Fourier map and the site occupancy factor for O1 was constrained to 1/12, according to the formula of the crystal. The obtained anisotropic displacement factor of the N atom is rather large, but this is understood by the rotational vibration of CN around Fe—Mn.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: VESTA (Momma & Izumi, 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. (a) Three dimensional crystal structure of Mn[Fe(CN)6]2/3.5H2O, showing the distribution of zeolitic water molecules (teal spheres). The –Mn–NC–Fe– framework is described in stick form for clarity. Blue, red, dark gray, light gray and teal represent Fe, Mn, C, N and O atoms, respectively. (b) Projection of the structure in the ab plane. The value g is the occupancy for each atom. [Symmetry codes: (i) 1/2 - z, 1/2 - x, 1 - y; (ii) z, -x, 1 - y; (iii) z, -y, x; (iv) z, 1/2 - x, 1/2 + y.]
Poly[[hexa-µ-cyanido-manganese(II)iron(III)] pentahydrate] top
Crystal data top
Mn[Fe(CN)6]0.6667·5H2ODx = 1.699 Mg m3
Dm = 1.64 (1) Mg m3
Dm measured by flotation in toluene and tetrabromomethane
Mr = 286.50Mo Kα radiation, λ = 0.71075 Å
Cubic, Fm3mCell parameters from 3216 reflections
Hall symbol: -F 4 2 3θ = 5.6–45.1°
a = 10.3859 (13) ŵ = 2.02 mm1
V = 1120.3 (2) Å3T = 90 K
Z = 4Block, brown
F(000) = 577.680.25 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
268 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.032
ω scansθmax = 45.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2020
Tmin = 0.655, Tmax = 0.739k = 2020
15777 measured reflectionsl = 2020
278 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0526P)2 + 2.6431P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.047(Δ/σ)max < 0.001
wR(F2) = 0.136Δρmax = 0.59 e Å3
S = 1.37Δρmin = 1.41 e Å3
278 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997)
21 parametersExtinction coefficient: 0.002 (2)
H-atom parameters not defined
Crystal data top
Mn[Fe(CN)6]0.6667·5H2OZ = 4
Mr = 286.50Mo Kα radiation
Cubic, Fm3mµ = 2.02 mm1
a = 10.3859 (13) ÅT = 90 K
V = 1120.3 (2) Å30.25 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
278 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
268 reflections with F2 > 2σ(F2)
Tmin = 0.655, Tmax = 0.739Rint = 0.032
15777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04721 parameters
wR(F2) = 0.136H-atom parameters not defined
S = 1.37Δρmax = 0.59 e Å3
278 reflectionsΔρmin = 1.41 e Å3
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.50000.00000.0176 (2)0.6667
Mn10.50000.50000.50000.0183 (2)
O10.4576 (10)0.4576 (10)0.2922 (11)0.036 (3)0.0833
O20.75000.25000.25000.096 (6)0.8333
O30.6550 (16)0.3450 (16)0.1550 (16)0.054 (6)0.1667
N10.50000.50000.2973 (12)0.086 (3)0.6667
C10.50000.50000.1847 (8)0.064 (2)0.6667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0176 (2)0.0176 (2)0.0176 (2)0.00000.00000.0000
Mn10.0183 (2)0.0183 (2)0.0183 (2)0.00000.00000.0000
O10.052 (5)0.052 (5)0.006 (3)0.026 (5)0.002 (2)0.002 (2)
O20.096 (6)0.096 (6)0.096 (6)0.00000.00000.0000
O30.054 (6)0.054 (6)0.054 (6)0.018 (6)0.018 (6)0.018 (6)
N10.114 (5)0.114 (5)0.030 (3)0.00000.00000.0000
C10.085 (4)0.085 (4)0.023 (2)0.00000.00000.0000
Geometric parameters (Å, º) top
Fe1—C11.918 (8)Mn1—O1ix2.247 (12)
Fe1—C1i1.918 (8)Mn1—O1xiii2.247 (12)
Fe1—C1ii1.918 (8)Mn1—O1x2.247 (12)
Fe1—C1iii1.918 (8)Mn1—O1xiv2.247 (12)
Fe1—C1iv1.918 (8)Mn1—O1xv2.247 (12)
Fe1—C1v1.918 (8)Mn1—O1xvi2.247 (12)
Mn1—N12.105 (13)Mn1—O1xvii2.247 (12)
Mn1—N1vi2.105 (13)Mn1—O1xviii2.247 (12)
Mn1—N1vii2.105 (13)Mn1—O1xix2.247 (12)
Mn1—N1viii2.105 (13)Mn1—O1xx2.247 (12)
Mn1—N1ix2.105 (13)Mn1—O1xxi2.247 (12)
Mn1—N1x2.105 (13)Mn1—O1xxii2.247 (12)
N1—C11.169 (15)Mn1—O1xxiii2.247 (12)
Mn1—O12.247 (12)Mn1—O1xxiv2.247 (12)
Mn1—O1vi2.247 (12)Mn1—O1xxv2.247 (12)
Mn1—O1vii2.247 (12)Mn1—O1xxvi2.247 (12)
Mn1—O1viii2.247 (12)Mn1—O1xxvii2.247 (12)
Mn1—O1xi2.247 (12)Mn1—O1xxviii2.247 (12)
Mn1—O1xii2.247 (12)
C1—Fe1—C1i180.0000N1ix—Mn1—N1x90.0000
C1—Fe1—C1ii90.0000Mn1—N1—C1180.0000
C1—Fe1—C1iii90.0000Fe1—C1—N1180.0000
C1—Fe1—C1iv90.0000O1—Mn1—O1vi65.5 (4)
C1—Fe1—C1v90.0000O1—Mn1—O1vii65.5 (4)
C1i—Fe1—C1ii90.0000O1—Mn1—O1viii147.8 (3)
C1i—Fe1—C1iii90.0000O1—Mn1—O1xi87.8 (4)
C1i—Fe1—C1iv90.0000O1—Mn1—O1xii87.8 (4)
C1i—Fe1—C1v90.0000O1—Mn1—O1ix109.8 (4)
C1ii—Fe1—C1iii180.0000O1—Mn1—O1xiii92.2 (4)
C1ii—Fe1—C1iv90.0000O1—Mn1—O1x109.8 (4)
C1ii—Fe1—C1v90.0000O1—Mn1—O1xiv157.4 (3)
C1iii—Fe1—C1iv90.0000O1—Mn1—O1xv92.2 (4)
C1iii—Fe1—C1v90.0000O1—Mn1—O1xvi157.4 (3)
C1iv—Fe1—C1v180.0000O1—Mn1—O1xvii180.0 (5)
N1—Mn1—N1vi90.0000O1—Mn1—O1xviii114.5 (4)
N1—Mn1—N1vii90.0000O1—Mn1—O1xix114.5 (4)
N1—Mn1—N1viii180.0000O1—Mn1—O1xxi92.2 (4)
N1—Mn1—N1ix90.0000O1—Mn1—O1xxii92.2 (4)
N1—Mn1—N1x90.0000O1—Mn1—O1xxiii70.2 (4)
N1vi—Mn1—N1vii90.0000O1—Mn1—O1xxiv87.8 (4)
N1vi—Mn1—N1viii90.0000O1—Mn1—O1xxv70.2 (4)
N1vi—Mn1—N1ix180.0000O1—Mn1—O1xxvii87.8 (4)
N1vi—Mn1—N1x90.0000O1—Mn1—N1vi78.69 (14)
N1vii—Mn1—N1viii90.0000O1—Mn1—N1vii78.19 (14)
N1vii—Mn1—N1ix90.0000O1—Mn1—N1viii163.90 (14)
N1vii—Mn1—N1x180.0000O1—Mn1—N1ix101.31 (14)
N1viii—Mn1—N1ix90.0000O1—Mn1—N1x101.31 (14)
N1viii—Mn1—N1x90.0000
Symmetry codes: (i) x, y, z; (ii) y, z+1/2, x1/2; (iii) y, z+1/2, x+1/2; (iv) z+1/2, x, y1/2; (v) z+1/2, x, y+1/2; (vi) y, z, x; (vii) z, x, y; (viii) x, y, z+1; (ix) y, z+1, x+1; (x) z+1, x, y+1; (xi) y, z, x+1; (xii) z, x, y+1; (xiii) z, x+1, y+1; (xiv) x+1, y, z+1; (xv) y+1, z, x+1; (xvi) x, y+1, z+1; (xvii) x+1, y+1, z+1; (xviii) y+1, z+1, x+1; (xix) z+1, x+1, y+1; (xx) x+1, y+1, z; (xxi) y+1, z+1, x; (xxii) z+1, x+1, y; (xxiii) y+1, z, x; (xxiv) z+1, x, y; (xxv) z, x+1, y; (xxvi) x, y+1, z; (xxvii) y, z+1, x; (xxviii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaMn[Fe(CN)6]0.6667·5H2O
Mr286.50
Crystal system, space groupCubic, Fm3m
Temperature (K)90
a (Å)10.3859 (13)
V3)1120.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.655, 0.739
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
15777, 278, 268
Rint0.032
(sin θ/λ)max1)0.996
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.37
No. of reflections278
No. of parameters21
No. of restraints?
H-atom treatmentH-atom parameters not defined
Δρmax, Δρmin (e Å3)0.59, 1.41

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), VESTA (Momma & Izumi, 2006).

Selected geometric parameters (Å, º) top
Fe1—C11.918 (8)N1—C11.169 (15)
Mn1—N12.105 (13)Mn1—O12.247 (12)
O1—Mn1—O1i87.8 (4)O1—Mn1—N1iv78.69 (14)
O1—Mn1—O1ii157.4 (3)O1—Mn1—N1v163.90 (14)
O1—Mn1—O1iii180.0 (5)
Symmetry codes: (i) y, z, x+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) y, z, x; (v) x, y, z+1.
 

Acknowledgements

This research was supported in part by a Grant for the Global COE Program for Chemistry Innovation, a Grant-in-Aid for Scientific Research in Priority Area `Chemistry of Coordination Space', a Grant-in-Aid for Scientific Research (B), and a Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, the Asahi Glass Foundation, Iketani Science and Technology Foundation, Inamori Foundation, the Kurata Memorial Hitachi Science and Technology Foundation, the Murata Science Foundation and the Yamada Science Foundation.

References

First citationEgan, L., Kamenev, K., Papanikolaou, D., Takabayashi, Y. & Margadonna, S. (2006). J. Am. Chem. Soc. 128, 6034–6035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701–703.  CrossRef CAS Web of Science Google Scholar
First citationGadet, V., Mallah, T., Castro, I. & Verdaguer, M. (1992). J. Am. Chem. Soc. 114, 9213–9214.  CrossRef CAS Web of Science Google Scholar
First citationGüdel, H. U., Stucki, H. & Ludi, A. (1973). Inorg. Chim. Acta, 7, 121–124.  Google Scholar
First citationHatlevik, Ø., Buschmann, W. E., Zhang, J., Manson, J. L. & Miller, J. S. (1999). Adv. Mater. 11, 914–918.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHolmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593–5594.  Web of Science CrossRef CAS Google Scholar
First citationKato, K., Moritomo, Y., Takata, M., Sakata, M., Umekawa, M., Hamada, N., Ohkoshi, S., Tokoro, H. & Hashimoto, K. (2003). Phys. Rev. Lett. 91, 2555021–2555024.  Web of Science CrossRef Google Scholar
First citationLudi, A. & Güdel, H. U. (1973). Struct. Bonding (Berlin), 14, 1–21.  CrossRef CAS Google Scholar
First citationLudi, A., Güdel, H. U. & Rüegg, M. (1970). Inorg. Chem. 9, 2224–2227.  CrossRef CAS Web of Science Google Scholar
First citationMargadonna, S., Prassides, K. & Fitch, A. N. (2004). J. Am. Chem. Soc. 126, 15390–15391.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMomma, K. & Izumi, F. (2006). IUCr Commission on Crystallographic Computing Newsletter, 130, 106-119.  Google Scholar
First citationOhkoshi, S., Arai, K., Sato, Y. & Hashimoto, K. (2004). Nat. Mater. 3, 857–861.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOhkoshi, S. & Hashimoto, K. (2001). J. Photochem. Photobiol. Photochem. Rev. C2, 71–88.  CrossRef Google Scholar
First citationOhkoshi, S., Matsuda, T., Tokoro, H. & Hashimoto, K. (2005). Chem. Mater. 17, 81–84.  Web of Science CrossRef CAS Google Scholar
First citationOhkoshi, S., Mizuno, M., Hung, G. J. & Hashimoto, K. (2000). J. Phys. Chem. B, 104, 9365–9367.  Web of Science CrossRef CAS Google Scholar
First citationOhkoshi, S., Yorozu, S., Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1997). Appl. Phys. Lett. 70, 1040–1042.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Version 3.80. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 272, 704–705.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokoro, H., Ohkoshi, S. & Hashimoto, K. (2003). Appl. Phys. Lett. 82, 1245–1247.  Web of Science CrossRef CAS Google Scholar
First citationTokoro, H., Ohkoshi, S., Matsuda, T. & Hashimoto, K. (2004). Inorg. Chem. 43, 5231–5236.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTokoro, H., Shiro, M., Hashimoto, K. & Ohkoshi, S. (2007). Z. Anorg. Allg. Chem. 633, 1134–1136.  Web of Science CrossRef CAS Google Scholar
First citationZeigler, B., Witzel, M., Schwarten, M. & Babel, D. (1999). Z. Naturforsch. Teil B, 54, 870–876.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages i11-i12
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds