inorganic compounds
Poly[[hexa-μ-cyanido-manganese(II)iron(III)] pentahydrate]
aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, bDepartment of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, cPRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan, and dRigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp
The structure of the title compound, MnII[FeIII(CN)6]2/3·5H2O, features a face-centered cubic –Mn—NC—Fe– framework with both Mn and Fe having mm. Since one-third of the [Fe(CN)6]3− units are missing for a given formula in order to maintain charge neutrality, each Mn atom around such a vacancy is coordinated not only by the N atoms of the CN groups but also by the O atoms of the ligand water molecules. In addition to ligand water molecules, two types of non-coordinated water molecules, so-called zeolitic water molecules, exist in the interstitial sites of the –Mn—NC—Fe– framework. The positions of the O atoms of the zeolitic water molecules are fixed by the linkage via hydrogen bonds between ligand water and zeolitic water molecules. The structure is related to a recently reported rubidium manganese hexacyanoferrate. Site occupancy factors for Fe, C, N are 0.67; for two O atoms the value is 0.83 and for one O atom is 0.17.
Related literature
For structure and properties of the related rubidium manganese hexacyanoferrate, see: Kato et al. (2003); Tokoro et al. (2007). For general background on Prussian blue compounds, see: Ludi & Güdel (1973). For related literature, see: Egan et al. (2006); Ferlay et al. (1995); Güdel et al. (1973); Gadet et al. (1992); Hatlevik et al. (1999); Holmes & Girolami (1999); Ludi et al. (1970); Margadonna et al. (2004); Ohkoshi & Hashimoto (2001); Ohkoshi et al. (1997, 2000, 2004, 2005); Sato et al. (1996); Tokoro et al. (2003, 2004); Zeigler et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2006); software used to prepare material for publication: CrystalStructure.
Supporting information
10.1107/S1600536807068869/sq2003sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068869/sq2003Isup2.hkl
Single crystals of Mn[Fe(CN)6]2/3.5H2O were prepared by slow diffusion of aqueous solutions of MnCl2.5H2O (0.1 mmol) and K3[Fe(CN)6] (0.07 mmol) at 40 °C. After one month, dark brown block-shaped crystals were obtained. Elemental analysis of Mn and Fe was performed using inductively coupled plasma
(ICP-MS). The observed ratio of metal ions was Mn:Fe = 0.67:1.00. The density measured by the flotation method in toluene and tetrabromoethane was 1.64 (1) g cm-3, which is consistent with the expected value of 1.63 g cm-3 calculated considering the lattice constant of 10.480 Å at 293 K. The CN stretching vibrations are observed at 2151 cm-1 in the IR spectrum.The H atoms of the water molecules could not be located. The site occupancy factors for Fe, C, and N were constrained to 2/3. The O1 atoms of the coordinated water molecules were located in a difference Fourier map and the site occupancy factor for O1 was constrained to 1/12, according to the formula of the crystal. The obtained anisotropic displacement factor of the N atom is rather large, but this is understood by the rotational vibration of CN around Fe—Mn.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: VESTA (Momma & Izumi, 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).Mn[Fe(CN)6]0.6667·5H2O | Dx = 1.699 Mg m−3 Dm = 1.64 (1) Mg m−3 Dm measured by flotation in toluene and tetrabromomethane |
Mr = 286.50 | Mo Kα radiation, λ = 0.71075 Å |
Cubic, Fm3m | Cell parameters from 3216 reflections |
Hall symbol: -F 4 2 3 | θ = 5.6–45.1° |
a = 10.3859 (13) Å | µ = 2.02 mm−1 |
V = 1120.3 (2) Å3 | T = 90 K |
Z = 4 | Block, brown |
F(000) = 577.68 | 0.25 × 0.20 × 0.15 mm |
Rigaku R-AXIS RAPID diffractometer | 268 reflections with F2 > 2σ(F2) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.032 |
ω scans | θmax = 45.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −20→20 |
Tmin = 0.655, Tmax = 0.739 | k = −20→20 |
15777 measured reflections | l = −20→20 |
278 independent reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0526P)2 + 2.6431P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.047 | (Δ/σ)max < 0.001 |
wR(F2) = 0.136 | Δρmax = 0.59 e Å−3 |
S = 1.37 | Δρmin = −1.41 e Å−3 |
278 reflections | Extinction correction: SHELXL97 (Sheldrick, 1997) |
21 parameters | Extinction coefficient: 0.002 (2) |
H-atom parameters not defined |
Mn[Fe(CN)6]0.6667·5H2O | Z = 4 |
Mr = 286.50 | Mo Kα radiation |
Cubic, Fm3m | µ = 2.02 mm−1 |
a = 10.3859 (13) Å | T = 90 K |
V = 1120.3 (2) Å3 | 0.25 × 0.20 × 0.15 mm |
Rigaku R-AXIS RAPID diffractometer | 278 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 268 reflections with F2 > 2σ(F2) |
Tmin = 0.655, Tmax = 0.739 | Rint = 0.032 |
15777 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 21 parameters |
wR(F2) = 0.136 | H-atom parameters not defined |
S = 1.37 | Δρmax = 0.59 e Å−3 |
278 reflections | Δρmin = −1.41 e Å−3 |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.5000 | 0.5000 | 0.0000 | 0.0176 (2) | 0.6667 |
Mn1 | 0.5000 | 0.5000 | 0.5000 | 0.0183 (2) | |
O1 | 0.4576 (10) | 0.4576 (10) | 0.2922 (11) | 0.036 (3) | 0.0833 |
O2 | 0.7500 | 0.2500 | 0.2500 | 0.096 (6) | 0.8333 |
O3 | 0.6550 (16) | 0.3450 (16) | 0.1550 (16) | 0.054 (6) | 0.1667 |
N1 | 0.5000 | 0.5000 | 0.2973 (12) | 0.086 (3) | 0.6667 |
C1 | 0.5000 | 0.5000 | 0.1847 (8) | 0.064 (2) | 0.6667 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0176 (2) | 0.0176 (2) | 0.0176 (2) | 0.0000 | 0.0000 | 0.0000 |
Mn1 | 0.0183 (2) | 0.0183 (2) | 0.0183 (2) | 0.0000 | 0.0000 | 0.0000 |
O1 | 0.052 (5) | 0.052 (5) | 0.006 (3) | −0.026 (5) | −0.002 (2) | −0.002 (2) |
O2 | 0.096 (6) | 0.096 (6) | 0.096 (6) | 0.0000 | 0.0000 | 0.0000 |
O3 | 0.054 (6) | 0.054 (6) | 0.054 (6) | −0.018 (6) | 0.018 (6) | −0.018 (6) |
N1 | 0.114 (5) | 0.114 (5) | 0.030 (3) | 0.0000 | 0.0000 | 0.0000 |
C1 | 0.085 (4) | 0.085 (4) | 0.023 (2) | 0.0000 | 0.0000 | 0.0000 |
Fe1—C1 | 1.918 (8) | Mn1—O1ix | 2.247 (12) |
Fe1—C1i | 1.918 (8) | Mn1—O1xiii | 2.247 (12) |
Fe1—C1ii | 1.918 (8) | Mn1—O1x | 2.247 (12) |
Fe1—C1iii | 1.918 (8) | Mn1—O1xiv | 2.247 (12) |
Fe1—C1iv | 1.918 (8) | Mn1—O1xv | 2.247 (12) |
Fe1—C1v | 1.918 (8) | Mn1—O1xvi | 2.247 (12) |
Mn1—N1 | 2.105 (13) | Mn1—O1xvii | 2.247 (12) |
Mn1—N1vi | 2.105 (13) | Mn1—O1xviii | 2.247 (12) |
Mn1—N1vii | 2.105 (13) | Mn1—O1xix | 2.247 (12) |
Mn1—N1viii | 2.105 (13) | Mn1—O1xx | 2.247 (12) |
Mn1—N1ix | 2.105 (13) | Mn1—O1xxi | 2.247 (12) |
Mn1—N1x | 2.105 (13) | Mn1—O1xxii | 2.247 (12) |
N1—C1 | 1.169 (15) | Mn1—O1xxiii | 2.247 (12) |
Mn1—O1 | 2.247 (12) | Mn1—O1xxiv | 2.247 (12) |
Mn1—O1vi | 2.247 (12) | Mn1—O1xxv | 2.247 (12) |
Mn1—O1vii | 2.247 (12) | Mn1—O1xxvi | 2.247 (12) |
Mn1—O1viii | 2.247 (12) | Mn1—O1xxvii | 2.247 (12) |
Mn1—O1xi | 2.247 (12) | Mn1—O1xxviii | 2.247 (12) |
Mn1—O1xii | 2.247 (12) | ||
C1—Fe1—C1i | 180.0000 | N1ix—Mn1—N1x | 90.0000 |
C1—Fe1—C1ii | 90.0000 | Mn1—N1—C1 | 180.0000 |
C1—Fe1—C1iii | 90.0000 | Fe1—C1—N1 | 180.0000 |
C1—Fe1—C1iv | 90.0000 | O1—Mn1—O1vi | 65.5 (4) |
C1—Fe1—C1v | 90.0000 | O1—Mn1—O1vii | 65.5 (4) |
C1i—Fe1—C1ii | 90.0000 | O1—Mn1—O1viii | 147.8 (3) |
C1i—Fe1—C1iii | 90.0000 | O1—Mn1—O1xi | 87.8 (4) |
C1i—Fe1—C1iv | 90.0000 | O1—Mn1—O1xii | 87.8 (4) |
C1i—Fe1—C1v | 90.0000 | O1—Mn1—O1ix | 109.8 (4) |
C1ii—Fe1—C1iii | 180.0000 | O1—Mn1—O1xiii | 92.2 (4) |
C1ii—Fe1—C1iv | 90.0000 | O1—Mn1—O1x | 109.8 (4) |
C1ii—Fe1—C1v | 90.0000 | O1—Mn1—O1xiv | 157.4 (3) |
C1iii—Fe1—C1iv | 90.0000 | O1—Mn1—O1xv | 92.2 (4) |
C1iii—Fe1—C1v | 90.0000 | O1—Mn1—O1xvi | 157.4 (3) |
C1iv—Fe1—C1v | 180.0000 | O1—Mn1—O1xvii | 180.0 (5) |
N1—Mn1—N1vi | 90.0000 | O1—Mn1—O1xviii | 114.5 (4) |
N1—Mn1—N1vii | 90.0000 | O1—Mn1—O1xix | 114.5 (4) |
N1—Mn1—N1viii | 180.0000 | O1—Mn1—O1xxi | 92.2 (4) |
N1—Mn1—N1ix | 90.0000 | O1—Mn1—O1xxii | 92.2 (4) |
N1—Mn1—N1x | 90.0000 | O1—Mn1—O1xxiii | 70.2 (4) |
N1vi—Mn1—N1vii | 90.0000 | O1—Mn1—O1xxiv | 87.8 (4) |
N1vi—Mn1—N1viii | 90.0000 | O1—Mn1—O1xxv | 70.2 (4) |
N1vi—Mn1—N1ix | 180.0000 | O1—Mn1—O1xxvii | 87.8 (4) |
N1vi—Mn1—N1x | 90.0000 | O1—Mn1—N1vi | 78.69 (14) |
N1vii—Mn1—N1viii | 90.0000 | O1—Mn1—N1vii | 78.19 (14) |
N1vii—Mn1—N1ix | 90.0000 | O1—Mn1—N1viii | 163.90 (14) |
N1vii—Mn1—N1x | 180.0000 | O1—Mn1—N1ix | 101.31 (14) |
N1viii—Mn1—N1ix | 90.0000 | O1—Mn1—N1x | 101.31 (14) |
N1viii—Mn1—N1x | 90.0000 |
Symmetry codes: (i) x, y, −z; (ii) y, z+1/2, x−1/2; (iii) y, −z+1/2, −x+1/2; (iv) z+1/2, x, y−1/2; (v) −z+1/2, x, −y+1/2; (vi) y, z, x; (vii) z, x, y; (viii) x, y, −z+1; (ix) y, −z+1, −x+1; (x) −z+1, x, −y+1; (xi) y, z, −x+1; (xii) z, x, −y+1; (xiii) z, −x+1, −y+1; (xiv) −x+1, y, −z+1; (xv) −y+1, z, −x+1; (xvi) x, −y+1, −z+1; (xvii) −x+1, −y+1, −z+1; (xviii) −y+1, −z+1, −x+1; (xix) −z+1, −x+1, −y+1; (xx) −x+1, −y+1, z; (xxi) −y+1, −z+1, x; (xxii) −z+1, −x+1, y; (xxiii) −y+1, z, x; (xxiv) −z+1, x, y; (xxv) z, −x+1, y; (xxvi) x, −y+1, z; (xxvii) y, −z+1, x; (xxviii) −x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | Mn[Fe(CN)6]0.6667·5H2O |
Mr | 286.50 |
Crystal system, space group | Cubic, Fm3m |
Temperature (K) | 90 |
a (Å) | 10.3859 (13) |
V (Å3) | 1120.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.02 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.655, 0.739 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 15777, 278, 268 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.996 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.136, 1.37 |
No. of reflections | 278 |
No. of parameters | 21 |
No. of restraints | ? |
H-atom treatment | H-atom parameters not defined |
Δρmax, Δρmin (e Å−3) | 0.59, −1.41 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), VESTA (Momma & Izumi, 2006).
Fe1—C1 | 1.918 (8) | N1—C1 | 1.169 (15) |
Mn1—N1 | 2.105 (13) | Mn1—O1 | 2.247 (12) |
O1—Mn1—O1i | 87.8 (4) | O1—Mn1—N1iv | 78.69 (14) |
O1—Mn1—O1ii | 157.4 (3) | O1—Mn1—N1v | 163.90 (14) |
O1—Mn1—O1iii | 180.0 (5) |
Symmetry codes: (i) y, z, −x+1; (ii) −x+1, y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) y, z, x; (v) x, y, −z+1. |
Acknowledgements
This research was supported in part by a Grant for the Global COE Program for Chemistry Innovation, a Grant-in-Aid for Scientific Research in Priority Area `Chemistry of Coordination Space', a Grant-in-Aid for Scientific Research (B), and a Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, the Asahi Glass Foundation, Iketani Science and Technology Foundation, Inamori Foundation, the Kurata Memorial Hitachi Science and Technology Foundation, the Murata Science Foundation and the Yamada Science Foundation.
References
Egan, L., Kamenev, K., Papanikolaou, D., Takabayashi, Y. & Margadonna, S. (2006). J. Am. Chem. Soc. 128, 6034–6035. Web of Science CrossRef PubMed CAS Google Scholar
Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701–703. CrossRef CAS Web of Science Google Scholar
Gadet, V., Mallah, T., Castro, I. & Verdaguer, M. (1992). J. Am. Chem. Soc. 114, 9213–9214. CrossRef CAS Web of Science Google Scholar
Güdel, H. U., Stucki, H. & Ludi, A. (1973). Inorg. Chim. Acta, 7, 121–124. Google Scholar
Hatlevik, Ø., Buschmann, W. E., Zhang, J., Manson, J. L. & Miller, J. S. (1999). Adv. Mater. 11, 914–918. CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Holmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593–5594. Web of Science CrossRef CAS Google Scholar
Kato, K., Moritomo, Y., Takata, M., Sakata, M., Umekawa, M., Hamada, N., Ohkoshi, S., Tokoro, H. & Hashimoto, K. (2003). Phys. Rev. Lett. 91, 2555021–2555024. Web of Science CrossRef Google Scholar
Ludi, A. & Güdel, H. U. (1973). Struct. Bonding (Berlin), 14, 1–21. CrossRef CAS Google Scholar
Ludi, A., Güdel, H. U. & Rüegg, M. (1970). Inorg. Chem. 9, 2224–2227. CrossRef CAS Web of Science Google Scholar
Margadonna, S., Prassides, K. & Fitch, A. N. (2004). J. Am. Chem. Soc. 126, 15390–15391. Web of Science CrossRef PubMed CAS Google Scholar
Momma, K. & Izumi, F. (2006). IUCr Commission on Crystallographic Computing Newsletter, 130, 106-119. Google Scholar
Ohkoshi, S., Arai, K., Sato, Y. & Hashimoto, K. (2004). Nat. Mater. 3, 857–861. Web of Science CrossRef PubMed CAS Google Scholar
Ohkoshi, S. & Hashimoto, K. (2001). J. Photochem. Photobiol. Photochem. Rev. C2, 71–88. CrossRef Google Scholar
Ohkoshi, S., Matsuda, T., Tokoro, H. & Hashimoto, K. (2005). Chem. Mater. 17, 81–84. Web of Science CrossRef CAS Google Scholar
Ohkoshi, S., Mizuno, M., Hung, G. J. & Hashimoto, K. (2000). J. Phys. Chem. B, 104, 9365–9367. Web of Science CrossRef CAS Google Scholar
Ohkoshi, S., Yorozu, S., Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1997). Appl. Phys. Lett. 70, 1040–1042. CrossRef CAS Web of Science Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Version 3.80. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 272, 704–705. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tokoro, H., Ohkoshi, S. & Hashimoto, K. (2003). Appl. Phys. Lett. 82, 1245–1247. Web of Science CrossRef CAS Google Scholar
Tokoro, H., Ohkoshi, S., Matsuda, T. & Hashimoto, K. (2004). Inorg. Chem. 43, 5231–5236. Web of Science CrossRef PubMed CAS Google Scholar
Tokoro, H., Shiro, M., Hashimoto, K. & Ohkoshi, S. (2007). Z. Anorg. Allg. Chem. 633, 1134–1136. Web of Science CrossRef CAS Google Scholar
Zeigler, B., Witzel, M., Schwarten, M. & Babel, D. (1999). Z. Naturforsch. Teil B, 54, 870–876. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last decade, various interesting magnetic functionalities have been reported with Prussian blue analogs, e.g., high Curie temperatures (TC) (Ferlay et al., 1995; Holmes & Girolami, 1999; Hatlevik et al., 1999; Ohkoshi et al., 2000), humidity-response (Ohkoshi et al., 2004), photomagnetism (Ohkoshi & Hashimoto, 2001; Sato et al., 1996; Ohkoshi et al.,1997), and zero thermal expansion (Margadonna et al., 2004). Prussian blue analogs have two types of crystal structures, MA[MB(CN)6]2/3.zH2O (Ludi et al., 1970; Ludi & Güdel, 1973; Güdel et al., 1973) and AMA[MB(CN)6] (Gadet et al., 1992; Zeigler et al., 1999; Kato et al., 2003), where MA and MB are transition metal ions and A is an alkali metal ion. Recently, rubidium manganese hexacyanoferrate, RbxMn[Fe(CN)6](x + 2)/3.zH2O, has received attention due to its various functionalities such as a charge-transfer phase transition (Tokoro et al., 2004; Ohkoshi et al., 2005), a pressure-induced magnetic pole inversion (Egan et al., 2006), and a photomagnetic effect (Tokoro et al., 2003). Although the crystal structure of rubidium manganese hexacyanoferrate was determined (Kato et al., 2003; Tokoro et al., 2007), the structure of manganese hexacyanoferrate of MA[MB(CN)6]2/3.zH2O has not been determined yet. In this work, we successfully synthesized a single-crystal of Mn[Fe(CN)6]2/3.5H2O and analyzed the crystal structure.
The crystal structure of the title compound consists of MnII and FeIII with cyanide bridges to form a three-dimensional face-centered cubic structure (space group; Fm3m), containing ligand water and zeolitic water molecules (Fig. 1). Fe, Mn, C, and N atoms occupy the positions 4a (0, 0, 0), 4 b (1/2, 1/2, 1/2), 24 e (0.1847 (8), 0,0), and 24 e (0.2973 (12), 0, 0), respectively. The Fe atoms are coordinated to six C atoms with octahedral geometries. On the other hand, the Mn atoms are coordinated to four N atoms and two O1 atoms of ligand water, since there are vacancies of 1/3 × [Fe(CN)6]3- to maintain charge neutrality. The O1 atoms occupy the 96k (0.4576 (10), 0.4576 (10), 0.2922 (11)) positions with occupancy of 1/12. The coordination geometry in the MnNxO6 - x (x = 0–5) moiety is octahedral with some potentially large distortions [O1—Mn—N bond angles of 78.19 (14)°, and 163.9 (2)°] due to the location of the disordered O1 water molecule. The oxygen atoms (O2 and O3) of zeolitic waters occupy 8c (1/4, 1/4, 1/4) positions with occupancy of 5/6 and 32f (0.1550 (16), 0.1550 (16), 0.1550 (16)) positions with occupancy of 1/6. The contact distances of 3.081 (11), 2.76 (2), 2.79 (2) Å between O1—O2i, O1—O3, and O3—O3ii [Symmetry codes: (i) 1 - x, y, z; (ii) 1 - z, 1 - x, y], respectively, suggest the existence of hydrogen bonds.
The structure of the title compound differs from that of the rubidium phase in the position of the O1 atom of the ligand water. This atom occupies the 96k position in Mn[Fe(CN)6]2/3.5H2O and the 24 e position in Rb0.61Mn[Fe(CN)6]0.87.1.7H2O (Tokoro et al., 2007). This difference may be explained by the hydrogen bonding between ligand water and zeolitic water in the title compound. The O2 atom of the zeolitic water exists on the 8c (1/4, 1/4, 1/4) position in Mn[Fe(CN)6]2/3.5H2O. The shortest length between the 8c and 24 e positions is 3.67 Å which is rather far to construct a hydrogen bond. In our refinement with the O1 atom in the 96k position, the distance of 3.081 (11) Å between O1 and O2i [Symmetry code: (i) 1 - x, y, z] is acceptable as a hydrogen bond. By contrast, in Rb0.61Mn[Fe(CN)6]0.87.1.7H2O, since the Rb cation is contained in the channels between the –Mn–NC–Fe– framework and the amount of vacant space is thus less than in Mn[Fe(CN)6]2/3.5H2O, the O2 atom of zeolitic water does not exist on the 8c position in the Rb compound, so no similar O1···O2 interaction occurs.