metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m320-m321

catena-Poly[[tri­aqua­cadmium(II)]-μ-pyridine-2,3-di­carboxyl­ato-κ3N,O2:O3]

aFaculty of Chemistry, Teacher Training University, 49 Mofateh Ave., 15614 Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 17 November 2007; accepted 27 December 2007; online 9 January 2008)

The title polymeric compound, [Cd(C7H3NO4)(H2O)3]n or [Cd(py-2,3-dc)(H2O)3]n, where py-2,3-dcH2 is pyridine-2,3-dicarboxylic acid, was obtained by the reaction of cadmium(II) nitrate hexa­hydrate with (pipzH2)(py-2,3-dc) as a proton-transfer compound in aqueous solution (pipz is piperazine). The mol­ecular structure shows that only the anionic fragment of the starting proton-transfer compound is present in the complex, while the (pipzH2)2+ dication has been lost. Each (py-2,3-dc)2− ligand bridges two CdII atoms in two different coordination modes, i.e. one end acts as a monodentate and the other end as a bidentate ligand. The three remaining coordination sites on the metal center are occupied by water mol­ecules. The geometric arrangement of the six donor atoms around the CdII atom is distorted octa­hedral. In the crystal structure, O—H⋯O and C—H⋯O hydrogen bonds play an important role in stabilizing the supra­molecular structure.

Related literature

For related ion pairs or complexes, see: Aghabozorg, Daneshvar, Motyeian et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]); Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64. Submitted for publication.]); Manteghi et al. (2007[Manteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.]); Aghabozorg, Sadr-khanlou et al. (2007[Aghabozorg, H., Sadr-khanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1769.]); Li et al. (2004[Li, L. J. & Li, Y. (2004). J. Mol. Struct. 694, 199-203.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H3NO4)(H2O)3]

  • Mr = 331.55

  • Orthorhombic, P c a 21

  • a = 16.820 (3) Å

  • b = 6.8076 (14) Å

  • c = 8.6658 (17) Å

  • V = 992.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 100 (2) K

  • 0.40 × 0.08 × 0.05 mm

Data collection
  • Bruker APEX 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.810, Tmax = 0.901

  • 8990 measured reflections

  • 2255 independent reflections

  • 1848 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.056

  • S = 1.01

  • 2255 reflections

  • 151 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.84 e Å−3

  • Absolute structure: Flack (1983), 1042 Friedel pairs

  • Flack parameter: 0.05 (4)

Table 1
Selected geometric parameters (Å, °)

Cd1—O1W 2.254 (4)
Cd1—O2i 2.259 (3)
Cd1—O3W 2.274 (3)
Cd1—O4 2.279 (3)
Cd1—N1i 2.302 (4)
Cd1—O2W 2.385 (3)
O3W—Cd1—O4 156.89 (12)
O1W—Cd1—N1i 163.70 (14)
O2i—Cd1—O2W 171.30 (12)
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O2Wii 0.85 (2) 1.99 (2) 2.782 (5) 155.61
O1W—H2⋯O3iii 0.87 (2) 1.86 (2) 2.702 (5) 163.55
O2W—H3⋯O1iii 0.88 (2) 1.85 (2) 2.731 (5) 177.88
O2W—H4⋯O3iv 0.87 (2) 1.84 (2) 2.687 (5) 164.45
O3W—H5⋯O4iii 0.86 (2) 1.86 (2) 2.712 (4) 171.29
O3W—H6⋯O1v 0.87 (2) 1.89 (2) 2.735 (8) 164.32
C3—H3A⋯O1Wvi 0.95 (2) 2.49 (2) 3.420 (6) 165
Symmetry codes: (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) [-x+1, -y+2, z-{\script{1\over 2}}]; (v) x, y, z-1; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, ion pairs or complexes related to the title compound have been reported (Aghabozorg, Daneshvar, Motyeian et al., 2007). Proton transfer from pyridine-2,3-dicarboxylic acid (py-2,3-dcH2) to amines, such as piperazine (pipz) and propane-1,3-diamine (pn), resulted in the formation of novel systems (Aghabozorg, Manteghi et al., 2007 submitted; Manteghi et al., 2007). The resulting compounds, with some remaining sites as electron donors, can coordinate to metallic ions (Aghabozorg, Sadr-khanlou et al., 2007). The molecular structure of the title compound shows that only the anionic fragment of starting proton transfer compound is incorporated into the complex and that the (pipzH2)2+ dication has been lost. Each cadmium(II) atom is coordinated by five O-atoms and one N-atom. The asymmetric unit consists of one cadmium, one bridging (py-2,3-dc)2- and three coordinated water molecules (Fig. 1). The (py-2,3-dc)2- groups bridge two cadmium ions by adopting two different coordination modes, bidentate and monodentate. The existance of both coordination modes is seldom found in pyridine multicarboxylate coordination polymers (Li et al. 2004). The bond lengths and bond angles of the equatorial bonds around the metal center with atoms N1A, O2A, O1W and O2W, and the axial bonds with atoms O4 and O3W, indicate that the geometric arrangement of the six donor atoms around the cadmium(II) atom is distorted octahedral (Table 1). It is noticeable that one of the carboxylate groups is almost coplannar with the pyridine ring and the other is perpendicular to it (Fig. 1). The formation of the polymeric chains along the c axis is illustrated in Fig. 2. There are a number of O—H···O hydrogen bonds (Table 2) involving the coordinated water molecules and other O-atoms, [D···A distances ranging from 2.685 (5) to 2.789 (5) Å], and a C—H···O bond [D···A distance of 3.430 (6) Å], that give rise to the formation of a three-dimensional network (Fig. 3).

Related literature top

For related ion pairs or complexes, see: Aghabozorg, Daneshvar, Motyeian et al. (2007); Aghabozorg et al. (2008); Manteghi et al. (2007); Aghabozorg, Sadr-khanlou et al. (2007); Li et al. (2004).

Experimental top

The proton transfer ion pair was prepared according to the literature (Aghabozorg et al., 2008, in press). A solution of Cd(NO3)2. 6H2O (158 mg, 0.5 mmol) in water (20 ml) was added to a solution of (pipzH2)(py- 2,3-dc) (253 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio. Colorless crystals of the title compound suitable for X-ray characterization were obtained after a few days at room temperature.

Refinement top

All the hydrogen atoms could be located from the difference Fourier syntheses. The water H-atoms were refined isotropically with Uiso(H) = 0.022. The C-bond H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as dashed lines. Atoms marked with suffixes A—E are related by the symmetry codes (A) -x + 3/2, y, z - 1/2; (B) -x + 1, -y + 1, z + 1/2; (C) -x + 1, -y + 1, z - 1/2; (D) -x + 1, -y + 2, z - 1/2; (E) x, y, z - 1).
[Figure 2] Fig. 2. A view of the polymeric chain of the title compound extending along the c axis.
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound [the hydrogen bonds are shown as dashed lines and the hydrogen atoms of the pyridine-2,3-dicarboxylates ligands are omitted for clarity].
catena-Poly[[triaquacadmium(II)]-µ-pyridine-2,3-dicarboxylato- κ3N,O2:O3] top
Crystal data top
[Cd(C7H3NO4)(H2O)3]F(000) = 648
Mr = 331.55Dx = 2.219 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1136 reflections
a = 16.820 (3) Åθ = 3.0–24.6°
b = 6.8076 (14) ŵ = 2.22 mm1
c = 8.6658 (17) ÅT = 100 K
V = 992.3 (3) Å3Needle, colourless
Z = 40.40 × 0.08 × 0.05 mm
Data collection top
Bruker APEX 1000 CCD area-detector
diffractometer
2255 independent reflections
Radiation source: fine-focus sealed tube1848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 2121
Tmin = 0.810, Tmax = 0.901k = 88
8990 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2255 reflectionsΔρmax = 0.61 e Å3
151 parametersΔρmin = 0.84 e Å3
7 restraintsAbsolute structure: Flack (1983), 1042 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (4)
Crystal data top
[Cd(C7H3NO4)(H2O)3]V = 992.3 (3) Å3
Mr = 331.55Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 16.820 (3) ŵ = 2.22 mm1
b = 6.8076 (14) ÅT = 100 K
c = 8.6658 (17) Å0.40 × 0.08 × 0.05 mm
Data collection top
Bruker APEX 1000 CCD area-detector
diffractometer
2255 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
1848 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.901Rint = 0.060
8990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056Δρmax = 0.61 e Å3
S = 1.01Δρmin = 0.84 e Å3
2255 reflectionsAbsolute structure: Flack (1983), 1042 Friedel pairs
151 parametersAbsolute structure parameter: 0.05 (4)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.602315 (16)0.57263 (4)1.12348 (5)0.01148 (8)
O10.64375 (15)0.5438 (4)1.6269 (10)0.0146 (4)
O20.77114 (19)0.4893 (5)1.6812 (4)0.0146 (4)
O30.55536 (18)0.9159 (5)1.5507 (4)0.0139 (7)
O40.56140 (18)0.7169 (5)1.3472 (4)0.0131 (8)
C10.7384 (3)0.7512 (7)1.5083 (6)0.0114 (10)
C20.6813 (3)0.8656 (7)1.4333 (6)0.0120 (11)
C30.7065 (3)1.0220 (8)1.3431 (7)0.0110 (11)
H3A0.66851.10231.29200.013*
C40.7868 (3)1.0616 (8)1.3272 (7)0.0149 (11)
H4A0.80501.16601.26360.018*
C50.8403 (3)0.9424 (8)1.4080 (6)0.0168 (11)
H5A0.89560.96941.40010.020*
C60.7166 (2)0.5813 (6)1.6146 (9)0.0146 (4)
C70.5934 (3)0.8271 (7)1.4475 (5)0.0113 (10)
N10.8168 (2)0.7919 (6)1.4961 (5)0.0125 (9)
O1W0.5482 (2)0.2964 (6)1.2211 (4)0.0145 (8)
H10.526 (3)0.302 (9)1.309 (4)0.022*
H20.509 (2)0.227 (7)1.183 (5)0.022*
O2W0.47743 (19)0.6981 (5)1.0383 (4)0.0134 (7)
H30.439 (2)0.618 (6)1.065 (6)0.020*
H40.464 (3)0.818 (4)1.060 (6)0.020*
O3W0.59058 (19)0.3963 (5)0.9018 (4)0.0147 (8)
H50.5445 (19)0.350 (8)0.879 (7)0.022*
H60.609 (3)0.420 (8)0.811 (3)0.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00902 (12)0.01505 (14)0.01036 (13)0.00047 (13)0.0004 (3)0.0018 (3)
O10.0109 (8)0.0186 (11)0.0144 (10)0.0005 (8)0.0029 (11)0.0048 (12)
O20.0109 (8)0.0186 (11)0.0144 (10)0.0005 (8)0.0029 (11)0.0048 (12)
O30.0112 (16)0.0158 (18)0.0146 (16)0.0006 (14)0.0041 (13)0.0032 (16)
O40.0077 (16)0.023 (2)0.0084 (17)0.0019 (14)0.0004 (14)0.0031 (16)
C10.011 (2)0.012 (3)0.011 (2)0.0042 (19)0.0063 (19)0.001 (2)
C20.010 (2)0.014 (3)0.012 (3)0.0018 (19)0.000 (2)0.005 (2)
C30.009 (3)0.013 (3)0.011 (3)0.004 (2)0.000 (2)0.002 (2)
C40.014 (3)0.016 (3)0.014 (3)0.002 (2)0.001 (2)0.005 (3)
C50.012 (3)0.020 (3)0.017 (3)0.004 (2)0.000 (2)0.004 (3)
C60.0109 (8)0.0186 (11)0.0144 (10)0.0005 (8)0.0029 (11)0.0048 (12)
C70.013 (2)0.011 (3)0.010 (2)0.001 (2)0.003 (2)0.0057 (19)
N10.011 (2)0.016 (2)0.010 (2)0.0057 (17)0.0018 (16)0.0007 (18)
O1W0.0142 (18)0.022 (2)0.0070 (17)0.0081 (15)0.0020 (14)0.0012 (16)
O2W0.0127 (17)0.0119 (19)0.0156 (19)0.0014 (14)0.0030 (14)0.0008 (17)
O3W0.0113 (18)0.023 (2)0.0093 (16)0.0033 (15)0.0003 (14)0.0040 (16)
Geometric parameters (Å, º) top
Cd1—O1W2.254 (4)C2—C71.506 (6)
Cd1—O2i2.259 (3)C3—C41.385 (6)
Cd1—O3W2.274 (3)C3—H3A0.9500
Cd1—O42.279 (3)C4—C51.400 (7)
Cd1—N1i2.302 (4)C4—H4A0.9500
Cd1—O2W2.385 (3)C5—N11.338 (7)
O1—C61.256 (4)C5—H5A0.9500
O2—C61.252 (6)N1—Cd1ii2.302 (4)
O2—Cd1ii2.259 (3)O1W—H10.850 (19)
O3—C71.255 (6)O1W—H20.869 (19)
O4—C71.268 (6)O2W—H30.88 (2)
C1—N11.351 (6)O2W—H40.866 (19)
C1—C21.397 (7)O3W—H50.858 (19)
C1—C61.523 (7)O3W—H60.87 (2)
C2—C31.387 (7)
O1W—Cd1—O2i95.06 (13)C2—C3—H3A119.9
O1W—Cd1—O3W80.89 (13)C3—C4—C5117.7 (5)
O2i—Cd1—O3W97.84 (12)C3—C4—H4A121.1
O1W—Cd1—O485.31 (13)C5—C4—H4A121.1
O2i—Cd1—O4101.79 (12)N1—C5—C4122.6 (5)
O3W—Cd1—O4156.89 (12)N1—C5—H5A118.7
O1W—Cd1—N1i163.70 (14)C4—C5—H5A118.7
O2i—Cd1—N1i73.25 (13)O2—C6—O1125.0 (6)
O3W—Cd1—N1i89.34 (14)O2—C6—C1118.8 (4)
O4—Cd1—N1i107.87 (14)O1—C6—C1116.2 (5)
O1W—Cd1—O2W93.38 (13)O3—C7—O4123.9 (4)
O2i—Cd1—O2W171.30 (12)O3—C7—C2118.3 (4)
O3W—Cd1—O2W81.44 (12)O4—C7—C2117.6 (4)
O4—Cd1—O2W80.96 (12)C5—N1—C1119.4 (4)
N1i—Cd1—O2W98.06 (13)C5—N1—Cd1ii126.5 (3)
C6—O2—Cd1ii117.6 (3)C1—N1—Cd1ii114.0 (3)
C7—O4—Cd1135.2 (3)Cd1—O1W—H1118 (4)
N1—C1—C2121.3 (5)Cd1—O1W—H2128 (3)
N1—C1—C6116.0 (4)H1—O1W—H292 (5)
C2—C1—C6122.6 (4)Cd1—O2W—H3110 (3)
C3—C2—C1118.7 (4)Cd1—O2W—H4120 (4)
C3—C2—C7118.6 (4)H3—O2W—H4110 (5)
C1—C2—C7122.7 (4)Cd1—O3W—H5118 (4)
C4—C3—C2120.2 (5)Cd1—O3W—H6130 (4)
C4—C3—H3A119.9H5—O3W—H6101 (5)
O1W—Cd1—O4—C7131.6 (5)C2—C1—C6—O2177.9 (5)
O2i—Cd1—O4—C737.4 (5)N1—C1—C6—O1179.6 (6)
O3W—Cd1—O4—C7175.1 (4)C2—C1—C6—O12.7 (9)
N1i—Cd1—O4—C738.6 (5)Cd1—O4—C7—O3168.0 (3)
O2W—Cd1—O4—C7134.3 (5)Cd1—O4—C7—C27.0 (7)
N1—C1—C2—C30.9 (7)C3—C2—C7—O387.1 (6)
C6—C1—C2—C3177.6 (5)C1—C2—C7—O392.4 (6)
N1—C1—C2—C7178.5 (4)C3—C2—C7—O488.2 (6)
C6—C1—C2—C71.8 (8)C1—C2—C7—O492.3 (6)
C1—C2—C3—C40.6 (9)C4—C5—N1—C10.2 (8)
C7—C2—C3—C4179.9 (5)C4—C5—N1—Cd1ii176.0 (4)
C2—C3—C4—C51.7 (9)C2—C1—N1—C51.3 (7)
C3—C4—C5—N11.3 (9)C6—C1—N1—C5178.3 (5)
Cd1ii—O2—C6—O1175.2 (6)C2—C1—N1—Cd1ii177.7 (4)
Cd1ii—O2—C6—C14.1 (7)C6—C1—N1—Cd1ii5.4 (6)
N1—C1—C6—O21.0 (8)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O2Wiii0.85 (2)1.99 (2)2.782 (5)156
O1W—H2···O3iv0.87 (2)1.86 (2)2.702 (5)164
O2W—H3···O1iv0.88 (2)1.85 (2)2.731 (5)178
O2W—H4···O3v0.87 (2)1.84 (2)2.687 (5)165
O3W—H5···O4iv0.86 (2)1.86 (2)2.712 (4)171
O3W—H6···O1vi0.87 (2)1.89 (2)2.735 (8)164
C3—H3A···O1Wvii0.95 (2)2.49 (2)3.420 (6)165
Symmetry codes: (iii) x+1, y+1, z+1/2; (iv) x+1, y+1, z1/2; (v) x+1, y+2, z1/2; (vi) x, y, z1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C7H3NO4)(H2O)3]
Mr331.55
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)16.820 (3), 6.8076 (14), 8.6658 (17)
V3)992.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.40 × 0.08 × 0.05
Data collection
DiffractometerBruker APEX 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.810, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
8990, 2255, 1848
Rint0.060
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.056, 1.01
No. of reflections2255
No. of parameters151
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.84
Absolute structureFlack (1983), 1042 Friedel pairs
Absolute structure parameter0.05 (4)

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 1998).

Selected geometric parameters (Å, º) top
Cd1—O1W2.254 (4)Cd1—O42.279 (3)
Cd1—O2i2.259 (3)Cd1—N1i2.302 (4)
Cd1—O3W2.274 (3)Cd1—O2W2.385 (3)
O3W—Cd1—O4156.89 (12)O2i—Cd1—O2W171.30 (12)
O1W—Cd1—N1i163.70 (14)
N1—C1—C6—O21.0 (8)C3—C2—C7—O488.2 (6)
N1—C1—C6—O1179.6 (6)C1—C2—C7—O492.3 (6)
Symmetry code: (i) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O2Wii0.85 (2)1.99 (2)2.782 (5)155.61
O1W—H2···O3iii0.87 (2)1.86 (2)2.702 (5)163.55
O2W—H3···O1iii0.88 (2)1.85 (2)2.731 (5)177.88
O2W—H4···O3iv0.87 (2)1.84 (2)2.687 (5)164.45
O3W—H5···O4iii0.86 (2)1.86 (2)2.712 (4)171.29
O3W—H6···O1v0.87 (2)1.89 (2)2.735 (8)164.32
C3—H3A···O1Wvi0.95 (2)2.49 (2)3.420 (6)165
Symmetry codes: (ii) x+1, y+1, z+1/2; (iii) x+1, y+1, z1/2; (iv) x+1, y+2, z1/2; (v) x, y, z1; (vi) x, y+1, z.
 

References

First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64. Submitted for publication.  CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Sadr-khanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, L. J. & Li, Y. (2004). J. Mol. Struct. 694, 199–203.  Web of Science CSD CrossRef CAS Google Scholar
First citationManteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m320-m321
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds