metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m387-m388

Bis(4,4′-bipyridinium) di-μ-hydroxido-bis­­[di­hydroxido(pyridine-2,6-di­carboxyl­ato)anti­monate(III,V)] octa­hydrate

aDepartment of Chemistry, Ilam University, Ilam, Iran, bDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, and cDepartment of Chemistry, Sheffield University, Sheffield S3 7HF, England
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 29 November 2007; accepted 14 January 2008; online 23 January 2008)

The reaction of anti­mony(III) chloride, 4,4′-bipyridine (4,4′-bipy) and pyridine-2,6-dicarboxylic acid (pydcH2), in a 1:2:2 molar ratio in an aqueous solution, resulted in the formation of the title centrosymmetric disordered mixed-valence SbIII/SbV compound, (C10H9N2)2[Sb2(C7H3NO4)2(OH)6]·8H2O or (4,4′-bipyH)2[Sb(pydc)(OH)2(μ-OH)]2·8H2O. The seven donor atoms of the (pydc)2− groups and the hydroxido ligands form a distorted penta­gonal–bipyramidal arrangement around the SbIII/SbV centers. C—H⋯π stacking inter­actions between CH groups of the complex dianion and the aromatic rings of the (4,4′-bipyH)+ cations, with a distance of 2.89 Å, are observed. In the crystal structure, a wide range of noncovalent inter­actions, consisting of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds [DA ranging from 2.722 (2) to 3.137 (3) Å], ion pairing, ππ stacking [centroid–centroid distance of 3.4363 (13) Å] and C—H⋯π inter­actions, connect the various components into a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803-m1804.]); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710-m1711.]); Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H9N2)2[Sb2(C7H3NO4)2(OH)6]·8H2O

  • Mr = 1134.27

  • Triclinic, [P \overline 1]

  • a = 10.0149 (11) Å

  • b = 10.4826 (12) Å

  • c = 11.0974 (12) Å

  • α = 92.816 (2)°

  • β = 97.813 (2)°

  • γ = 114.046 (2)°

  • V = 1047.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 150 (2) K

  • 0.43 × 0.41 × 0.39 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Version 1. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.588, Tmax = 0.614 (expected range = 0.557–0.583)

  • 12026 measured reflections

  • 4790 independent reflections

  • 4536 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.07

  • 4790 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O10i 0.85 2.13 2.949 (2) 161
O6—H6A⋯O10ii 0.85 1.94 2.783 (2) 172
O7—H7A⋯O8iii 0.85 1.91 2.760 (2) 174
O8—H8B⋯O11iv 0.85 2.22 2.997 (2) 151
O8—H8B⋯O3iv 0.85 2.61 3.067 (2) 115
O8—H8A⋯N2 0.85 1.93 2.751 (2) 161
O9—H9A⋯O1v 0.85 1.91 2.749 (2) 170
O9—H9B⋯O6 0.85 1.88 2.731 (2) 177
O10—H10A⋯O11vi 0.85 2.03 2.867 (2) 168
O10—H10B⋯O9 0.85 1.87 2.722 (2) 178
O11—H11A⋯O4 0.85 1.95 2.793 (2) 174
O11—H11B⋯O8 0.85 1.99 2.830 (2) 169
N3—H3A⋯O6vii 0.85 1.91 2.760 (2) 173
C13—H13⋯O1viii 0.95 2.30 3.205 (3) 160
C15—H15⋯O5 0.95 2.23 3.107 (3) 153
C17—H17⋯O5ix 0.95 2.23 3.137 (3) 159
C5—H5⋯Cg1(N2/C11–C15)x 0.95 2.89 3.596 (2) 132
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z; (iii) x, y, z-1; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z; (vi) -x+1, -y, -z+1; (vii) x, y+1, z; (viii) x, y, z+1; (ix) -x, -y+1, -z; (x) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART (Version 5.059) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART (Version 5.059) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our research group has recently focused its attention on the one-pot synthesis of water soluble proton transfer compounds that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg et al., 2007a, Aghabozorg et al., 2007b, Aghabozorg et al., 2007c).

The title compound is compossed of a disordered mixed valent SbIII/SbV binuclear dianion, two protonated 4,4'-bipyridines, (4,4'-bipyH)+, and eight uncoordinated water molecules (Fig.1 and Fig. 2). The anionic SbIII/SbV binuclear complex is centrosymmetric; the binuclear units are related to one another by an inversion center, which lies at the center of the Sb2O2 four membered ring. Each antimony atom is coordinated to a tridentate (pydc)2- ligand by the carboxylate O-atoms and the pyridine N-atom, and to two terminal hydroxo ligands. Two more hydroxo ligands also serve as bridges between the two SbIII/SbV centers. These bridging hydroxyl groups are remaining from SbOCl, formed during the partial hydrolysis of SbCl3. The SbIII/SbV centers have a distorted pentagonal bipyramidal environment (Fig. 3). Atoms O5 and O6 occupy the axial positions [O5—Sb1—O6 = 172.29 (6) °], whereas atoms N1, O2, O3, O7 and O7i (i: -x, -y, -z) atoms form the equatorial plane.

In the crystal structure of the title complex, the spaces between layers of {[Sb(pydc)(OH)2(µ-OH)]2}2- anions are filled with (4,4'-bipyH)+ cations and water molecules (Fig. 4). The dihedral angle between the two best-planes passing through the aromatic rings of (4,4'-bipyH)+ is 31.88 (17) °, which indicates the flexibility of the central C—C bond.

In the crystal structure of the title compound there are C—H···π stacking interactions between the C–H group of the (pydc)2– fragments andthe aromatic rings of the (4,4'-bipyH)+ cations. The C—H···π distance (measured to the center of the pyridine ring) is 2.89 Å for C5—H5···Cg1 (1 - x, 1 - y, 1 - z) with an angle of 132 °. There are also π-π stacking interactions between the aromatic rings of the (4,4'-bipyH)+ cations, with a distance of 3.4363 (13) Å for Cg1···Cg1 A (-x, 1 - y, 1 - z) [Cg1 and Cg1 A are the centroids of rings N2/C11—C15 and N2A/C11A—C15A, respectively] (Fig. 5).

In the crystal structure, there are a wide range of non-covalent interactions, consisting O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2), ion pairing, ππ and C—H···π stacking interactions (Table 1), all of which connect the various components into a supramolecular structure.

Related literature top

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar, et al. (2007).

Experimental top

An aqueous solution (25 ml of water) of SbCl3 (290 mg, 1 mmol), 4,4'-bipyridine (310 mg, 2 mmol) and pyridine-2,6-dicarboxylic acid (360 mg, 2 mmol) was heated to boiling point for 2 h. Colorless crystals of the title compound were obtained from the solution after two days at room temperature.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.85 Å and C—H = 0.93 - 0.95 Å with Uiso(H) = 1.2Ueq(parent O or C-atom).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 6.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 6.1; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level. Uncoordinated water molecules are omitted for clarity. Atoms marked with A are related by the symmetry code (-x, -y, -z).
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, with the hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The coordination environment of the SbIII/SbV centers. Atoms marked with A are related by the symmetry code (-x, -y, -z).
[Figure 4] Fig. 4. Layered diagram of the title compound. The space between the two layers of {[Sb(pydc)(OH)2(µ-OH)]2}2- dianions are filled with (4,4'-bipyH)+ cations and water molecules.
[Figure 5] Fig. 5. C—H···π stacking interactions between the C–H group of the (pydc)2– fragments and the aromatic rings of the (4,4'-bipyH)+ units. The C—H···π distance (measured to the center of phenyl ring) is 2.89 Å for C5—H5···Cg1 (1 - x, 1 - y, 1 - z). π-π stacking interactions between the aromatic rings of the (4,4'-bipyH)+ fragments with distance of 3.436 (2) Å for Cg1···Cg1 A (-x, 1 - y, 1 - z) [Cg1 and Cg1 A are the centroids of the rings N2/C11—C15 and N2A/C11A—C15A, respectively].
Bis(4,4'-bipyridinium) di-µ-hydroxido-bis[dihydroxido(pyridine-2,6-dicarboxylato)antimonate(III,V)] octahydrate top
Crystal data top
(C10H9N2)2[Sb2(C7H3NO4)2(OH)6]·8H2OZ = 1
Mr = 1134.27F(000) = 570
Triclinic, P1Dx = 1.799 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0149 (11) ÅCell parameters from 9637 reflections
b = 10.4826 (12) Åθ = 2.3–28.5°
c = 11.0974 (12) ŵ = 1.38 mm1
α = 92.816 (2)°T = 150 K
β = 97.813 (2)°Block, colourless
γ = 114.046 (2)°0.43 × 0.41 × 0.39 mm
V = 1047.0 (2) Å3
Data collection top
Bruker SMART 1000
diffractometer
4790 independent reflections
Radiation source: fine-focus sealed tube4536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 100 pixels mm-1θmax = 28.6°, θmin = 1.9°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1314
Tmin = 0.588, Tmax = 0.614l = 1414
12026 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.4561P]
where P = (Fo2 + 2Fc2)/3
4790 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
(C10H9N2)2[Sb2(C7H3NO4)2(OH)6]·8H2Oγ = 114.046 (2)°
Mr = 1134.27V = 1047.0 (2) Å3
Triclinic, P1Z = 1
a = 10.0149 (11) ÅMo Kα radiation
b = 10.4826 (12) ŵ = 1.38 mm1
c = 11.0974 (12) ÅT = 150 K
α = 92.816 (2)°0.43 × 0.41 × 0.39 mm
β = 97.813 (2)°
Data collection top
Bruker SMART 1000
diffractometer
4790 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4536 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.614Rint = 0.022
12026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.07Δρmax = 0.91 e Å3
4790 reflectionsΔρmin = 0.70 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.140841 (13)0.156744 (12)0.066281 (11)0.01594 (5)
O10.26613 (19)0.54127 (16)0.09185 (15)0.0316 (4)
O20.18376 (16)0.31302 (14)0.06761 (13)0.0199 (3)
O30.23282 (16)0.13870 (15)0.26029 (13)0.0199 (3)
O40.40060 (16)0.23914 (16)0.43165 (13)0.0250 (3)
O50.00823 (16)0.23727 (15)0.12176 (13)0.0195 (3)
H5A0.05550.18080.15950.023*
O60.29732 (15)0.09324 (15)0.02785 (13)0.0191 (3)
H6A0.28260.05710.04570.023*
O70.00038 (15)0.04568 (14)0.09706 (12)0.0176 (3)
H7A0.01350.07030.16780.021*
O80.02690 (17)0.10749 (16)0.66612 (14)0.0263 (3)
H8B0.05910.05770.62550.032*
H8A0.05220.19310.65430.032*
O90.57770 (18)0.19751 (17)0.16030 (17)0.0339 (4)
H9A0.63400.27520.13850.041*
H9B0.49090.16770.11860.041*
O100.73724 (19)0.04248 (19)0.20370 (16)0.0325 (4)
H10A0.73800.02320.27720.039*
H10B0.68710.09090.19240.039*
O110.21742 (19)0.02296 (18)0.55043 (16)0.0336 (4)
H11A0.27350.09270.51830.040*
H11B0.15910.05380.57680.040*
N10.32909 (17)0.36461 (17)0.15357 (15)0.0165 (3)
N20.1174 (2)0.3633 (2)0.57504 (17)0.0255 (4)
N30.2738 (2)0.87729 (19)0.16815 (17)0.0246 (4)
H3A0.28860.94740.12790.030*
C10.2631 (2)0.4435 (2)0.03335 (18)0.0193 (4)
C20.3588 (2)0.4768 (2)0.09189 (18)0.0176 (4)
C30.4662 (2)0.6083 (2)0.14286 (19)0.0214 (4)
H30.48750.68730.09820.026*
C40.5418 (2)0.6217 (2)0.2608 (2)0.0231 (4)
H40.61720.71010.29730.028*
C50.5066 (2)0.5052 (2)0.32512 (19)0.0205 (4)
H50.55550.51310.40650.025*
C60.3983 (2)0.3768 (2)0.26789 (18)0.0171 (4)
C70.3418 (2)0.2413 (2)0.32655 (18)0.0188 (4)
C80.3600 (2)0.9113 (2)0.2791 (2)0.0252 (4)
H80.43671.00330.30140.030*
C90.3369 (2)0.8123 (2)0.3604 (2)0.0233 (4)
H90.39850.83540.43840.028*
C100.2220 (2)0.6773 (2)0.32763 (19)0.0194 (4)
C110.1893 (2)0.5700 (2)0.41423 (18)0.0192 (4)
C120.2114 (2)0.6064 (2)0.54032 (19)0.0224 (4)
H120.25220.70230.57370.027*
C130.1729 (2)0.5006 (2)0.6161 (2)0.0256 (4)
H130.18640.52650.70160.031*
C140.0983 (2)0.3295 (2)0.4541 (2)0.0255 (4)
H140.06010.23280.42380.031*
C150.1307 (2)0.4270 (2)0.37092 (19)0.0217 (4)
H150.11360.39750.28570.026*
C160.1364 (2)0.6464 (2)0.2104 (2)0.0230 (4)
H160.05890.55540.18530.028*
C170.1649 (2)0.7487 (2)0.1313 (2)0.0247 (4)
H170.10790.72800.05140.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.01651 (7)0.01415 (7)0.01362 (8)0.00330 (5)0.00071 (5)0.00303 (5)
O10.0417 (9)0.0180 (7)0.0228 (8)0.0030 (7)0.0058 (7)0.0079 (6)
O20.0222 (7)0.0156 (7)0.0143 (7)0.0012 (5)0.0006 (5)0.0033 (5)
O30.0210 (7)0.0179 (7)0.0153 (7)0.0035 (6)0.0007 (5)0.0038 (5)
O40.0247 (7)0.0272 (8)0.0156 (7)0.0050 (6)0.0027 (6)0.0058 (6)
O50.0202 (7)0.0199 (7)0.0182 (7)0.0080 (6)0.0043 (5)0.0032 (5)
O60.0186 (7)0.0202 (7)0.0172 (7)0.0071 (6)0.0022 (5)0.0029 (5)
O70.0198 (6)0.0148 (6)0.0121 (6)0.0012 (5)0.0013 (5)0.0049 (5)
O80.0286 (8)0.0218 (7)0.0206 (8)0.0030 (6)0.0021 (6)0.0059 (6)
O90.0229 (8)0.0237 (8)0.0488 (11)0.0052 (6)0.0033 (7)0.0142 (7)
O100.0406 (9)0.0425 (10)0.0260 (8)0.0269 (8)0.0108 (7)0.0095 (7)
O110.0363 (9)0.0283 (9)0.0356 (10)0.0106 (7)0.0111 (8)0.0107 (7)
N10.0159 (7)0.0166 (8)0.0148 (8)0.0047 (6)0.0019 (6)0.0021 (6)
N20.0231 (9)0.0313 (10)0.0240 (9)0.0120 (8)0.0047 (7)0.0123 (8)
N30.0276 (9)0.0237 (9)0.0262 (10)0.0129 (7)0.0063 (7)0.0108 (7)
C10.0199 (9)0.0178 (9)0.0163 (9)0.0040 (7)0.0018 (7)0.0039 (7)
C20.0180 (9)0.0169 (9)0.0149 (9)0.0047 (7)0.0016 (7)0.0021 (7)
C30.0221 (9)0.0172 (9)0.0211 (10)0.0048 (8)0.0021 (8)0.0019 (8)
C40.0191 (9)0.0184 (10)0.0245 (11)0.0023 (8)0.0006 (8)0.0034 (8)
C50.0168 (9)0.0242 (10)0.0160 (9)0.0054 (8)0.0008 (7)0.0010 (8)
C60.0151 (8)0.0203 (9)0.0150 (9)0.0068 (7)0.0018 (7)0.0017 (7)
C70.0189 (9)0.0193 (9)0.0167 (9)0.0062 (7)0.0032 (7)0.0028 (7)
C80.0248 (10)0.0213 (10)0.0281 (11)0.0084 (8)0.0033 (9)0.0049 (9)
C90.0233 (10)0.0229 (10)0.0223 (10)0.0093 (8)0.0005 (8)0.0037 (8)
C100.0201 (9)0.0212 (10)0.0185 (10)0.0099 (8)0.0036 (7)0.0036 (8)
C110.0184 (9)0.0233 (10)0.0173 (9)0.0099 (8)0.0026 (7)0.0046 (8)
C120.0204 (10)0.0244 (10)0.0184 (10)0.0069 (8)0.0010 (8)0.0003 (8)
C130.0224 (10)0.0367 (12)0.0170 (10)0.0119 (9)0.0016 (8)0.0063 (9)
C140.0270 (10)0.0224 (10)0.0293 (12)0.0115 (9)0.0066 (9)0.0072 (9)
C150.0247 (10)0.0236 (10)0.0180 (10)0.0114 (8)0.0037 (8)0.0029 (8)
C160.0222 (10)0.0240 (10)0.0210 (10)0.0084 (8)0.0012 (8)0.0043 (8)
C170.0252 (10)0.0303 (11)0.0195 (10)0.0128 (9)0.0013 (8)0.0070 (9)
Geometric parameters (Å, º) top
Sb1—O51.9850 (14)N3—C81.343 (3)
Sb1—O62.0211 (14)N3—H3A0.8500
Sb1—O7i2.0898 (13)C1—C21.513 (3)
Sb1—O72.0964 (13)C2—C31.389 (3)
Sb1—O22.2169 (14)C3—C41.390 (3)
Sb1—O32.2721 (14)C3—H30.9500
Sb1—N12.2779 (16)C4—C51.389 (3)
O1—C11.232 (3)C4—H40.9500
O2—C11.276 (2)C5—C61.390 (3)
O3—C71.279 (2)C5—H50.9500
O4—C71.239 (2)C6—C71.516 (3)
O5—H5A0.8500C8—C91.378 (3)
O6—H6A0.8499C8—H80.9500
O7—Sb1i2.0898 (13)C9—C101.403 (3)
O7—H7A0.8499C9—H90.9500
O8—H8B0.8501C10—C161.400 (3)
O8—H8A0.8499C10—C111.479 (3)
O9—H9A0.8500C11—C121.395 (3)
O9—H9B0.8500C11—C151.400 (3)
O10—H10A0.8500C12—C131.385 (3)
O10—H10B0.8499C12—H120.9500
O11—H11A0.8501C13—H130.9500
O11—H11B0.8500C14—C151.380 (3)
N1—C61.334 (3)C14—H140.9500
N1—C21.337 (2)C15—H150.9500
N2—C141.338 (3)C16—C171.383 (3)
N2—C131.343 (3)C16—H160.9500
N3—C171.342 (3)C17—H170.9500
O5—Sb1—O6172.26 (6)C2—C3—C4118.43 (19)
O5—Sb1—O7i92.04 (6)C2—C3—H3120.8
O6—Sb1—O7i92.06 (6)C4—C3—H3120.8
O5—Sb1—O796.38 (6)C5—C4—C3119.68 (19)
O6—Sb1—O791.19 (6)C5—C4—H4120.2
O7i—Sb1—O769.97 (6)C3—C4—H4120.2
O5—Sb1—O285.52 (6)C4—C5—C6118.62 (19)
O6—Sb1—O294.93 (6)C4—C5—H5120.7
O7i—Sb1—O2144.33 (5)C6—C5—H5120.7
O7—Sb1—O274.95 (5)N1—C6—C5121.11 (18)
O5—Sb1—O393.16 (6)N1—C6—C7113.42 (17)
O6—Sb1—O381.44 (6)C5—C6—C7125.42 (18)
O7i—Sb1—O376.29 (5)O4—C7—O3126.20 (19)
O7—Sb1—O3145.17 (5)O4—C7—C6119.09 (18)
O2—Sb1—O3139.34 (5)O3—C7—C6114.70 (17)
O5—Sb1—N185.26 (6)N3—C8—C9119.8 (2)
O6—Sb1—N187.62 (6)N3—C8—H8120.1
O7i—Sb1—N1145.09 (6)C9—C8—H8120.1
O7—Sb1—N1144.94 (5)C8—C9—C10119.8 (2)
O2—Sb1—N170.26 (6)C8—C9—H9120.1
O3—Sb1—N169.14 (5)C10—C9—H9120.1
C1—O2—Sb1120.96 (12)C16—C10—C9118.21 (19)
C7—O3—Sb1122.17 (13)C16—C10—C11120.30 (18)
Sb1—O5—H5A112.1C9—C10—C11121.48 (18)
Sb1—O6—H6A114.1C12—C11—C15117.78 (19)
Sb1i—O7—Sb1110.03 (6)C12—C11—C10121.82 (19)
Sb1i—O7—H7A123.7C15—C11—C10120.38 (18)
Sb1—O7—H7A124.2C13—C12—C11119.0 (2)
H8B—O8—H8A109.6C13—C12—H12120.5
H9A—O9—H9B110.3C11—C12—H12120.5
H10A—O10—H10B107.5N2—C13—C12123.4 (2)
H11A—O11—H11B102.1N2—C13—H13118.3
C6—N1—C2120.88 (17)C12—C13—H13118.3
C6—N1—Sb1120.49 (13)N2—C14—C15123.8 (2)
C2—N1—Sb1118.34 (13)N2—C14—H14118.1
C14—N2—C13117.14 (19)C15—C14—H14118.1
C17—N3—C8122.71 (19)C14—C15—C11118.8 (2)
C17—N3—H3A123.8C14—C15—H15120.6
C8—N3—H3A113.1C11—C15—H15120.6
O1—C1—O2125.97 (19)C17—C16—C10119.9 (2)
O1—C1—C2118.90 (18)C17—C16—H16120.1
O2—C1—C2115.12 (17)C10—C16—H16120.1
N1—C2—C3121.23 (18)N3—C17—C16119.6 (2)
N1—C2—C1113.09 (17)N3—C17—H17120.2
C3—C2—C1125.67 (18)C16—C17—H17120.2
O5—Sb1—O2—C172.72 (15)O1—C1—C2—C38.7 (3)
O6—Sb1—O2—C199.53 (16)O2—C1—C2—C3172.2 (2)
O7i—Sb1—O2—C1159.97 (14)N1—C2—C3—C40.7 (3)
O7—Sb1—O2—C1170.56 (16)C1—C2—C3—C4178.22 (19)
O3—Sb1—O2—C116.93 (19)C2—C3—C4—C51.2 (3)
N1—Sb1—O2—C113.85 (15)C3—C4—C5—C61.6 (3)
O5—Sb1—O3—C785.43 (15)C2—N1—C6—C52.0 (3)
O6—Sb1—O3—C788.99 (15)Sb1—N1—C6—C5175.71 (14)
O7i—Sb1—O3—C7176.76 (16)C2—N1—C6—C7175.42 (17)
O7—Sb1—O3—C7168.65 (14)Sb1—N1—C6—C71.7 (2)
O2—Sb1—O3—C71.37 (19)C4—C5—C6—N10.0 (3)
N1—Sb1—O3—C71.72 (15)C4—C5—C6—C7177.06 (19)
O5—Sb1—O7—Sb1i89.85 (7)Sb1—O3—C7—O4178.17 (16)
O6—Sb1—O7—Sb1i91.76 (7)Sb1—O3—C7—C63.1 (2)
O7i—Sb1—O7—Sb1i0.0N1—C6—C7—O4178.14 (18)
O2—Sb1—O7—Sb1i173.45 (8)C5—C6—C7—O44.6 (3)
O3—Sb1—O7—Sb1i15.10 (13)N1—C6—C7—O33.1 (3)
N1—Sb1—O7—Sb1i179.31 (7)C5—C6—C7—O3174.24 (19)
O5—Sb1—N1—C694.99 (15)C17—N3—C8—C90.7 (3)
O6—Sb1—N1—C681.97 (15)N3—C8—C9—C101.0 (3)
O7i—Sb1—N1—C68.2 (2)C8—C9—C10—C161.8 (3)
O7—Sb1—N1—C6170.64 (13)C8—C9—C10—C11177.30 (19)
O2—Sb1—N1—C6178.07 (16)C16—C10—C11—C12147.0 (2)
O3—Sb1—N1—C60.22 (14)C9—C10—C11—C1232.1 (3)
O5—Sb1—N1—C278.87 (15)C16—C10—C11—C1531.2 (3)
O6—Sb1—N1—C2104.17 (15)C9—C10—C11—C15149.8 (2)
O7i—Sb1—N1—C2165.64 (13)C15—C11—C12—C130.9 (3)
O7—Sb1—N1—C215.5 (2)C10—C11—C12—C13177.34 (19)
O2—Sb1—N1—C28.06 (14)C14—N2—C13—C120.6 (3)
O3—Sb1—N1—C2174.08 (16)C11—C12—C13—N21.3 (3)
Sb1—O2—C1—O1161.95 (18)C13—N2—C14—C150.6 (3)
Sb1—O2—C1—C217.1 (2)N2—C14—C15—C111.0 (3)
C6—N1—C2—C32.3 (3)C12—C11—C15—C140.2 (3)
Sb1—N1—C2—C3176.18 (15)C10—C11—C15—C14178.46 (19)
C6—N1—C2—C1176.70 (17)C9—C10—C16—C171.0 (3)
Sb1—N1—C2—C12.9 (2)C11—C10—C16—C17178.12 (19)
O1—C1—C2—N1170.32 (19)C8—N3—C17—C161.5 (3)
O2—C1—C2—N18.8 (3)C10—C16—C17—N30.6 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10ii0.852.132.949 (2)161
O6—H6A···O10iii0.851.942.783 (2)172
O7—H7A···O8iv0.851.912.760 (2)174
O8—H8B···O11v0.852.222.997 (2)151
O8—H8B···O3v0.852.613.067 (2)115
O8—H8A···N20.851.932.751 (2)161
O9—H9A···O1vi0.851.912.749 (2)170
O9—H9B···O60.851.882.731 (2)177
O10—H10A···O11vii0.852.032.867 (2)168
O10—H10B···O90.851.872.722 (2)178
O11—H11A···O40.851.952.793 (2)174
O11—H11B···O80.851.992.830 (2)169
N3—H3A···O6viii0.851.912.760 (2)173
C13—H13···O1ix0.952.303.205 (3)160
C15—H15···O50.952.233.107 (3)153
C17—H17···O5x0.952.233.137 (3)159
C5—H5···Cg1(N2/C11-C15)xi0.952.893.596 (2)132
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y, z+1; (vi) x+1, y+1, z; (vii) x+1, y, z+1; (viii) x, y+1, z; (ix) x, y, z+1; (x) x, y+1, z; (xi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H9N2)2[Sb2(C7H3NO4)2(OH)6]·8H2O
Mr1134.27
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.0149 (11), 10.4826 (12), 11.0974 (12)
α, β, γ (°)92.816 (2), 97.813 (2), 114.046 (2)
V3)1047.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.43 × 0.41 × 0.39
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.588, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
12026, 4790, 4536
Rint0.022
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.07
No. of reflections4790
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.70

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Version 6.1; Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10i0.852.132.949 (2)161.2
O6—H6A···O10ii0.851.942.783 (2)171.5
O7—H7A···O8iii0.851.912.760 (2)173.9
O8—H8B···O11iv0.852.222.997 (2)151.4
O8—H8B···O3iv0.852.613.067 (2)115.0
O8—H8A···N20.851.932.751 (2)160.6
O9—H9A···O1v0.851.912.749 (2)170.4
O9—H9B···O60.851.882.731 (2)177.4
O10—H10A···O11vi0.852.032.867 (2)167.7
O10—H10B···O90.851.872.722 (2)177.5
O11—H11A···O40.851.952.793 (2)174.3
O11—H11B···O80.851.992.830 (2)169.1
N3—H3A···O6vii0.851.912.760 (2)173.1
C13—H13···O1viii0.952.303.205 (3)160
C15—H15···O50.952.233.107 (3)153
C17—H17···O5ix0.952.233.137 (3)159
C5—H5···Cg1(N2/C11-C15)x0.952.893.596 (2)132
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y, z1; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x+1, y, z+1; (vii) x, y+1, z; (viii) x, y, z+1; (ix) x, y+1, z; (x) x+1, y+1, z+1.
 

Acknowledgements

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SADABS. Version 1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SMART (Version 5.059) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m387-m388
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds