organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o372-o373

10-Methyl-9-(2-nitro­phen­oxy­carbon­yl)acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and bFaculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 18 November 2007; accepted 21 December 2007; online 4 January 2008)

The crystal structure of the title compound, C21H15N2O4+·CF3O3S, is stabilized by C—H⋯O and C—H⋯F hydrogen bonds, by C—F⋯π, N—O⋯π and S—O⋯π inter­actions, and by O⋯O [2.70 (4) Å] and O⋯F [2.85 (1) or 2.92 (1) Å] contacts; ππ interactions are also present. In the packing of the mol­ecules, acridine units are either parallel or inclined at an angle of 12.5 (1)°. The nitrophenoxycarbonyl unit is disordered over two position; the site occupancy factors are 0.89 and 0.11.

Related literature

For general background, see: Adamczyk et al. (2004[Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett. 14, 2313-2317.]); Becker et al. (1999[Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601-5611.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Razavi & McCapra (2000a[Razavi, Z. & McCapra, F. (2000a). Luminescence, 15, 239-245.],b[Razavi, Z. & McCapra, F. (2000b). Luminescence, 15, 245-249.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Butcher et al. (2004[Butcher, R. J., Evans, R. & Gilardi, R. (2004). Acta Cryst. E60, o1376-o1378.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Kaafarani et al. (2003[Kaafarani, B. R., Wex, B., Oliver, A. G., Krause Bauer, J. A. & Neckers, D. C. (2003). Acta Cryst. E59, o227-o229.]); Lyssenko & Anti­pin (2004[Lyssenko, K. A. & Antipin, M. Y. (2004). Russ. Chem. Bull. Int. Ed. 53, 10-17.]); Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Sikorski et al. (2007[Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484-o4485.]); Sridhar et al. (2006[Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687-o690.]); Steiner (1999[Steiner, T. (1999). Chem. Commun. pp. 313-314.]). For analysis of inter­molecular inter­actions, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15N2O4+·CF3O3S

  • Mr = 508.42

  • Monoclinic, P 21 /c

  • a = 12.459 (4) Å

  • b = 21.361 (6) Å

  • c = 8.123 (3) Å

  • β = 108.42 (3)°

  • V = 2051.1 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 (2) K

  • 0.40 × 0.10 × 0.02 mm

Data collection
  • Kuma KM-4 CCD κ-geometry diffractometer

  • Absorption correction: none

  • 22835 measured reflections

  • 3671 independent reflections

  • 2959 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.130

  • S = 1.20

  • 3671 reflections

  • 366 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O30i 0.95 2.39 3.111 (4) 132
C3—H3⋯O25i 0.95 2.59 3.268 (10) 129
C5—H5⋯F34ii 0.95 2.55 3.339 (4) 141
C6—H6⋯O31 0.95 2.44 3.196 (4) 136
C20—H20⋯O29i 0.95 2.59 3.273 (9) 129
C27—H27A⋯O29iii 0.98 2.57 3.246 (4) 126
C27—H27C⋯O30ii 0.98 2.56 3.508 (4) 162
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
C—F⋯π, N—O⋯π and S—O⋯π interactions (Å,°)

X I J IJ XJ XIJ
C32 F33 Cg4iv 3.690 (4) 4.002 (5) 93.6 (2)
C32 F33 Cg4Aiv 3.949 (18) 4.31 (2) 96.6 (3)
C32 F34 Cg4iv 3.356 (4) 4.002 (5) 109.3 (2)
C32 F34 Cg4Aiv 3.663 (18) 4.31 (2) 110.3 (3)
N24 O25 Cg4ii 3.443 (9) 3.710 (5) 92.7 (5)
N24 O25 Cg4Aii 3.13 (2) 3.45 (2) 94.8 (6)
N24A O25A Cg4ii 3.41 (4) 4.19 (3) 126 (3)
N24A O25A Cg4Aii 3.10 (4) 3.91 (3) 128 (3)
S28 O30 Cg1ii 3.810 (3) 3.707 (2) 74.9 (1)
S28 O31 Cg1ii 3.529 (3) 3.707 (2) 85.6 (1)
S28 O31 Cg3ii 3.205 (3) 4.221 (2) 126.7 (1)
Symmetry codes: (ii) [x, -y+{3\over 2}, z-{1\over 2}]; (iv) [x-1, -y+{3\over 2}, z-{1\over 2}]. Notes: Cg represents the centroid of each ring, as follows: Cg1 ring C9/C11/C12/N10/C14/C13, Cg3 ring C5–C8/C13/C14, Cg4 ring C18–C23 and Cg4A ring C18A–C23A.

Table 3
ππ interactions (Å,°)

CgI CgJ CgCg Dihedral angle Interplanar distance Offset
1 2v 3.547 (2) 3.4 3.504 (3) 0.556 (3)
2 2v 3.981 (2) 0.0 3.504 (3) 1.891 (3)
Symmetry codes: (v) -x+1, -y+1, -z+1. Notes: Cg represents the centroid of each ring, as follows: Cg1 ring C9/C11/C12/N10/C14/C13 and Cg2 ring C1–C4/C12/C11. CgCg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Phenyl 10-alkylacridinium-9-carboxylates are known to be chemiluminescent indicators or chemiluminogenic fragments of chemiluminescent labels, which have found numerous applications in assays of biologically and environmentally important entities (Becker et al., 1999; Adamczyk et al., 2004). The reaction of the above-mentioned cations with hydrogen peroxide in alkaline media produces light, and the determination of its intensity enables labeled entities or entities present in the medium to be assayed quantitatively, even at the attomole level (Roda et al., 2003). Investigations have revealed that oxidation of these cations is accompanied by the removal of the phenoxycarbonyl fragment and conversion of the rest of the molecule to electronically excited, light-emitting 10-alkyl-9-acridinones (Rak et al., 1999; Razavi & McCapra, 2000a,b; Zomer & Jacquemijns, 2001). It may thus be expected that the efficiency of chemiluminescence is affected by changes in the structure of the phenyl fragment. In order to find out whether this actually takes place, investigations were undertaken on phenyl 10-methylacridinium-9-carboxylates differently substituted in the phenyl fragment. Here, the crystal structure of the NO2-phenyl-substituted derivative is presented. The compound was synthesized and investigated since the strongly electron attracting NO2 group present in the phenyl fragment may be expected to substantially influence its stability and chemiluminogenic ability.

Parameters characterizing the geometry of the acridine ring are typical of acridine-based derivatives (Sikorski et al., 2007).

Cations are disordered within the nitrophenoxycarbonyl fragment and occupy two positions, with occupancy factors of 0.886 (4) and 0.114 (4) for C15/O16/O17/C18/C19/H19/C20/H20/C21/H21/C22/H22/C23/N24/O25/O26 and C15A/O16A/O17A/C18A/C19A/H19A/C20A/H20A/C21A/H21A/C22A/H22A/C23A/ N24A/O25A/O26A, respectively. The dihedral angles between the mean planes delineated by atoms C9/C15/O16/O17 and C9/C15A/O16A/O17A, C23/N24/O25/O26 and C23A/N24A/O25A/O26A, and C18—C23 and C18A—C23A are 47.4 (3)°, 42.2 (3)° and 12.8 (3)°, respectively. They reflect the mutual arrangement of the disordered structures. This is the first case of disorder to be reported in 9-(phenoxycarbonyl)-acridines or 9-(phenoxycarbonyl)-10-methylacridinium salts.

With respective average deviations from planarity of 0.027 and 0.009 Å or 0.033 Å, the acridine and benzene (C18—C23 or C18A—C23A) ring systems in the cation are oriented at 3.0 (1)° or 11.1 (4)° to each other (Fig. 1). The carboxyl group (C15/O16/O17 or C15A/O16A/O17A) is twisted at an angle of 65.8 (1)° or 113.0 (4)° relative to the acridine skeleton. The mean planes of the acridine moieties lie either parallel or are inclined at an angle of 12.5 (1)° in the lattice. The benzene rings are either parallel or inclined at an angle of 15.7 (1)° or 23.0 (4)°.

All the O and F atoms of the trifluoromethanesulfonate anions are involved in weak multidirectional C–H···O and C—H···F hydrogen bonds (Table 1 and Figs. 2 and 3), and C—F···π (phenyl), S—O···π (acridine) interactions (Table 2 and Figs. 2 and 3), as well as O···F contacts [O25···F35 = 2.85 (1) Å or O25A···F35A = 2.92 (4) Å (symmetry code: (vi) x + 1, y, z + 1); Figs. 2 and 4] with cations. The cations are involved in weak C—H···O (nitro) (Table 1 and Fig. 2). N—O (nitro)···π (phenyl) (Table 2 and Figs. 2, 3 and 4) and π-π (acridine) (Table 3 and Fig. 4) interactions, as well as O (carbonyl)···O (nitro) contacts [O17A···O25A = 2.70 (4) Å (symmetry code: (ii) x, -y + 3/2, z - 1/2); Fig. 2].

All the interactions demonstrated were found by PLATON (Spek, 2003). The C–H···O (Bianchi et al., 2004; Steiner, 1999) and C–H···F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) interactions exhibit a hydrogen-bond-type nature. The C–F···π (phenyl) and S–O···π (acridine) interactions (Dorn et al., 2005), and also N–O (nitro)···F interactions, the latter identified as O···F contacts (Lyssenko & Antipin, 2004), should be of an attractive nature. Such an attractive nature is also exhibited by π-π interactions (Hunter & Sanders, 1990), N—O (nitro)···π (phenyl) (Kaafarani et al., 2003) interactions and O (carbonyl)···O (nitro) (Butcher et al., 2004) contacts have been disclosed in crystals of other compounds.

The crystal structure is stabilized by a network of the aforementioned short-range interactions, as well as by long-range electrostatic interactions between ions.

Related literature top

For general background, see: Adamczyk et al. (2004); Becker et al. (1999); Roda et al. (2003); Rak et al. (1999); Razavi & McCapra (2000a,b); Zomer & Jacquemijns (2001). For related structures, see: Bianchi et al. (2004); Butcher et al. (2004); Dorn et al. (2005); Hunter & Sanders (1990); Kaafarani et al. (2003); Lyssenko & Antipin (2004); Sato (1996); Sikorski et al. (2007); Sridhar et al. (2006); Steiner (1999). For intermolecular interactions, see: Spek (2003).

Experimental top

9-(2-Nitrophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was synthesized by treating 2-nitrophenyl acridine-9-carboxylate [obtained in the same way as described elsewhere (Sato, 1996; Sikorski et al., 2007)], dissolved in anhydrous dichloromethane, with a fivefold molar excess of methyl trifluoromethanesulfonate, dissolved in the same solvent, under an Ar atmosphere at room temperature for 4 h. The crude salt was dissolved in small amount of ethanol, filtered and precipitated with 25 v/v excess of diethyl ether (yield 63%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.95 Å and with Uiso(H) = 1.2Ueq(C), or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl group. The geometries of the disordered nitrophenoxycarbonyl fragment were refined anisotropically assuming C—C distances in the C18A—C23A benzene ring equal to 1.39 Å (Sridhar et al., 2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Cg1, Cg2, Cg3, Cg4 and Cg4 A denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the unit cell, viewed along the c axis. The O···F contacts, and C—H···O interactions are represented by dashed lines, and C—F···π, N—O···π and S—O···π interactions by dotted lines. Disordered C15A/O16A/O17A/C18A/C19A/H19A/C20A/H20A/C21A/H21A/C22A/H22A/C23A/ N24A/O25A/O26A atoms and H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) x, -y + 3/2, z - 1/2; (iv) x - 1, -y + 3/2, z - 1/2; (vi) x + 1, y, z + 1.]
[Figure 3] Fig. 3. The arrangement of the ions in the unit cell. The O···O contacts, and C—H···O and C—H···F interactions are represented by dashed lines and C—F···π and N–O···π interactions by dotted lines. Disordered C15/O16/O17/C18/C19/H19/C20/H20/C21/H21/C22/H22/C23/N24/O25/O26 atoms and H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) x, -y + 3/2, z - 1/2; (iii) x, -y + 3/2, z + 1/2; (iv) x - 1, -y + 3/2, z - 1/2.]
[Figure 4] Fig. 4. The arrangement of the ions in the unit cell, viewed approximately along the a axis. The O···F contacts are represented by dashed lines, and N–O···π and π-π interactions by dotted lines. H atoms have been omitted. [Symmetry codes: (ii) x, -y + 3/2, z - 1/2; (v) -x + 1, -y + 1, -z + 1; (vi) x + 1, y, z + 1.]
10-Methyl-9-(2-nitrophenoxycarbonyl)acridinium trifluoromethanesulfonate top
Crystal data top
C21H15N2O4+·CF3O3SF(000) = 1040
Mr = 508.42Dx = 1.646 Mg m3
Monoclinic, P21/cMelting point: 500-502 K K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.459 (4) ÅCell parameters from 22931 reflections
b = 21.361 (6) Åθ = 4.6–32.0°
c = 8.123 (3) ŵ = 0.24 mm1
β = 108.42 (3)°T = 100 K
V = 2051.1 (12) Å3Plate, yellow
Z = 40.40 × 0.10 × 0.02 mm
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
2959 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 25.3°, θmin = 4.6°
ω scansh = 1414
22835 measured reflectionsk = 2525
3671 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0574P)2]
where P = (Fo2 + 2Fc2)/3
3671 reflections(Δ/σ)max < 0.001
366 parametersΔρmax = 0.27 e Å3
21 restraintsΔρmin = 0.37 e Å3
Crystal data top
C21H15N2O4+·CF3O3SV = 2051.1 (12) Å3
Mr = 508.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.459 (4) ŵ = 0.24 mm1
b = 21.361 (6) ÅT = 100 K
c = 8.123 (3) Å0.40 × 0.10 × 0.02 mm
β = 108.42 (3)°
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
2959 reflections with I > 2σ(I)
22835 measured reflectionsRint = 0.079
3671 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06421 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.20Δρmax = 0.27 e Å3
3671 reflectionsΔρmin = 0.37 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5397 (2)0.49641 (14)0.8189 (4)0.0232 (7)
H10.60350.51340.90520.028*
C20.5215 (2)0.43405 (14)0.8152 (4)0.0244 (7)
H20.57360.40740.89540.029*
C30.4250 (2)0.40863 (14)0.6920 (4)0.0256 (7)
H30.41120.36490.69260.031*
C40.3514 (3)0.44534 (14)0.5727 (4)0.0270 (7)
H40.28610.42720.49230.032*
C50.2406 (3)0.64981 (14)0.3137 (4)0.0259 (7)
H50.18040.63120.22440.031*
C60.2548 (3)0.71290 (15)0.3180 (4)0.0270 (7)
H60.20430.73790.23070.032*
C70.3419 (3)0.74185 (14)0.4480 (4)0.0276 (7)
H70.34940.78610.44850.033*
C80.4158 (3)0.70724 (14)0.5734 (4)0.0259 (7)
H80.47500.72740.66080.031*
C90.4804 (2)0.60253 (14)0.6994 (4)0.0228 (7)
N100.30150 (19)0.54800 (11)0.4416 (3)0.0202 (6)
C110.4655 (2)0.53731 (14)0.6964 (3)0.0198 (7)
C120.3708 (2)0.51042 (13)0.5666 (3)0.0197 (7)
C130.4053 (2)0.64062 (14)0.5748 (3)0.0217 (7)
C140.3153 (2)0.61197 (14)0.4420 (4)0.0214 (7)
C150.5682 (3)0.63250 (16)0.8509 (5)0.0203 (8)0.886 (4)
O160.6746 (2)0.61632 (10)0.8552 (3)0.0228 (6)0.886 (4)
O170.54773 (18)0.66490 (10)0.9577 (3)0.0233 (6)0.886 (4)
C180.7648 (3)0.63594 (16)1.0013 (5)0.0214 (8)0.886 (4)
C190.8199 (4)0.5892 (2)1.1130 (6)0.0238 (11)0.886 (4)
H190.79510.54711.09130.029*0.886 (4)
C200.9110 (6)0.6034 (4)1.2562 (16)0.024 (3)0.886 (4)
H200.94880.57171.33520.028*0.886 (4)
C210.9461 (6)0.6656 (4)1.2820 (10)0.0287 (19)0.886 (4)
H211.00910.67571.38010.034*0.886 (4)
C220.8935 (5)0.7129 (3)1.1712 (8)0.0236 (16)0.886 (4)
H220.92020.75481.19000.028*0.886 (4)
C230.8005 (4)0.69750 (19)1.0318 (7)0.0237 (13)0.886 (4)
N240.7429 (3)0.74990 (16)0.9243 (5)0.0288 (8)0.886 (4)
O250.7664 (7)0.8028 (5)0.9836 (11)0.054 (3)0.886 (4)
O260.6766 (2)0.73880 (12)0.7809 (3)0.0415 (8)0.886 (4)
C15A0.612 (2)0.6275 (10)0.776 (3)0.016 (5)*0.114 (4)
O16A0.6247 (17)0.6231 (8)0.943 (3)0.022 (5)*0.114 (4)
O17A0.6748 (15)0.6451 (8)0.706 (2)0.026 (5)*0.114 (4)
C18A0.737 (2)0.6387 (8)1.058 (4)0.015 (7)*0.114 (4)
C19A0.801 (2)0.5901 (16)1.155 (4)0.022 (12)*0.114 (4)
H19A0.77530.54801.14090.027*0.114 (4)
C20A0.905 (4)0.607 (3)1.273 (13)0.04 (4)*0.114 (4)
H20A0.94030.57321.34640.053*0.114 (4)
C21A0.968 (3)0.662 (2)1.307 (6)0.000 (10)*0.114 (4)
H21A1.04230.66901.38190.000*0.114 (4)
C22A0.890 (3)0.703 (2)1.202 (5)0.000 (10)*0.114 (4)
H22A0.91250.74561.22480.000*0.114 (4)
C23A0.786 (3)0.6977 (13)1.071 (5)0.018 (13)*0.114 (4)
N24A0.718 (2)0.7556 (14)0.982 (4)0.020 (8)*0.114 (4)
O25A0.762 (3)0.802 (2)0.974 (5)0.000 (8)*0.114 (4)
O26A0.6136 (15)0.7479 (8)0.911 (2)0.027 (5)*0.114 (4)
C270.2090 (3)0.51967 (15)0.3011 (4)0.0317 (8)
H27A0.13770.52420.32710.047*
H27B0.22490.47510.29120.047*
H27C0.20270.54080.19140.047*
S280.15313 (6)0.90846 (3)0.25166 (9)0.0233 (2)
O290.11820 (19)0.95900 (10)0.1300 (3)0.0358 (6)
O300.23911 (17)0.92471 (11)0.4117 (3)0.0357 (6)
O310.16858 (18)0.84963 (10)0.1774 (3)0.0330 (6)
C320.0297 (3)0.89497 (15)0.3214 (4)0.0277 (7)
F330.00993 (15)0.94384 (9)0.4102 (2)0.0424 (5)
F340.04372 (16)0.84469 (9)0.4239 (2)0.0420 (5)
F350.06374 (14)0.88552 (9)0.1871 (2)0.0383 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (16)0.0225 (17)0.0237 (16)0.0010 (12)0.0004 (13)0.0002 (14)
C20.0232 (17)0.0199 (17)0.0269 (17)0.0035 (13)0.0037 (14)0.0013 (14)
C30.0242 (18)0.0209 (17)0.0296 (17)0.0006 (13)0.0055 (15)0.0024 (14)
C40.0269 (18)0.0261 (18)0.0244 (17)0.0034 (14)0.0028 (14)0.0041 (14)
C50.0242 (18)0.0297 (19)0.0185 (16)0.0031 (14)0.0006 (13)0.0014 (14)
C60.0268 (18)0.0278 (18)0.0245 (17)0.0045 (14)0.0054 (14)0.0054 (15)
C70.0272 (18)0.0215 (17)0.0321 (18)0.0013 (14)0.0067 (15)0.0041 (15)
C80.0236 (17)0.0201 (17)0.0292 (17)0.0014 (13)0.0014 (14)0.0014 (14)
C90.0226 (17)0.0209 (17)0.0229 (16)0.0027 (13)0.0043 (13)0.0015 (14)
N100.0196 (13)0.0203 (13)0.0180 (13)0.0000 (10)0.0018 (11)0.0008 (11)
C110.0180 (16)0.0235 (17)0.0188 (15)0.0017 (12)0.0071 (13)0.0028 (13)
C120.0185 (16)0.0221 (16)0.0189 (15)0.0017 (12)0.0065 (13)0.0024 (13)
C130.0191 (16)0.0253 (17)0.0204 (15)0.0002 (13)0.0057 (13)0.0024 (14)
C140.0215 (17)0.0241 (17)0.0201 (16)0.0010 (13)0.0087 (13)0.0002 (14)
C150.022 (2)0.0167 (19)0.022 (2)0.0029 (15)0.0066 (19)0.0084 (17)
O160.0190 (14)0.0237 (13)0.0220 (14)0.0007 (10)0.0013 (12)0.0028 (11)
O170.0247 (14)0.0191 (13)0.0240 (13)0.0000 (10)0.0048 (11)0.0015 (11)
C180.017 (2)0.027 (2)0.021 (2)0.0016 (15)0.0064 (18)0.0052 (17)
C190.024 (2)0.022 (2)0.024 (2)0.0007 (16)0.006 (2)0.0038 (18)
C200.023 (4)0.024 (4)0.024 (3)0.0065 (17)0.007 (3)0.002 (2)
C210.018 (3)0.040 (4)0.021 (3)0.003 (3)0.005 (3)0.002 (2)
C220.025 (3)0.021 (3)0.026 (3)0.0035 (18)0.009 (2)0.002 (2)
C230.023 (2)0.021 (3)0.026 (3)0.0007 (15)0.006 (2)0.0054 (18)
N240.0216 (19)0.031 (2)0.029 (2)0.0035 (15)0.0013 (18)0.0065 (17)
O250.052 (3)0.022 (2)0.074 (4)0.0030 (15)0.001 (2)0.0051 (18)
O260.0337 (16)0.0399 (16)0.0378 (17)0.0129 (12)0.0075 (14)0.0188 (13)
C270.0317 (19)0.0291 (18)0.0226 (16)0.0004 (15)0.0078 (14)0.0004 (15)
S280.0229 (4)0.0225 (4)0.0223 (4)0.0002 (3)0.0039 (3)0.0007 (3)
O290.0486 (15)0.0244 (12)0.0308 (12)0.0008 (10)0.0075 (11)0.0056 (10)
O300.0236 (12)0.0456 (14)0.0315 (12)0.0035 (10)0.0004 (10)0.0030 (11)
O310.0359 (14)0.0275 (12)0.0359 (13)0.0074 (10)0.0118 (11)0.0043 (11)
C320.0272 (19)0.0307 (19)0.0198 (16)0.0020 (14)0.0003 (14)0.0047 (15)
F330.0330 (11)0.0523 (13)0.0413 (11)0.0043 (9)0.0112 (9)0.0191 (10)
F340.0447 (12)0.0468 (13)0.0325 (11)0.0133 (9)0.0095 (9)0.0070 (10)
F350.0232 (10)0.0496 (12)0.0348 (11)0.0054 (8)0.0012 (9)0.0076 (9)
Geometric parameters (Å, º) top
C1—C21.350 (4)C20—H200.9500
C1—C111.423 (4)C21—C221.374 (7)
C1—H10.9500C21—H210.9500
C2—C31.408 (4)C22—C231.380 (5)
C2—H20.9500C22—H220.9500
C3—C41.354 (4)C23—N241.461 (6)
C3—H30.9500N24—O261.219 (4)
C4—C121.415 (4)N24—O251.227 (10)
C4—H40.9500C15A—O17A1.17 (3)
C5—C61.358 (4)C15A—O16A1.31 (3)
C5—C141.411 (4)O16A—C18A1.46 (3)
C5—H50.9500C18A—C19A1.390 (8)
C6—C71.396 (4)C18A—C23A1.390 (8)
C6—H60.9500C19A—C20A1.390 (8)
C7—C81.356 (4)C19A—H19A0.9500
C7—H70.9500C20A—C21A1.390 (8)
C8—C131.430 (4)C20A—H20A0.9500
C8—H80.9500C21A—C22A1.390 (8)
C9—C131.401 (4)C21A—H21A0.9500
C9—C111.405 (4)C22A—C23A1.390 (8)
C9—C151.506 (5)C22A—H22A0.9500
C9—C15A1.65 (3)C23A—N24A1.54 (5)
N10—C121.366 (4)N24A—O25A1.13 (6)
N10—C141.377 (4)N24A—O26A1.26 (3)
N10—C271.472 (4)C27—H27A0.9800
C11—C121.431 (4)C27—H27B0.9800
C13—C141.426 (4)C27—H27C0.9800
C15—O171.199 (4)S28—O311.433 (2)
C15—O161.361 (5)S28—O291.435 (2)
O16—C181.415 (4)S28—O301.441 (2)
C18—C191.378 (5)S28—C321.821 (3)
C18—C231.385 (5)C32—F351.335 (3)
C19—C201.378 (6)C32—F331.336 (3)
C19—H190.9500C32—F341.336 (4)
C20—C211.393 (6)
C2—C1—C11121.5 (3)C21—C20—H20120.9
C2—C1—H1119.2C22—C21—C20122.7 (7)
C11—C1—H1119.2C22—C21—H21118.7
C1—C2—C3119.8 (3)C20—C21—H21118.7
C1—C2—H2120.1C21—C22—C23117.8 (6)
C3—C2—H2120.1C21—C22—H22121.1
C4—C3—C2121.2 (3)C23—C22—H22121.1
C4—C3—H3119.4C22—C23—C18120.8 (5)
C2—C3—H3119.4C22—C23—N24115.8 (4)
C3—C4—C12120.6 (3)C18—C23—N24123.4 (4)
C3—C4—H4119.7O26—N24—O25124.0 (5)
C12—C4—H4119.7O26—N24—C23118.6 (3)
C6—C5—C14119.9 (3)O25—N24—C23117.3 (5)
C6—C5—H5120.0O17A—C15A—O16A130 (3)
C14—C5—H5120.0O17A—C15A—C9131 (2)
C5—C6—C7121.5 (3)O16A—C15A—C998.7 (19)
C5—C6—H6119.2C15A—O16A—C18A115 (2)
C7—C6—H6119.2C19A—C18A—C23A118 (3)
C8—C7—C6120.5 (3)C19A—C18A—O16A117 (2)
C8—C7—H7119.7C23A—C18A—O16A125 (2)
C6—C7—H7119.7C18A—C19A—C20A116 (4)
C7—C8—C13120.4 (3)C18A—C19A—H19A122.0
C7—C8—H8119.8C20A—C19A—H19A122.0
C13—C8—H8119.8C19A—C20A—C21A134 (6)
C13—C9—C11120.6 (3)C19A—C20A—H20A112.9
C13—C9—C15119.3 (3)C21A—C20A—H20A112.9
C11—C9—C15119.6 (3)C22A—C21A—C20A100 (5)
C13—C9—C15A116.3 (9)C22A—C21A—H21A130.0
C11—C9—C15A116.0 (9)C20A—C21A—H21A130.0
C12—N10—C14122.2 (2)C23A—C22A—C21A136 (4)
C12—N10—C27119.4 (2)C23A—C22A—H22A112.2
C14—N10—C27118.4 (2)C21A—C22A—H22A112.2
C9—C11—C1122.9 (3)C22A—C23A—C18A114 (3)
C9—C11—C12119.0 (3)C22A—C23A—N24A122 (3)
C1—C11—C12118.1 (3)C18A—C23A—N24A122 (3)
N10—C12—C4121.9 (3)O25A—N24A—O26A122 (3)
N10—C12—C11119.5 (3)O25A—N24A—C23A121 (3)
C4—C12—C11118.6 (3)O26A—N24A—C23A117 (2)
C9—C13—C14118.9 (3)N10—C27—H27A109.5
C9—C13—C8122.8 (3)N10—C27—H27B109.5
C14—C13—C8118.2 (3)H27A—C27—H27B109.5
N10—C14—C5120.9 (3)N10—C27—H27C109.5
N10—C14—C13119.7 (3)H27A—C27—H27C109.5
C5—C14—C13119.4 (3)H27B—C27—H27C109.5
O17—C15—O16123.8 (3)O31—S28—O29114.95 (13)
O17—C15—C9124.8 (3)O31—S28—O30115.49 (13)
O16—C15—C9111.3 (3)O29—S28—O30114.64 (14)
C15—O16—C18117.1 (3)O31—S28—C32103.36 (14)
C19—C18—C23120.4 (4)O29—S28—C32103.35 (14)
C19—C18—O16115.8 (3)O30—S28—C32102.57 (13)
C23—C18—O16123.8 (3)F35—C32—F33107.3 (2)
C20—C19—C18120.1 (5)F35—C32—F34107.2 (3)
C20—C19—H19119.9F33—C32—F34107.5 (2)
C18—C19—H19119.9F35—C32—S28112.0 (2)
C19—C20—C21118.2 (6)F33—C32—S28111.3 (2)
C19—C20—H20120.9F34—C32—S28111.4 (2)
C11—C1—C2—C32.3 (4)C15—O16—C18—C2371.5 (5)
C1—C2—C3—C42.2 (4)C23—C18—C19—C200.1 (10)
C2—C3—C4—C121.2 (4)O16—C18—C19—C20178.1 (8)
C14—C5—C6—C70.4 (4)C18—C19—C20—C211.1 (15)
C5—C6—C7—C80.6 (4)C19—C20—C21—C220.3 (17)
C6—C7—C8—C130.3 (4)C20—C21—C22—C231.6 (13)
C13—C9—C11—C1179.5 (3)C21—C22—C23—C182.6 (10)
C15—C9—C11—C18.7 (4)C21—C22—C23—N24176.1 (6)
C15A—C9—C11—C130.1 (10)C19—C18—C23—C221.9 (9)
C13—C9—C11—C121.5 (4)O16—C18—C23—C22175.9 (5)
C15—C9—C11—C12170.4 (3)C19—C18—C23—N24176.8 (5)
C15A—C9—C11—C12150.9 (10)O16—C18—C23—N245.4 (8)
C2—C1—C11—C9178.3 (3)C22—C23—N24—O26164.5 (5)
C2—C1—C11—C120.7 (4)C18—C23—N24—O2616.8 (8)
C14—N10—C12—C4175.3 (3)C22—C23—N24—O2514.1 (9)
C27—N10—C12—C44.8 (4)C18—C23—N24—O25164.6 (6)
C14—N10—C12—C114.1 (4)C13—C9—C15A—O17A50 (3)
C27—N10—C12—C11175.7 (2)C11—C9—C15A—O17A101 (3)
C3—C4—C12—N10176.2 (3)C15—C9—C15A—O17A154 (4)
C3—C4—C12—C114.3 (4)C13—C9—C15A—O16A128.8 (13)
C9—C11—C12—N104.4 (4)C11—C9—C15A—O16A80.5 (16)
C1—C11—C12—N10176.5 (2)C15—C9—C15A—O16A24.6 (10)
C9—C11—C12—C4175.1 (3)O17A—C15A—O16A—C18A4 (4)
C1—C11—C12—C44.0 (4)C9—C15A—O16A—C18A176.8 (14)
C11—C9—C13—C141.7 (4)C15A—O16A—C18A—C19A112 (3)
C15—C9—C13—C14173.6 (3)C15A—O16A—C18A—C23A65 (4)
C15A—C9—C13—C14147.6 (10)C23A—C18A—C19A—C20A7 (7)
C11—C9—C13—C8179.1 (3)O16A—C18A—C19A—C20A175 (6)
C15—C9—C13—C87.3 (4)C18A—C19A—C20A—C21A8 (14)
C15A—C9—C13—C831.5 (10)C19A—C20A—C21A—C22A8 (13)
C7—C8—C13—C9178.9 (3)C20A—C21A—C22A—C23A11 (9)
C7—C8—C13—C140.3 (4)C21A—C22A—C23A—C18A13 (8)
C12—N10—C14—C5178.3 (2)C21A—C22A—C23A—N24A178 (5)
C27—N10—C14—C51.8 (4)C19A—C18A—C23A—C22A9 (5)
C12—N10—C14—C130.9 (4)O16A—C18A—C23A—C22A174 (3)
C27—N10—C14—C13178.9 (2)C19A—C18A—C23A—N24A174 (3)
C6—C5—C14—N10179.1 (3)O16A—C18A—C23A—N24A9 (5)
C6—C5—C14—C130.2 (4)C22A—C23A—N24A—O25A27 (6)
C9—C13—C14—N102.0 (4)C18A—C23A—N24A—O25A169 (4)
C8—C13—C14—N10178.7 (2)C22A—C23A—N24A—O26A157 (4)
C9—C13—C14—C5178.7 (3)C18A—C23A—N24A—O26A7 (5)
C8—C13—C14—C50.5 (4)O31—S28—C32—F3566.2 (2)
C13—C9—C15—O1761.8 (4)O29—S28—C32—F3553.9 (2)
C11—C9—C15—O17110.2 (4)O30—S28—C32—F35173.4 (2)
C15A—C9—C15—O17156.3 (16)O31—S28—C32—F33173.78 (19)
C13—C9—C15—O16120.4 (3)O29—S28—C32—F3366.1 (2)
C11—C9—C15—O1667.6 (4)O30—S28—C32—F3353.4 (2)
C15A—C9—C15—O1625.9 (15)O31—S28—C32—F3453.8 (2)
O17—C15—O16—C184.3 (5)O29—S28—C32—F34173.94 (19)
C9—C15—O16—C18173.5 (3)O30—S28—C32—F3466.6 (2)
C15—O16—C18—C19110.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30i0.952.393.111 (4)132
C3—H3···O25i0.952.593.268 (10)129
C5—H5···F34ii0.952.553.339 (4)141
C6—H6···O310.952.443.196 (4)136
C20—H20···O29i0.952.593.273 (9)129
C27—H27A···O29iii0.982.573.246 (4)126
C27—H27C···O30ii0.982.563.508 (4)162
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H15N2O4+·CF3O3S
Mr508.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.459 (4), 21.361 (6), 8.123 (3)
β (°) 108.42 (3)
V3)2051.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.10 × 0.02
Data collection
DiffractometerKuma KM4 CCD κ-geometry
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22835, 3671, 2959
Rint0.079
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.130, 1.20
No. of reflections3671
No. of parameters366
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30i0.952.393.111 (4)132
C3—H3···O25i0.952.593.268 (10)129
C5—H5···F34ii0.952.553.339 (4)141
C6—H6···O310.952.443.196 (4)136
C20—H20···O29i0.952.593.273 (9)129
C27—H27A···O29iii0.982.573.246 (4)126
C27—H27C···O30ii0.982.563.508 (4)162
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.
C-F···π and S-O···π interactions (Å,°). top
XIJI···JX···JX-I···J
C32F33Cg4iv3.690 (4)4.002 (5)93.6 (2)
C32F33Cg4Aiv3.949 (18)4.31 (2)96.6 (3)
C32F34Cg4iv3.356 (4)4.002 (5)109.3 (2)
C32F34Cg4Aiv3.663 (18)4.31 (2)110.3 (3)
N24O25Cg4ii3.443 (9)3.710 (5)92.7 (5)
N24O25Cg4Aii3.13 (2)3.45 (2)94.8 (6)
N24AO25ACg4ii3.41 (4)4.19 (3)126 (3)
N24AO25ACg4Aii3.10 (4)3.91 (3)128 (3)
S28O30Cg1ii3.810 (3)3.707 (2)74.9 (1)
S28O31Cg1ii3.529 (3)3.707 (2)85.6 (1)
S28O31Cg3ii3.205 (3)4.221 (2)126.7 (1)
Symmetry codes: (ii) x, -y+3/2, z-1/2; (iv) x-1, -y+3/2, z-1/2.

Notes: Cg represents the centre of gravity of the rings, as follows: Cg1 ring C9/C11/C12/N10/C14/C13, Cg3 ring C5-C8/C13/C14, Cg4 ring C18-C23 and Cg4A ring C18A-C23A.
π-π interactions (Å,°). top
CgICgJCg···CgDihedral angleInterplanar distanceOffset
12v3.547 (2)3.43.504 (3)0.556 (3)
22v3.981 (2)0.03.504 (3)1.891 (3)
Symmetry codes: (v) -x+1, -y+1, -z+1.

Notes: Cg represents the centre of gravity of the rings, as follows: Cg1 ring C9/C11/C12/N10/C14/C13 and Cg2 ring C1-C4/C12/C11. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32) for the period 2007–2010.

References

First citationAdamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett. 14, 2313–2317.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBecker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611.  Web of Science CrossRef Google Scholar
First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationButcher, R. J., Evans, R. & Gilardi, R. (2004). Acta Cryst. E60, o1376–o1378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKaafarani, B. R., Wex, B., Oliver, A. G., Krause Bauer, J. A. & Neckers, D. C. (2003). Acta Cryst. E59, o227–o229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLyssenko, K. A. & Antipin, M. Y. (2004). Russ. Chem. Bull. Int. Ed. 53, 10–17.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRazavi, Z. & McCapra, F. (2000a). Luminescence, 15, 239–245.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRazavi, Z. & McCapra, F. (2000b). Luminescence, 15, 245–249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1999). Chem. Commun. pp. 313–314.  Web of Science CrossRef Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o372-o373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds