organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2-Chloro­phen­yl)imino­meth­yl]-4-methyl­phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: odeveci@omu.edu.tr

(Received 11 December 2007; accepted 24 December 2007; online 30 January 2008)

The mol­ecule of the title compound, C14H12ClNO, adopts the enol–imine tautomeric form, with an intra­molecular O—H⋯N hydrogen bond. In the mol­ecule, the two benzene rings are twisted with respect to each other by 30.6 (2)°. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For general background, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]); Williams (1972[Williams, D. R. (1972). Chem. Rev. 72, 203-213.]); Garnovski et al. (1993[Garnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Zhou et al. (2000[Zhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vital, J. J. & You, X.-Z. (2000). J. Mol. Struct. 533, 25-30.]); Dürr & Bouas-Laurent et al. (1990[Dürr, H. & Bouas-Laurent, H. (1990). Photochromism: Molecules and Systems. Amsterdam: Elsevier.]). For related structures, see: Ünver et al. (2002[Ünver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685-690.]); Karadayı et al. (2003[Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851-o853.]); Filarowski et al. (2003[Filarowski, A., Koll, A. & Glowiaka, T. (2003). J. Mol. Struct. 644, 187-195.]); Yıldız et al. (1998[Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.]); Odabaşoğlu et al. (2003[Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Orthorhombic, P b c a

  • a = 7.5121 (7) Å

  • b = 11.9190 (15) Å

  • c = 27.500 (3) Å

  • V = 2462.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 (2) K

  • 0.8 × 0.23 × 0.09 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: none

  • 14292 measured reflections

  • 2428 independent reflections

  • 833 reflections with I > 2σ(I)

  • Rint = 0.133

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.233

  • S = 0.81

  • 2428 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H9⋯N1 0.82 1.89 2.622 (5) 147
C14—H15BCg1i 0.93 2.83 3.849 (6) 174
Symmetry code: (i) [-{1 \over 2}+x, y, {1 \over 2}-z]

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Most Schiff bases have antibacterial, anticanser, anti-inflam-matory and antitoxic properties (Williams, 1972). In addition, Schiff bases have been used extensively as ligands in the field of coordination chemistry (Garnovski et al., 1993). There is considerable interest in Schiff base complexes due to their striking anti-tumour activities (Zhou et al., 2000). Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl Oatom to the imine N atom (Cohen et al., 1964; Hadjoudis et al., 1987). Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent et al., 1990).

There are two possible types of intramolecular hydrogen bonds in Schiff bases, viz. the keto-amine (N—H···O) and enol-imine (O—H···N) tautomeric forms. X– ray investigation shows that (l) prefers the enol-imine tautomeric form. The molecular structure of (I) is shown in Fig. 1, with the atom-numbering scheme. Selected bond lengths and angles are listed in Table 1. The C13—O1 and C7?N1 bond lengths verify the enol-imine form. The same bonds can be compared with the corresponding distances in (E)-N-(2-fluoro-3-methoxy)- salicylald-imine [1.347 (3) Å and 1.280 (3) Å; Ünver et al., 2002] and (E)-N-(3,5-bis(trifluoromethyl)phenyl)-3-methoxysalicylaldimine [1.352 (3) Å and 1.280 (4) Å; Karadayı et al., 2003], which exist in the enol-imine tautomeric form. The dihedral angle between the two benzene rings is 30.6 (2)°. The title molecule has a strong intramolecular O—H···N hydrogen bond between atoms N1 and O1 (Table 2). This type of strong intramolecular hydrogen bond is a common feature of o-hydroxysalicylidene systems (Filarowski et al., 2003; Yıldız et al., 1998; Odaba\,oǧlu et al., 2003). The O—H···N hydrogen-bonded ring is almost coplanar with the adjacent ring, with an N1—C7—C8—C13 torsion angle of 3.4 (6)°. In the crystal there are also C—H···π interactions between C14-methyl group and C1i-containing benzene ring [symmetry code: (i) -1/2 + x,y,1/2 - z] (Fig. 2), C14—H15B—Cg1i = 174°, H15B···Cg1i = 2.83 and C14···Cg1i = 3.849 (6) Å (Cg1 is centroid of the C1-containing benzene ring).

Related literature top

For general background, see: Cohen et al. (1964); Hadjoudis et al. (1987); Williams (1972); Garnovski et al. (1993); Zhou et al. (2000); Dürr & Bouas-Laurent et al. (1990). For related structures, see: Ünver et al. (2002); Karadayı et al. (2003); Filarowski et al. (2003); Yıldız et al. (1998); Odabaşoǧlu et al. (2003).

Experimental top

The title compound was prepared by reflux a mixture of a solution containing 5-methylsalicylaldehyde (0.05 g, 0.367 mmol) in 20 ml e thanol and a solution containing 2-kloranilin (0.0447 g, 0.367 mmol) in 20 ml e thanol. The reaction mixture was stirred for 2 h under reflux. The crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield % 80).

Refinement top

H atoms were positioned geometrically and treated using a riding model with C—H = 0.93, 0.96, 0.82 and 0.93 Å for CH, CH3, OH and CH (aromatic), respectively. Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C,N) for others.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability.
[Figure 2] Fig. 2. A perspective view of the molecular packing of compound (I). Dashed lines indicate hydrogen bonds and C—H···π interactions.
(E)-2-[(2-Chlorophenyl)iminomethyl]-4-methylphenol top
Crystal data top
C14H12ClNODx = 1.325 Mg m3
Mr = 245.70Melting point = 356–358 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5622 reflections
a = 7.5121 (7) Åθ = 27.1–2.2°
b = 11.9190 (15) ŵ = 0.29 mm1
c = 27.500 (3) ÅT = 296 K
V = 2462.3 (5) Å3Prism, yellow
Z = 80.8 × 0.23 × 0.09 mm
F(000) = 1024
Data collection top
Stoe IPDS-2
diffractometer
833 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.133
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
Detector resolution: 6.67 pixels mm-1h = 98
rotation method scansk = 1414
14292 measured reflectionsl = 3333
2428 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.233H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.1247P)2]
where P = (Fo2 + 2Fc2)/3
2428 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H12ClNOV = 2462.3 (5) Å3
Mr = 245.70Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.5121 (7) ŵ = 0.29 mm1
b = 11.9190 (15) ÅT = 296 K
c = 27.500 (3) Å0.8 × 0.23 × 0.09 mm
Data collection top
Stoe IPDS-2
diffractometer
833 reflections with I > 2σ(I)
14292 measured reflectionsRint = 0.133
2428 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.233H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.31 e Å3
2428 reflectionsΔρmin = 0.34 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0007 (7)0.3349 (5)0.43397 (19)0.0948 (15)
C20.0462 (6)0.2701 (4)0.39300 (17)0.0767 (12)
C30.0457 (7)0.1562 (4)0.39911 (19)0.0942 (15)
H30.08260.11020.37370.113*
C40.0080 (9)0.1088 (5)0.4419 (2)0.1153 (18)
H40.00880.03100.44490.138*
C50.0600 (9)0.1724 (6)0.4798 (2)0.122 (2)
H50.09900.13880.50840.146*
C60.0550 (9)0.2868 (6)0.4761 (2)0.1143 (19)
H60.08880.33130.50230.137*
C70.0567 (6)0.2814 (4)0.30913 (17)0.0722 (11)
C80.0967 (5)0.3344 (4)0.26359 (17)0.0738 (7)
C90.0565 (5)0.2805 (4)0.21962 (17)0.0738 (7)
C100.0914 (5)0.3263 (3)0.17485 (16)0.0738 (7)
C110.1683 (6)0.4315 (4)0.1750 (2)0.0911 (7)
H110.19430.46360.14500.109*
C120.2100 (6)0.4931 (4)0.21632 (18)0.0911 (7)
H120.26140.56390.21460.109*
C130.1696 (6)0.4417 (4)0.2609 (2)0.0911 (7)
C140.0490 (7)0.2641 (5)0.12922 (18)0.1075 (17)
H15A0.03800.30530.11090.161*
H15B0.15530.25570.11020.161*
H15C0.00250.19140.13720.161*
Cl10.0042 (3)0.47953 (13)0.42906 (6)0.1482 (9)
N10.0919 (5)0.3258 (3)0.35040 (15)0.0780 (10)
O10.2054 (4)0.5014 (2)0.30200 (12)0.0911 (7)
H90.17660.46450.32590.137*
H10.011 (5)0.210 (4)0.3066 (13)0.083 (12)*
H20.010 (5)0.211 (3)0.2174 (13)0.072 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.093 (4)0.096 (3)0.095 (3)0.001 (3)0.022 (3)0.020 (3)
C20.057 (3)0.077 (3)0.096 (3)0.005 (2)0.012 (2)0.006 (3)
C30.099 (4)0.080 (3)0.103 (4)0.006 (3)0.007 (3)0.005 (3)
C40.145 (5)0.090 (4)0.112 (4)0.003 (4)0.002 (4)0.008 (3)
C50.147 (6)0.125 (5)0.093 (4)0.008 (5)0.010 (4)0.005 (4)
C60.131 (5)0.120 (5)0.092 (4)0.011 (4)0.010 (3)0.014 (4)
C70.053 (3)0.064 (3)0.099 (3)0.001 (2)0.003 (2)0.006 (3)
C80.0491 (12)0.0711 (17)0.1013 (18)0.0093 (12)0.0077 (14)0.0037 (13)
C90.0491 (12)0.0711 (17)0.1013 (18)0.0093 (12)0.0077 (14)0.0037 (13)
C100.0491 (12)0.0711 (17)0.1013 (18)0.0093 (12)0.0077 (14)0.0037 (13)
C110.0687 (12)0.0733 (13)0.1313 (19)0.0018 (10)0.0032 (12)0.0041 (11)
C120.0687 (12)0.0733 (13)0.1313 (19)0.0018 (10)0.0032 (12)0.0041 (11)
C130.0687 (12)0.0733 (13)0.1313 (19)0.0018 (10)0.0032 (12)0.0041 (11)
C140.092 (4)0.132 (4)0.098 (3)0.019 (3)0.006 (3)0.015 (3)
Cl10.240 (2)0.0908 (10)0.1138 (11)0.0054 (12)0.0417 (12)0.0294 (8)
N10.065 (2)0.074 (2)0.095 (3)0.0028 (19)0.016 (2)0.009 (2)
O10.0687 (12)0.0733 (13)0.1313 (19)0.0018 (10)0.0032 (12)0.0041 (11)
Geometric parameters (Å, º) top
C1—C61.354 (7)C8—C131.393 (6)
C1—C21.410 (6)C8—C91.402 (6)
C1—Cl11.730 (6)C9—C101.372 (6)
C2—C31.368 (6)C9—H20.91 (4)
C2—N11.390 (5)C10—C111.380 (6)
C3—C41.366 (7)C10—C141.491 (6)
C3—H30.9300C11—C121.389 (6)
C4—C51.348 (7)C11—H110.9300
C4—H40.9300C12—C131.403 (6)
C5—C61.368 (8)C12—H120.9300
C5—H50.9300C13—O11.364 (6)
C6—H60.9300C14—H15A0.9600
C7—N11.280 (5)C14—H15B0.9600
C7—C81.434 (6)C14—H15C0.9600
C7—H10.99 (4)O1—H90.8200
C6—C1—C2121.8 (5)C10—C9—C8123.4 (5)
C6—C1—Cl1119.6 (4)C10—C9—H2112 (2)
C2—C1—Cl1118.5 (4)C8—C9—H2124 (2)
C3—C2—N1125.3 (4)C9—C10—C11116.0 (5)
C3—C2—C1116.4 (5)C9—C10—C14121.1 (4)
N1—C2—C1118.3 (4)C11—C10—C14122.8 (5)
C4—C3—C2121.2 (5)C10—C11—C12125.2 (5)
C4—C3—H3119.4C10—C11—H11117.4
C2—C3—H3119.4C12—C11—H11117.4
C5—C4—C3121.3 (6)C11—C12—C13115.8 (5)
C5—C4—H4119.4C11—C12—H12122.1
C3—C4—H4119.4C13—C12—H12122.1
C4—C5—C6119.6 (6)O1—C13—C8120.8 (5)
C4—C5—H5120.2O1—C13—C12117.0 (4)
C6—C5—H5120.2C8—C13—C12122.2 (5)
C1—C6—C5119.6 (6)C10—C14—H15A109.5
C1—C6—H6120.2C10—C14—H15B109.5
C5—C6—H6120.2H15A—C14—H15B109.5
N1—C7—C8123.3 (5)C10—C14—H15C109.5
N1—C7—H1122 (2)H15A—C14—H15C109.5
C8—C7—H1115 (2)H15B—C14—H15C109.5
C13—C8—C9117.3 (5)C7—N1—C2119.9 (4)
C13—C8—C7122.2 (5)C13—O1—H9109.5
C9—C8—C7120.4 (4)
C6—C1—C2—C34.4 (7)C8—C9—C10—C110.7 (6)
Cl1—C1—C2—C3178.0 (4)C8—C9—C10—C14178.7 (4)
C6—C1—C2—N1176.8 (5)C9—C10—C11—C120.7 (7)
Cl1—C1—C2—N10.8 (6)C14—C10—C11—C12179.8 (4)
N1—C2—C3—C4177.4 (5)C10—C11—C12—C130.3 (7)
C1—C2—C3—C43.8 (8)C9—C8—C13—O1177.2 (4)
C2—C3—C4—C51.0 (9)C7—C8—C13—O10.3 (6)
C3—C4—C5—C61.6 (10)C9—C8—C13—C123.0 (6)
C2—C1—C6—C52.0 (9)C7—C8—C13—C12179.5 (4)
Cl1—C1—C6—C5179.6 (5)C11—C12—C13—O1178.5 (4)
C4—C5—C6—C11.0 (10)C11—C12—C13—C81.7 (7)
N1—C7—C8—C133.4 (6)C8—C7—N1—C2178.9 (4)
N1—C7—C8—C9179.2 (4)C3—C2—N1—C733.4 (6)
C13—C8—C9—C102.5 (6)C1—C2—N1—C7147.9 (4)
C7—C8—C9—C10179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···N10.821.892.622 (5)147
C14—H15B···Cg1i0.932.833.849 (6)174
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.5121 (7), 11.9190 (15), 27.500 (3)
V3)2462.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.8 × 0.23 × 0.09
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14292, 2428, 833
Rint0.133
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.233, 0.81
No. of reflections2428
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C7—N11.280 (5)C13—O11.364 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···N10.821.892.622 (5)147.3
C14—H15B···Cg1i0.932.8313.849 (6)173.58
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationDürr, H. & Bouas-Laurent, H. (1990). Photochromism: Molecules and Systems. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilarowski, A., Koll, A. & Glowiaka, T. (2003). J. Mol. Struct. 644, 187–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKaradayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851–o853.  CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616–o619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationÜnver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685–690.  Google Scholar
First citationWilliams, D. R. (1972). Chem. Rev. 72, 203–213.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1–10.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vital, J. J. & You, X.-Z. (2000). J. Mol. Struct. 533, 25–30.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds