organic compounds
A second polymorph of β-arteether
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu
The 17H28O5, reported here is a polymorph of the structure first reported by El-Feraly, Al-Yahya, Orabi, McPhail & McPhail [J. Nat. Prod. (1992). 55, 878–883]. It is a derivative of the antimalaria compound artemisinin and consists primarily of three substituted ring systems fused together. A cyclohexane ring (distorted chair conformation) fused to a tetrahydropyran group (distorted chair) is adjacent to an oxacycloheptane unit containing an endo-peroxide bridge, giving the molecule its particular three-dimensional arrangement. The crystal packing is stabilized by intermolecular C—H⋯O interactions between an O atom from the endo-peroxide bridge and H atoms from both the cyclohexane and seven-membered oxacycloheptane fused rings, as well as between an O atom and H atom from adjacent tetrahydropyran rings. The two polymorphs have the same and similar cell parameters for the a and b axes, but significantly different values for the c axis.
of the title compound, CRelated literature
For the first polymorph of this compound, see: El-Feraly et al. (1992). For crystal structures of similar compounds, see: Brossi et al. (1988); Flippen-Anderson et al. (1989); Karle & Lin (1995); Li et al. (2006); Luo et al. (1984); Yue et al. (2006); Butcher et al. (2007); Jasinski et al. (2008). For biological activity of artemisinin derivatives in vitro and in vivo, see: Grace et al. (1998); Li et al. (2001); Maggs et al. (2000); Yang et al. (1997). For endo-peroxide sesquiterpene lactone derivatives, see: Saxena et al. (2003); Venugopalan et al. (1995); Wu et al. (2001). For the synthesis of artemisinin and its derivatives, see: Lui et al. (1979); Liu (1980); Robert et al. (2001). For related literature, see: Cremer & Pople (1975); Lisgarten et al. (1998); Qinghaosu Research Group (1980); Shen & Zhuang (1984); Wu & Li (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807062812/at2510sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807062812/at2510Isup2.hkl
The title compound (C17H28O5) was obtained in the pure form from Strides Arco Labs, Mangalore, India. X-ray diffraction quality crystals were grown from acetone [m.p.: 353 K]).
All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.90–1.00 Å and Uiso(H) = 1.17–1.22Ueq(C).
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H28O5 | Dx = 1.249 Mg m−3 |
Mr = 312.39 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3221 | Cell parameters from 5075 reflections |
Hall symbol: P 32 2" | θ = 2.4–30.0° |
a = 10.0253 (6) Å | µ = 0.09 mm−1 |
c = 28.628 (3) Å | T = 103 K |
V = 2491.8 (3) Å3 | Chunk, colourless |
Z = 6 | 0.42 × 0.22 × 0.18 mm |
F(000) = 1020 |
Bruker APEXII CCD area-detector diffractometer | 4935 independent reflections |
Radiation source: fine-focus sealed tube | 4517 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 30.8°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→14 |
Tmin = 0.963, Tmax = 0.984 | k = −14→14 |
27842 measured reflections | l = −39→39 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0551P)2 + 0.4841P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.005 |
4935 reflections | Δρmax = 0.38 e Å−3 |
203 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2049 Friedel pairs |
Primary atom site location: structure-invariant direct methods |
C17H28O5 | Z = 6 |
Mr = 312.39 | Mo Kα radiation |
Trigonal, P3221 | µ = 0.09 mm−1 |
a = 10.0253 (6) Å | T = 103 K |
c = 28.628 (3) Å | 0.42 × 0.22 × 0.18 mm |
V = 2491.8 (3) Å3 |
Bruker APEXII CCD area-detector diffractometer | 4935 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4517 reflections with I > 2σ(I) |
Tmin = 0.963, Tmax = 0.984 | Rint = 0.034 |
27842 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.38 e Å−3 |
4935 reflections | Δρmin = −0.17 e Å−3 |
203 parameters | Absolute structure: Flack (1983), 2049 Friedel pairs |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.71973 (10) | 0.35233 (10) | −0.03898 (3) | 0.01837 (18) | |
O2 | 0.57224 (11) | 0.39122 (11) | 0.01212 (3) | 0.01993 (19) | |
O3 | 0.47049 (10) | 0.15908 (12) | −0.05520 (3) | 0.0219 (2) | |
O4 | 0.45576 (11) | 0.06611 (11) | −0.01350 (3) | 0.02042 (19) | |
O5 | 0.60247 (12) | 0.45429 (11) | 0.09195 (3) | 0.02137 (19) | |
C1 | 0.58206 (14) | 0.15089 (14) | 0.01942 (4) | 0.0169 (2) | |
C2 | 0.50124 (14) | 0.12064 (15) | 0.06716 (4) | 0.0182 (2) | |
H2A | 0.4266 | 0.0075 | 0.0686 | 0.022* | |
C3 | 0.61370 (16) | 0.15728 (16) | 0.10811 (4) | 0.0222 (3) | |
H3A | 0.6848 | 0.2699 | 0.1097 | 0.027* | |
H3B | 0.5550 | 0.1246 | 0.1377 | 0.027* | |
C4 | 0.70709 (16) | 0.07586 (16) | 0.10279 (4) | 0.0232 (3) | |
H4A | 0.7788 | 0.1028 | 0.1295 | 0.028* | |
H4B | 0.6367 | −0.0370 | 0.1031 | 0.028* | |
C5 | 0.79822 (16) | 0.12223 (15) | 0.05735 (4) | 0.0213 (2) | |
H5A | 0.8658 | 0.2368 | 0.0574 | 0.026* | |
C6 | 0.68604 (15) | 0.07809 (14) | 0.01577 (4) | 0.0185 (2) | |
H6A | 0.6163 | −0.0360 | 0.0174 | 0.022* | |
C7 | 0.77196 (15) | 0.11190 (16) | −0.03110 (4) | 0.0221 (3) | |
H7A | 0.8677 | 0.2129 | −0.0287 | 0.027* | |
H7B | 0.8024 | 0.0330 | −0.0361 | 0.027* | |
C8 | 0.68289 (16) | 0.11487 (16) | −0.07417 (4) | 0.0235 (3) | |
H8A | 0.5935 | 0.0104 | −0.0791 | 0.028* | |
H8B | 0.7505 | 0.1408 | −0.1019 | 0.028* | |
C9 | 0.62470 (15) | 0.23007 (15) | −0.07075 (4) | 0.0204 (2) | |
C10 | 0.66650 (14) | 0.32307 (14) | 0.00757 (4) | 0.0162 (2) | |
H10A | 0.7569 | 0.3776 | 0.0290 | 0.019* | |
C11 | 0.49721 (16) | 0.37047 (16) | 0.05576 (4) | 0.0204 (3) | |
H11A | 0.4239 | 0.4102 | 0.0527 | 0.024* | |
C12 | 0.40444 (15) | 0.20099 (16) | 0.06911 (4) | 0.0204 (2) | |
H12A | 0.3232 | 0.1506 | 0.0446 | 0.024* | |
C13 | 0.90173 (19) | 0.05086 (19) | 0.05316 (6) | 0.0329 (3) | |
H13A | 0.9584 | 0.0664 | 0.0824 | 0.049* | |
H13B | 0.9748 | 0.1002 | 0.0275 | 0.049* | |
H13C | 0.8382 | −0.0597 | 0.0469 | 0.049* | |
C14 | 0.62461 (17) | 0.30416 (18) | −0.11675 (4) | 0.0270 (3) | |
H14A | 0.5651 | 0.3570 | −0.1135 | 0.040* | |
H14B | 0.5779 | 0.2247 | −0.1409 | 0.040* | |
H14C | 0.7308 | 0.3788 | −0.1256 | 0.040* | |
C15 | 0.68313 (17) | 0.61729 (15) | 0.08415 (5) | 0.0241 (3) | |
H15A | 0.6102 | 0.6513 | 0.0743 | 0.029* | |
H15B | 0.7612 | 0.6446 | 0.0593 | 0.029* | |
C16 | 0.7603 (2) | 0.69468 (18) | 0.12949 (5) | 0.0367 (4) | |
H16A | 0.8216 | 0.8063 | 0.1247 | 0.055* | |
H16B | 0.8277 | 0.6557 | 0.1398 | 0.055* | |
H16C | 0.6817 | 0.6722 | 0.1533 | 0.055* | |
C17 | 0.31881 (17) | 0.17746 (18) | 0.11531 (5) | 0.0279 (3) | |
H17A | 0.2512 | 0.2216 | 0.1130 | 0.042* | |
H17B | 0.3935 | 0.2286 | 0.1405 | 0.042* | |
H17C | 0.2569 | 0.0670 | 0.1220 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0161 (4) | 0.0163 (4) | 0.0141 (4) | 0.0017 (3) | 0.0008 (3) | −0.0006 (3) |
O2 | 0.0224 (5) | 0.0212 (4) | 0.0165 (4) | 0.0111 (4) | 0.0022 (3) | 0.0025 (3) |
O3 | 0.0158 (4) | 0.0247 (5) | 0.0149 (4) | 0.0025 (4) | −0.0014 (3) | 0.0020 (3) |
O4 | 0.0157 (4) | 0.0187 (4) | 0.0149 (4) | −0.0004 (3) | −0.0015 (3) | 0.0003 (3) |
O5 | 0.0256 (5) | 0.0165 (4) | 0.0181 (4) | 0.0076 (4) | −0.0010 (4) | −0.0004 (3) |
C1 | 0.0143 (5) | 0.0152 (5) | 0.0134 (5) | 0.0015 (4) | −0.0007 (4) | −0.0012 (4) |
C2 | 0.0159 (5) | 0.0161 (5) | 0.0150 (5) | 0.0024 (5) | 0.0003 (4) | 0.0006 (4) |
C3 | 0.0255 (6) | 0.0191 (6) | 0.0163 (5) | 0.0068 (5) | −0.0032 (5) | 0.0007 (4) |
C4 | 0.0220 (6) | 0.0184 (6) | 0.0217 (6) | 0.0046 (5) | −0.0041 (5) | 0.0046 (5) |
C5 | 0.0181 (6) | 0.0150 (5) | 0.0260 (6) | 0.0045 (5) | −0.0020 (5) | 0.0039 (5) |
C6 | 0.0168 (6) | 0.0124 (5) | 0.0208 (5) | 0.0031 (4) | 0.0015 (4) | 0.0007 (4) |
C7 | 0.0187 (6) | 0.0177 (6) | 0.0246 (6) | 0.0052 (5) | 0.0040 (5) | −0.0009 (5) |
C8 | 0.0209 (6) | 0.0209 (6) | 0.0200 (6) | 0.0040 (5) | 0.0019 (5) | −0.0044 (5) |
C9 | 0.0167 (6) | 0.0201 (6) | 0.0145 (5) | 0.0019 (5) | 0.0004 (4) | −0.0014 (4) |
C10 | 0.0158 (5) | 0.0142 (5) | 0.0142 (5) | 0.0041 (4) | −0.0009 (4) | 0.0001 (4) |
C11 | 0.0202 (6) | 0.0210 (6) | 0.0171 (5) | 0.0083 (5) | −0.0007 (4) | −0.0009 (4) |
C12 | 0.0175 (5) | 0.0218 (6) | 0.0164 (5) | 0.0058 (5) | 0.0007 (4) | −0.0004 (5) |
C13 | 0.0279 (8) | 0.0321 (8) | 0.0408 (8) | 0.0166 (7) | 0.0010 (6) | 0.0085 (6) |
C14 | 0.0254 (7) | 0.0309 (7) | 0.0147 (5) | 0.0066 (6) | −0.0010 (5) | 0.0006 (5) |
C15 | 0.0282 (7) | 0.0160 (6) | 0.0243 (6) | 0.0082 (5) | 0.0009 (5) | 0.0022 (5) |
C16 | 0.0504 (10) | 0.0186 (7) | 0.0300 (7) | 0.0090 (7) | −0.0053 (7) | −0.0018 (6) |
C17 | 0.0240 (7) | 0.0294 (7) | 0.0229 (6) | 0.0079 (6) | 0.0055 (5) | −0.0007 (5) |
O1—C10 | 1.4105 (14) | C7—H7A | 0.990 |
O1—C9 | 1.4386 (15) | C7—H7B | 0.990 |
O2—C11 | 1.4192 (15) | C8—C9 | 1.536 (2) |
O2—C10 | 1.4221 (15) | C8—H8A | 0.990 |
O3—C9 | 1.4122 (16) | C8—H8B | 0.990 |
O3—O4 | 1.4759 (13) | C9—C14 | 1.5122 (17) |
O4—C1 | 1.4619 (14) | C10—H10A | 1.000 |
O5—C11 | 1.4163 (15) | C11—C12 | 1.5224 (18) |
O5—C15 | 1.4327 (16) | C11—H11A | 1.000 |
C1—C10 | 1.5330 (16) | C12—C17 | 1.5295 (17) |
C1—C2 | 1.5399 (16) | C12—H12A | 1.000 |
C1—C6 | 1.5462 (18) | C13—H13A | 0.980 |
C2—C3 | 1.5382 (17) | C13—H13B | 0.980 |
C2—C12 | 1.5412 (19) | C13—H13C | 0.980 |
C2—H2A | 1.000 | C14—H14A | 0.980 |
C3—C4 | 1.526 (2) | C14—H14B | 0.980 |
C3—H3A | 0.990 | C14—H14C | 0.980 |
C3—H3B | 0.990 | C15—C16 | 1.512 (2) |
C4—C5 | 1.5225 (18) | C15—H15A | 0.990 |
C4—H4A | 0.990 | C15—H15B | 0.990 |
C4—H4B | 0.990 | C16—H16A | 0.980 |
C5—C13 | 1.532 (2) | C16—H16B | 0.980 |
C5—C6 | 1.5427 (18) | C16—H16C | 0.980 |
C5—H5A | 1.000 | C17—H17A | 0.980 |
C6—C7 | 1.5380 (17) | C17—H17B | 0.980 |
C6—H6A | 1.000 | C17—H17C | 0.980 |
C7—C8 | 1.5315 (19) | ||
C10—O1—C9 | 113.55 (9) | O3—C9—C14 | 104.63 (11) |
C11—O2—C10 | 116.17 (9) | O1—C9—C14 | 107.15 (11) |
C9—O3—O4 | 108.17 (9) | O3—C9—C8 | 111.90 (11) |
C1—O4—O3 | 111.72 (8) | O1—C9—C8 | 110.02 (10) |
C11—O5—C15 | 113.02 (10) | C14—C9—C8 | 114.05 (11) |
O4—C1—C10 | 110.01 (10) | O1—C10—O2 | 105.06 (9) |
O4—C1—C2 | 103.89 (9) | O1—C10—C1 | 112.44 (9) |
C10—C1—C2 | 110.98 (10) | O2—C10—C1 | 113.28 (10) |
O4—C1—C6 | 105.93 (9) | O1—C10—H10A | 108.6 |
C10—C1—C6 | 113.17 (10) | O2—C10—H10A | 108.6 |
C2—C1—C6 | 112.30 (10) | C1—C10—H10A | 108.6 |
C3—C2—C1 | 112.25 (10) | O5—C11—O2 | 111.96 (11) |
C3—C2—C12 | 115.18 (10) | O5—C11—C12 | 109.68 (10) |
C1—C2—C12 | 109.64 (10) | O2—C11—C12 | 111.59 (11) |
C3—C2—H2A | 106.4 | O5—C11—H11A | 107.8 |
C1—C2—H2A | 106.4 | O2—C11—H11A | 107.8 |
C12—C2—H2A | 106.4 | C12—C11—H11A | 107.8 |
C4—C3—C2 | 111.63 (11) | C11—C12—C17 | 111.82 (12) |
C4—C3—H3A | 109.3 | C11—C12—C2 | 112.41 (10) |
C2—C3—H3A | 109.3 | C17—C12—C2 | 113.72 (11) |
C4—C3—H3B | 109.3 | C11—C12—H12A | 106.1 |
C2—C3—H3B | 109.3 | C17—C12—H12A | 106.1 |
H3A—C3—H3B | 108.0 | C2—C12—H12A | 106.1 |
C5—C4—C3 | 110.91 (11) | C5—C13—H13A | 109.5 |
C5—C4—H4A | 109.5 | C5—C13—H13B | 109.5 |
C3—C4—H4A | 109.5 | H13A—C13—H13B | 109.5 |
C5—C4—H4B | 109.5 | C5—C13—H13C | 109.5 |
C3—C4—H4B | 109.5 | H13A—C13—H13C | 109.5 |
H4A—C4—H4B | 108.0 | H13B—C13—H13C | 109.5 |
C4—C5—C13 | 111.57 (11) | C9—C14—H14A | 109.5 |
C4—C5—C6 | 109.36 (11) | C9—C14—H14B | 109.5 |
C13—C5—C6 | 111.87 (12) | H14A—C14—H14B | 109.5 |
C4—C5—H5A | 108.0 | C9—C14—H14C | 109.5 |
C13—C5—H5A | 108.0 | H14A—C14—H14C | 109.5 |
C6—C5—H5A | 108.0 | H14B—C14—H14C | 109.5 |
C7—C6—C5 | 111.24 (11) | O5—C15—C16 | 107.69 (11) |
C7—C6—C1 | 112.97 (10) | O5—C15—H15A | 110.2 |
C5—C6—C1 | 112.30 (10) | C16—C15—H15A | 110.2 |
C7—C6—H6A | 106.6 | O5—C15—H15B | 110.2 |
C5—C6—H6A | 106.6 | C16—C15—H15B | 110.2 |
C1—C6—H6A | 106.6 | H15A—C15—H15B | 108.5 |
C8—C7—C6 | 116.04 (11) | C15—C16—H16A | 109.5 |
C8—C7—H7A | 108.3 | C15—C16—H16B | 109.5 |
C6—C7—H7A | 108.3 | H16A—C16—H16B | 109.5 |
C8—C7—H7B | 108.3 | C15—C16—H16C | 109.5 |
C6—C7—H7B | 108.3 | H16A—C16—H16C | 109.5 |
H7A—C7—H7B | 107.4 | H16B—C16—H16C | 109.5 |
C7—C8—C9 | 114.06 (11) | C12—C17—H17A | 109.5 |
C7—C8—H8A | 108.7 | C12—C17—H17B | 109.5 |
C9—C8—H8A | 108.7 | H17A—C17—H17B | 109.5 |
C7—C8—H8B | 108.7 | C12—C17—H17C | 109.5 |
C9—C8—H8B | 108.7 | H17A—C17—H17C | 109.5 |
H8A—C8—H8B | 107.6 | H17B—C17—H17C | 109.5 |
O3—C9—O1 | 108.78 (10) | ||
C9—O3—O4—C1 | 45.64 (12) | O4—O3—C9—C8 | 48.52 (12) |
O3—O4—C1—C10 | 15.48 (13) | C10—O1—C9—O3 | 31.99 (14) |
O3—O4—C1—C2 | 134.33 (10) | C10—O1—C9—C14 | 144.59 (11) |
O3—O4—C1—C6 | −107.17 (10) | C10—O1—C9—C8 | −90.91 (12) |
O4—C1—C2—C3 | 162.62 (10) | C7—C8—C9—O3 | −95.86 (13) |
C10—C1—C2—C3 | −79.19 (13) | C7—C8—C9—O1 | 25.20 (14) |
C6—C1—C2—C3 | 48.60 (14) | C7—C8—C9—C14 | 145.62 (12) |
O4—C1—C2—C12 | −68.02 (12) | C9—O1—C10—O2 | −93.06 (11) |
C10—C1—C2—C12 | 50.16 (12) | C9—O1—C10—C1 | 30.57 (14) |
C6—C1—C2—C12 | 177.96 (10) | C11—O2—C10—O1 | 176.80 (9) |
C1—C2—C3—C4 | −52.31 (14) | C11—O2—C10—C1 | 53.70 (13) |
C12—C2—C3—C4 | −178.73 (10) | O4—C1—C10—O1 | −55.59 (13) |
C2—C3—C4—C5 | 58.53 (14) | C2—C1—C10—O1 | −170.00 (10) |
C3—C4—C5—C13 | 175.80 (11) | C6—C1—C10—O1 | 62.68 (12) |
C3—C4—C5—C6 | −59.90 (14) | O4—C1—C10—O2 | 63.33 (12) |
C4—C5—C6—C7 | −175.83 (11) | C2—C1—C10—O2 | −51.08 (12) |
C13—C5—C6—C7 | −51.70 (14) | C6—C1—C10—O2 | −178.40 (9) |
C4—C5—C6—C1 | 56.44 (13) | C15—O5—C11—O2 | 61.59 (14) |
C13—C5—C6—C1 | −179.43 (10) | C15—O5—C11—C12 | −173.97 (11) |
O4—C1—C6—C7 | 69.20 (12) | C10—O2—C11—O5 | 69.63 (13) |
C10—C1—C6—C7 | −51.41 (13) | C10—O2—C11—C12 | −53.74 (14) |
C2—C1—C6—C7 | −178.04 (10) | O5—C11—C12—C17 | 57.32 (15) |
O4—C1—C6—C5 | −163.99 (9) | O2—C11—C12—C17 | −178.03 (11) |
C10—C1—C6—C5 | 75.39 (12) | O5—C11—C12—C2 | −72.01 (13) |
C2—C1—C6—C5 | −51.23 (13) | O2—C11—C12—C2 | 52.64 (14) |
C5—C6—C7—C8 | −164.04 (11) | C3—C2—C12—C11 | 75.94 (13) |
C1—C6—C7—C8 | −36.68 (15) | C1—C2—C12—C11 | −51.80 (13) |
C6—C7—C8—C9 | 56.69 (15) | C3—C2—C12—C17 | −52.41 (15) |
O4—O3—C9—O1 | −73.25 (12) | C1—C2—C12—C17 | 179.85 (10) |
O4—O3—C9—C14 | 172.50 (10) | C11—O5—C15—C16 | 166.33 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O4i | 1.00 | 2.45 | 3.3150 (15) | 144 |
C7—H7A···O4i | 0.99 | 2.55 | 3.4704 (16) | 155 |
Symmetry code: (i) y+1, x, −z. |
Experimental details
Crystal data | |
Chemical formula | C17H28O5 |
Mr | 312.39 |
Crystal system, space group | Trigonal, P3221 |
Temperature (K) | 103 |
a, c (Å) | 10.0253 (6), 28.628 (3) |
V (Å3) | 2491.8 (3) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.42 × 0.22 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.963, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27842, 4935, 4517 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.719 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.101, 1.05 |
No. of reflections | 4935 |
No. of parameters | 203 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.17 |
Absolute structure | Flack (1983), 2049 Friedel pairs |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O4i | 1.00 | 2.45 | 3.3150 (15) | 144 |
C7—H7A···O4i | 0.99 | 2.55 | 3.4704 (16) | 155 |
Symmetry code: (i) y+1, x, −z. |
Acknowledgements
RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington DC, USA, for access to their diffractometers. BN thanks Strides Arco Labs, Mangalore, India, for a gift sample of the title compound.
References
Brossi, A., Venugopalan, B., Dominguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhousand, W. & Peters, W. (1988). J. Med. Chem. 31, 645–650. CSD CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o3291–o3292. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
El-Feraly, F. S., Al-Yahya, M. A., Orabi, K. Y., McPhail, D. R. & McPhail, A. T. (1992). J. Nat. Prod. 55, 878–883. CSD CrossRef CAS Web of Science Google Scholar
Flippen-Anderson, J. L., George, C., Gilardi, R., Yu, Q.-S., Dominguez, L. & Brossi, A. (1989). Acta Cryst. C45, 292–294. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Grace, J. M., Aguilar, A. J., Trotman, K. M. & Brewer, T. G. (1998). Drug Metab. Dispos. 26, 313–317. Web of Science CAS PubMed Google Scholar
Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008). Acta Cryst. E64, o89–o90. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karle, J. M. & Lin, Ai. J. (1995). Acta Cryst. B51, 1063–1068. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, Y., Shan, F., Wu, J. M., Wu, G. S., Ding, J., Xiao, D., Yang, W. Y., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Bioorg. Med. Chem. Lett. 11, 5–8. Web of Science CSD CrossRef PubMed Google Scholar
Li, S.-H., Yue, Z.-Y., Gao, P. & Yan, P.-F. (2006). Acta Cryst. E62, o1898–o1900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lisgarten, J., Potter, B. S., Bantuzeko, C. & Palmer, A. (1998). J. Chem. Crystallogr. 28, 539–542. Web of Science CSD CrossRef CAS Google Scholar
Liu, X. (1980). Chin. Pharm. Bull. 15, 183–183. Google Scholar
Lui, J.-M., Ni, M.-Y., Fan, Y.-E., Tu, Y.-Y., Wu, Z.-H., Wu, Y.-L. & Chou, W.-S. (1979). Acta Chim. Sinica, 37, 129–141. Google Scholar
Luo, X. D., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gillardi, R. (1984). Helv. Chim. Acta, 67, 1515–1522. CSD CrossRef CAS Web of Science Google Scholar
Maggs, J. L., Bishop, L. P. D., Edwards, G., O'Neill, P. M., Ward, S. A., Winstanley, P. A. & Park, K. (2000). Drug Metab. Dispos. 28, 209–217. Web of Science PubMed CAS Google Scholar
Qinghaosu Research Group (1980). Sci. Sin. (Engl. Ed.), 23, 380–396. Google Scholar
Robert, A., Benoit-Vical, F., Dechy-Cabaret, O. & Meunier, B. (2001). Pure Appl. Chem. 73, 1173–1188. Web of Science CrossRef CAS Google Scholar
Saxena, S., Pant, N., Jain, D. C. & Bhakuni, R. S. (2003). Curr. Sci. 85, 1314–1329. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, C. C. & Zhuang, L. (1984). Med. Res. Rev. 4, 57–59. CrossRef Web of Science Google Scholar
Venugopalan, B., Karnik, P. J., Bapat, C. J., Chatterjee, D. K., Iyer, N. & Lepcha, D. (1995). Eur. J. Med. Chem. 30, 697–706. CrossRef CAS Web of Science Google Scholar
Wu, Y.-L. & Li, Y. (1995). Med. Chem. Res. 5, 569–586. CAS Google Scholar
Wu, J. M., Shan, F., Wu, G. S., Ying, L., Ding, J., Xiao, D., Han, J.-X., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Eur. J. Med. Chem. 36, 469–479. Web of Science CrossRef PubMed CAS Google Scholar
Yang, X. P., Pan, Q. C., Liang, Y.-G. & Zikang, Y.-L. (1997). Cancer, 16, 186–187. Google Scholar
Yue, Z.-Y., Li, S.-H., Gao, P., Zhang, J.-H. & Yan, P.-F. (2006). Acta Cryst. C62, o281–o282. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Artemisinin and its derivatives, dihydroartemisinin, artemether, arteether and artesunate, are antimalarial drugs which possess bioactivity with reduced toxicity (Wu & Li, 1995). Artemisinin is isolated from the leaves of the plant Artemisia annua (Qinghao). It is a sesquiterpene lactone with an endo-peroxide linkage. Artemisinin derivatives are more potent than artemisinin and are active by virtue of the endo-peroxide. Because of their activity against strains of the parasite that had become resistant to conventional chloroquine therapy and the ability, due to the lipophilic structure, to cross the blood brain barrier, it was particularly effective for the deadly cerebral malaria (Shen & Zhuang, 1984). Because of their shorter lifetime and decreasing activity, they are used in combination with other antimalarial drugs. The notable activity of artemesinin derivatives in vitro and in vivo has been reported in the literature (Li et al. 2001 & Yang et al. 1997). However, some derivatives of artimisinine showed moderate cytotoxicity in vitro. The electronegativity and bulk of the substituents that are attached to the aryl group play an insignificant role in cytotoxicity. The antimalarial activity and cytotoxicity of some sesquiterpenoids has been reported in the literature (Venugopalan et al., 1995; Wu et al., 2001; Saxena et al., 2003). The endo-peroxide group present in these compounds plays an important role in antimalarial activity. Its 1,2,4-trioxane ring is unique in nature. After being opened in the plasmodium it liberates singlet oxygen and forms free radicals, which in turn produce oxidative damage of the parasite's membrane. Artemisinin is hydrophobic in nature and is partitioned into the membrane of the plasmodium. The crystal structure of an ether dimer of deoxydihydroqinghaosu, a potential metabolite of the antimalarial arteether, has been reported (Flippen-Anderson et al., 1989). The correlation of the crystal structures of diastereomeric artemisinin derivatives with their proton NMR spectra in CDCl3 has been reported (Karle & Lin, 1995). The crystal structure of artemisinin has been reported (Lisgarten et al., 1998). The crystal structure of a dimer of α- and β-dihydroartemisinin (Yue et al., 2006) and that of 9,10-dehydro-deoxyartemisin has recently been reported (Li et al., 2006). The synthesis of artemisinin and its derivatives have been described (Lui et al., 1979; Liu, 1980; Robert et al., 2001). β-Arteether (AE) is an endo-peroxide sesquiterpene lactone derivative currently being developed for the treatment of severe, complicated malaria caused by multidrug-resistant Plasmodium falciparum (Grace et al., 1998). β-Artemether (AM), the O-methyl ether prodrug of dihydroartemisinin (DHA), is an endo-peroxide antimalarial (Maggs et al., 2000). In view of the importance of the title compound, C17H28O5 (I), β-arteether, as an antimalarial drug, this paper describes a new polymorphic form of the crystal structure first reported by El-Feraly et al. (1992), from data measured at 103 (2) K.
A substantial increase in the length of the unit cell c axis from 25.720 to 28.628 Å in the new structure along with a redetermination of the cell constants and the cell volume for (I) at room temperature (296 K) [a = 10.1557 (14), c = 28.714 (4) Å and V = 2564.8 (8) Å3] provides solid support for the recognition of this new polymorphic form for (I). The six-membered cyclohexane ring (C1–C6) is a slightly distorted chair, with Cremer & Pople (1975) puckering parameters Q, θ and ϕ of 0.563 (8) Å, 177.8 (2)° and 20.3 (1)°, respectively (Fig. 1). The tetrahydropyran group (C1/C2/C10–C12/O2) has also a slightly distorted chair conformation with puckering parameters Q, θ and ϕ of 0.518 (5) Å, 176.8 (9)° and 16.9 (6)°, respectively. For an ideal chair θ has a value of 0 or 180°. Similar conformations were found in 9,10-dehydrodeoxyartemisinin (Shu-Hui Li et al., 2006). The seven-membered ring (C1/C6–C9/O1–C10) contains the important peroxy linkage [O3—O4 = 1.4759 (13) Å]. The six-membered ring C (O1/O3/O4/C1/C9/C10) which contains both an oxygen bridge and a peroxy bridge is best described by a twist-boat conformation with puckering parameters Q, θ and ϕ of 0.749 (2) Å, 94.8 (5)° and 276.8 (8)°, respectively. For an ideal twist-boat conformation, θ and ϕ are 90° and (60n + 30)°, respectively. This conformation is consistent with 9,10-dehydrodeoxyartemisinin (Li et al., 2006), dihydroartemisinin (Qinghaosu Research Group, 1980; Jasinski et al., 2008) and artemether (Butcher et al., 2007)
Crystal packing is stabilized by intermolecular C—H···O interactions between hydrogen atoms from the cyclohexane ring (H5A and H7A) and an oxygen atom (O4) from the endo-peroxide bridge (Fig. 2).