organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o585-o586

A second polymorph of β-arteether

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 21 November 2007; accepted 24 November 2007; online 13 February 2008)

The crystal structure of the title compound, C17H28O5, reported here is a polymorph of the structure first reported by El-Feraly, Al-Yahya, Orabi, McPhail & McPhail [J. Nat. Prod. (1992). 55, 878–883]. It is a derivative of the anti­malaria compound artemisinin and consists primarily of three substituted ring systems fused together. A cyclo­hexane ring (distorted chair conformation) fused to a tetra­hydro­pyran group (distorted chair) is adjacent to an oxacyclo­heptane unit containing an endo-peroxide bridge, giving the mol­ecule its particular three-dimensional arrangement. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions between an O atom from the endo-peroxide bridge and H atoms from both the cyclo­hexane and seven-membered oxacyclo­heptane fused rings, as well as between an O atom and H atom from adjacent tetra­hydro­pyran rings. The two polymorphs have the same space group and similar cell parameters for the a and b axes, but significantly different values for the c axis.

Related literature

For the first polymorph of this compound, see: El-Feraly et al. (1992[El-Feraly, F. S., Al-Yahya, M. A., Orabi, K. Y., McPhail, D. R. & McPhail, A. T. (1992). J. Nat. Prod. 55, 878-883.]). For crystal structures of similar compounds, see: Brossi et al. (1988[Brossi, A., Venugopalan, B., Dominguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhousand, W. & Peters, W. (1988). J. Med. Chem. 31, 645-650.]); Flippen-Anderson et al. (1989[Flippen-Anderson, J. L., George, C., Gilardi, R., Yu, Q.-S., Dominguez, L. & Brossi, A. (1989). Acta Cryst. C45, 292-294.]); Karle & Lin (1995[Karle, J. M. & Lin, Ai. J. (1995). Acta Cryst. B51, 1063-1068.]); Li et al. (2006[Li, S.-H., Yue, Z.-Y., Gao, P. & Yan, P.-F. (2006). Acta Cryst. E62, o1898-o1900.]); Luo et al. (1984[Luo, X. D., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gillardi, R. (1984). Helv. Chim. Acta, 67, 1515-1522.]); Yue et al. (2006[Yue, Z.-Y., Li, S.-H., Gao, P., Zhang, J.-H. & Yan, P.-F. (2006). Acta Cryst. C62, o281-o282.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o3291-o3292.]); Jasinski et al. (2008[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008). Acta Cryst. E64, o89-o90.]). For biological activity of artemisinin derivatives in vitro and in vivo, see: Grace et al. (1998[Grace, J. M., Aguilar, A. J., Trotman, K. M. & Brewer, T. G. (1998). Drug Metab. Dispos. 26, 313-317.]); Li et al. (2001[Li, Y., Shan, F., Wu, J. M., Wu, G. S., Ding, J., Xiao, D., Yang, W. Y., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Bioorg. Med. Chem. Lett. 11, 5-8.]); Maggs et al. (2000[Maggs, J. L., Bishop, L. P. D., Edwards, G., O'Neill, P. M., Ward, S. A., Winstanley, P. A. & Park, K. (2000). Drug Metab. Dispos. 28, 209-217.]); Yang et al. (1997[Yang, X. P., Pan, Q. C., Liang, Y.-G. & Zikang, Y.-L. (1997). Cancer, 16, 186-187.]). For endo-peroxide sesquiterpene lactone derivatives, see: Saxena et al. (2003[Saxena, S., Pant, N., Jain, D. C. & Bhakuni, R. S. (2003). Curr. Sci. 85, 1314-1329.]); Venugopalan et al. (1995[Venugopalan, B., Karnik, P. J., Bapat, C. J., Chatterjee, D. K., Iyer, N. & Lepcha, D. (1995). Eur. J. Med. Chem. 30, 697-706.]); Wu et al. (2001[Wu, J. M., Shan, F., Wu, G. S., Ying, L., Ding, J., Xiao, D., Han, J.-X., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Eur. J. Med. Chem. 36, 469-479.]). For the synthesis of artemisinin and its derivatives, see: Lui et al. (1979[Lui, J.-M., Ni, M.-Y., Fan, Y.-E., Tu, Y.-Y., Wu, Z.-H., Wu, Y.-L. & Chou, W.-S. (1979). Acta Chim. Sinica, 37, 129-141.]); Liu (1980[Liu, X. (1980). Chin. Pharm. Bull. 15, 183-183.]); Robert et al. (2001[Robert, A., Benoit-Vical, F., Dechy-Cabaret, O. & Meunier, B. (2001). Pure Appl. Chem. 73, 1173-1188.]). For related literature, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Lisgarten et al. (1998[Lisgarten, J., Potter, B. S., Bantuzeko, C. & Palmer, A. (1998). J. Chem. Crystallogr. 28, 539-542.]); Qinghaosu Research Group (1980[Qinghaosu Research Group (1980). Sci. Sin. (Engl. Ed.), 23, 380-396.]); Shen & Zhuang (1984[Shen, C. C. & Zhuang, L. (1984). Med. Res. Rev. 4, 57-59.]); Wu & Li (1995[Wu, Y.-L. & Li, Y. (1995). Med. Chem. Res. 5, 569-586.]).

[Scheme 1]

Experimental

Crystal data
  • C17H28O5

  • Mr = 312.39

  • Trigonal, P 32 21

  • a = 10.0253 (6) Å

  • c = 28.628 (3) Å

  • V = 2491.8 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 103 (2) K

  • 0.42 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.984

  • 27842 measured reflections

  • 4935 independent reflections

  • 4517 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.04

  • 4935 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O4i 1.00 2.45 3.3150 (15) 144
C7—H7A⋯O4i 0.99 2.55 3.4704 (16) 155
Symmetry code: (i) y+1, x, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Artemisinin and its derivatives, dihydroartemisinin, artemether, arteether and artesunate, are antimalarial drugs which possess bioactivity with reduced toxicity (Wu & Li, 1995). Artemisinin is isolated from the leaves of the plant Artemisia annua (Qinghao). It is a sesquiterpene lactone with an endo-peroxide linkage. Artemisinin derivatives are more potent than artemisinin and are active by virtue of the endo-peroxide. Because of their activity against strains of the parasite that had become resistant to conventional chloroquine therapy and the ability, due to the lipophilic structure, to cross the blood brain barrier, it was particularly effective for the deadly cerebral malaria (Shen & Zhuang, 1984). Because of their shorter lifetime and decreasing activity, they are used in combination with other antimalarial drugs. The notable activity of artemesinin derivatives in vitro and in vivo has been reported in the literature (Li et al. 2001 & Yang et al. 1997). However, some derivatives of artimisinine showed moderate cytotoxicity in vitro. The electronegativity and bulk of the substituents that are attached to the aryl group play an insignificant role in cytotoxicity. The antimalarial activity and cytotoxicity of some sesquiterpenoids has been reported in the literature (Venugopalan et al., 1995; Wu et al., 2001; Saxena et al., 2003). The endo-peroxide group present in these compounds plays an important role in antimalarial activity. Its 1,2,4-trioxane ring is unique in nature. After being opened in the plasmodium it liberates singlet oxygen and forms free radicals, which in turn produce oxidative damage of the parasite's membrane. Artemisinin is hydrophobic in nature and is partitioned into the membrane of the plasmodium. The crystal structure of an ether dimer of deoxydihydroqinghaosu, a potential metabolite of the antimalarial arteether, has been reported (Flippen-Anderson et al., 1989). The correlation of the crystal structures of diastereomeric artemisinin derivatives with their proton NMR spectra in CDCl3 has been reported (Karle & Lin, 1995). The crystal structure of artemisinin has been reported (Lisgarten et al., 1998). The crystal structure of a dimer of α- and β-dihydroartemisinin (Yue et al., 2006) and that of 9,10-dehydro-deoxyartemisin has recently been reported (Li et al., 2006). The synthesis of artemisinin and its derivatives have been described (Lui et al., 1979; Liu, 1980; Robert et al., 2001). β-Arteether (AE) is an endo-peroxide sesquiterpene lactone derivative currently being developed for the treatment of severe, complicated malaria caused by multidrug-resistant Plasmodium falciparum (Grace et al., 1998). β-Artemether (AM), the O-methyl ether prodrug of dihydroartemisinin (DHA), is an endo-peroxide antimalarial (Maggs et al., 2000). In view of the importance of the title compound, C17H28O5 (I), β-arteether, as an antimalarial drug, this paper describes a new polymorphic form of the crystal structure first reported by El-Feraly et al. (1992), from data measured at 103 (2) K.

A substantial increase in the length of the unit cell c axis from 25.720 to 28.628 Å in the new structure along with a redetermination of the cell constants and the cell volume for (I) at room temperature (296 K) [a = 10.1557 (14), c = 28.714 (4) Å and V = 2564.8 (8) Å3] provides solid support for the recognition of this new polymorphic form for (I). The six-membered cyclohexane ring (C1–C6) is a slightly distorted chair, with Cremer & Pople (1975) puckering parameters Q, θ and ϕ of 0.563 (8) Å, 177.8 (2)° and 20.3 (1)°, respectively (Fig. 1). The tetrahydropyran group (C1/C2/C10–C12/O2) has also a slightly distorted chair conformation with puckering parameters Q, θ and ϕ of 0.518 (5) Å, 176.8 (9)° and 16.9 (6)°, respectively. For an ideal chair θ has a value of 0 or 180°. Similar conformations were found in 9,10-dehydrodeoxyartemisinin (Shu-Hui Li et al., 2006). The seven-membered ring (C1/C6–C9/O1–C10) contains the important peroxy linkage [O3—O4 = 1.4759 (13) Å]. The six-membered ring C (O1/O3/O4/C1/C9/C10) which contains both an oxygen bridge and a peroxy bridge is best described by a twist-boat conformation with puckering parameters Q, θ and ϕ of 0.749 (2) Å, 94.8 (5)° and 276.8 (8)°, respectively. For an ideal twist-boat conformation, θ and ϕ are 90° and (60n + 30)°, respectively. This conformation is consistent with 9,10-dehydrodeoxyartemisinin (Li et al., 2006), dihydroartemisinin (Qinghaosu Research Group, 1980; Jasinski et al., 2008) and artemether (Butcher et al., 2007)

Crystal packing is stabilized by intermolecular C—H···O interactions between hydrogen atoms from the cyclohexane ring (H5A and H7A) and an oxygen atom (O4) from the endo-peroxide bridge (Fig. 2).

Related literature top

For the first polymorph of this compound, see: El-Feraly et al. (1992). For crystal structures of similar compounds, see: Brossi et al. (1988); Flippen-Anderson et al. (1989); Karle & Lin (1995); Li et al. (2006); Luo et al. (1984); Yue et al. (2006); Butcher et al. (2007); Jasinski et al. (2008). For biological activity of artemisinin derivatives in vitro and in vivo, see: Grace et al. (1998); Li et al. (2001); Maggs et al. (2000); Yang et al. (1997). For endo-peroxide sesquiterpene lactone derivatives, see: Saxena et al. (2003); Venugopalan et al. (1995); Wu et al. (2001). For the synthesis of artemisinin and its derivatives, see: Lui et al. (1979); Liu (1980); Robert et al. (2001). For related literature, see: Cremer & Pople (1975); Lisgarten et al. (1998); Qinghaosu Research Group (1980); Shen & Zhuang (1984); Wu & Li (1995).

Experimental top

The title compound (C17H28O5) was obtained in the pure form from Strides Arco Labs, Mangalore, India. X-ray diffraction quality crystals were grown from acetone [m.p.: 353 K]).

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.90–1.00 Å and Uiso(H) = 1.17–1.22Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for (I) viewed down the c axis. Dashed lines indicate C–H···O intermolecular hydrogen bonds.
β-Arteether top
Crystal data top
C17H28O5Dx = 1.249 Mg m3
Mr = 312.39Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3221Cell parameters from 5075 reflections
Hall symbol: P 32 2"θ = 2.4–30.0°
a = 10.0253 (6) ŵ = 0.09 mm1
c = 28.628 (3) ÅT = 103 K
V = 2491.8 (3) Å3Chunk, colourless
Z = 60.42 × 0.22 × 0.18 mm
F(000) = 1020
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4935 independent reflections
Radiation source: fine-focus sealed tube4517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 30.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1114
Tmin = 0.963, Tmax = 0.984k = 1414
27842 measured reflectionsl = 3939
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.4841P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.005
4935 reflectionsΔρmax = 0.38 e Å3
203 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 2049 Friedel pairs
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H28O5Z = 6
Mr = 312.39Mo Kα radiation
Trigonal, P3221µ = 0.09 mm1
a = 10.0253 (6) ÅT = 103 K
c = 28.628 (3) Å0.42 × 0.22 × 0.18 mm
V = 2491.8 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4935 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4517 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.984Rint = 0.034
27842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
4935 reflectionsΔρmin = 0.17 e Å3
203 parametersAbsolute structure: Flack (1983), 2049 Friedel pairs
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71973 (10)0.35233 (10)0.03898 (3)0.01837 (18)
O20.57224 (11)0.39122 (11)0.01212 (3)0.01993 (19)
O30.47049 (10)0.15908 (12)0.05520 (3)0.0219 (2)
O40.45576 (11)0.06611 (11)0.01350 (3)0.02042 (19)
O50.60247 (12)0.45429 (11)0.09195 (3)0.02137 (19)
C10.58206 (14)0.15089 (14)0.01942 (4)0.0169 (2)
C20.50124 (14)0.12064 (15)0.06716 (4)0.0182 (2)
H2A0.42660.00750.06860.022*
C30.61370 (16)0.15728 (16)0.10811 (4)0.0222 (3)
H3A0.68480.26990.10970.027*
H3B0.55500.12460.13770.027*
C40.70709 (16)0.07586 (16)0.10279 (4)0.0232 (3)
H4A0.77880.10280.12950.028*
H4B0.63670.03700.10310.028*
C50.79822 (16)0.12223 (15)0.05735 (4)0.0213 (2)
H5A0.86580.23680.05740.026*
C60.68604 (15)0.07809 (14)0.01577 (4)0.0185 (2)
H6A0.61630.03600.01740.022*
C70.77196 (15)0.11190 (16)0.03110 (4)0.0221 (3)
H7A0.86770.21290.02870.027*
H7B0.80240.03300.03610.027*
C80.68289 (16)0.11487 (16)0.07417 (4)0.0235 (3)
H8A0.59350.01040.07910.028*
H8B0.75050.14080.10190.028*
C90.62470 (15)0.23007 (15)0.07075 (4)0.0204 (2)
C100.66650 (14)0.32307 (14)0.00757 (4)0.0162 (2)
H10A0.75690.37760.02900.019*
C110.49721 (16)0.37047 (16)0.05576 (4)0.0204 (3)
H11A0.42390.41020.05270.024*
C120.40444 (15)0.20099 (16)0.06911 (4)0.0204 (2)
H12A0.32320.15060.04460.024*
C130.90173 (19)0.05086 (19)0.05316 (6)0.0329 (3)
H13A0.95840.06640.08240.049*
H13B0.97480.10020.02750.049*
H13C0.83820.05970.04690.049*
C140.62461 (17)0.30416 (18)0.11675 (4)0.0270 (3)
H14A0.56510.35700.11350.040*
H14B0.57790.22470.14090.040*
H14C0.73080.37880.12560.040*
C150.68313 (17)0.61729 (15)0.08415 (5)0.0241 (3)
H15A0.61020.65130.07430.029*
H15B0.76120.64460.05930.029*
C160.7603 (2)0.69468 (18)0.12949 (5)0.0367 (4)
H16A0.82160.80630.12470.055*
H16B0.82770.65570.13980.055*
H16C0.68170.67220.15330.055*
C170.31881 (17)0.17746 (18)0.11531 (5)0.0279 (3)
H17A0.25120.22160.11300.042*
H17B0.39350.22860.14050.042*
H17C0.25690.06700.12200.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0161 (4)0.0163 (4)0.0141 (4)0.0017 (3)0.0008 (3)0.0006 (3)
O20.0224 (5)0.0212 (4)0.0165 (4)0.0111 (4)0.0022 (3)0.0025 (3)
O30.0158 (4)0.0247 (5)0.0149 (4)0.0025 (4)0.0014 (3)0.0020 (3)
O40.0157 (4)0.0187 (4)0.0149 (4)0.0004 (3)0.0015 (3)0.0003 (3)
O50.0256 (5)0.0165 (4)0.0181 (4)0.0076 (4)0.0010 (4)0.0004 (3)
C10.0143 (5)0.0152 (5)0.0134 (5)0.0015 (4)0.0007 (4)0.0012 (4)
C20.0159 (5)0.0161 (5)0.0150 (5)0.0024 (5)0.0003 (4)0.0006 (4)
C30.0255 (6)0.0191 (6)0.0163 (5)0.0068 (5)0.0032 (5)0.0007 (4)
C40.0220 (6)0.0184 (6)0.0217 (6)0.0046 (5)0.0041 (5)0.0046 (5)
C50.0181 (6)0.0150 (5)0.0260 (6)0.0045 (5)0.0020 (5)0.0039 (5)
C60.0168 (6)0.0124 (5)0.0208 (5)0.0031 (4)0.0015 (4)0.0007 (4)
C70.0187 (6)0.0177 (6)0.0246 (6)0.0052 (5)0.0040 (5)0.0009 (5)
C80.0209 (6)0.0209 (6)0.0200 (6)0.0040 (5)0.0019 (5)0.0044 (5)
C90.0167 (6)0.0201 (6)0.0145 (5)0.0019 (5)0.0004 (4)0.0014 (4)
C100.0158 (5)0.0142 (5)0.0142 (5)0.0041 (4)0.0009 (4)0.0001 (4)
C110.0202 (6)0.0210 (6)0.0171 (5)0.0083 (5)0.0007 (4)0.0009 (4)
C120.0175 (5)0.0218 (6)0.0164 (5)0.0058 (5)0.0007 (4)0.0004 (5)
C130.0279 (8)0.0321 (8)0.0408 (8)0.0166 (7)0.0010 (6)0.0085 (6)
C140.0254 (7)0.0309 (7)0.0147 (5)0.0066 (6)0.0010 (5)0.0006 (5)
C150.0282 (7)0.0160 (6)0.0243 (6)0.0082 (5)0.0009 (5)0.0022 (5)
C160.0504 (10)0.0186 (7)0.0300 (7)0.0090 (7)0.0053 (7)0.0018 (6)
C170.0240 (7)0.0294 (7)0.0229 (6)0.0079 (6)0.0055 (5)0.0007 (5)
Geometric parameters (Å, º) top
O1—C101.4105 (14)C7—H7A0.990
O1—C91.4386 (15)C7—H7B0.990
O2—C111.4192 (15)C8—C91.536 (2)
O2—C101.4221 (15)C8—H8A0.990
O3—C91.4122 (16)C8—H8B0.990
O3—O41.4759 (13)C9—C141.5122 (17)
O4—C11.4619 (14)C10—H10A1.000
O5—C111.4163 (15)C11—C121.5224 (18)
O5—C151.4327 (16)C11—H11A1.000
C1—C101.5330 (16)C12—C171.5295 (17)
C1—C21.5399 (16)C12—H12A1.000
C1—C61.5462 (18)C13—H13A0.980
C2—C31.5382 (17)C13—H13B0.980
C2—C121.5412 (19)C13—H13C0.980
C2—H2A1.000C14—H14A0.980
C3—C41.526 (2)C14—H14B0.980
C3—H3A0.990C14—H14C0.980
C3—H3B0.990C15—C161.512 (2)
C4—C51.5225 (18)C15—H15A0.990
C4—H4A0.990C15—H15B0.990
C4—H4B0.990C16—H16A0.980
C5—C131.532 (2)C16—H16B0.980
C5—C61.5427 (18)C16—H16C0.980
C5—H5A1.000C17—H17A0.980
C6—C71.5380 (17)C17—H17B0.980
C6—H6A1.000C17—H17C0.980
C7—C81.5315 (19)
C10—O1—C9113.55 (9)O3—C9—C14104.63 (11)
C11—O2—C10116.17 (9)O1—C9—C14107.15 (11)
C9—O3—O4108.17 (9)O3—C9—C8111.90 (11)
C1—O4—O3111.72 (8)O1—C9—C8110.02 (10)
C11—O5—C15113.02 (10)C14—C9—C8114.05 (11)
O4—C1—C10110.01 (10)O1—C10—O2105.06 (9)
O4—C1—C2103.89 (9)O1—C10—C1112.44 (9)
C10—C1—C2110.98 (10)O2—C10—C1113.28 (10)
O4—C1—C6105.93 (9)O1—C10—H10A108.6
C10—C1—C6113.17 (10)O2—C10—H10A108.6
C2—C1—C6112.30 (10)C1—C10—H10A108.6
C3—C2—C1112.25 (10)O5—C11—O2111.96 (11)
C3—C2—C12115.18 (10)O5—C11—C12109.68 (10)
C1—C2—C12109.64 (10)O2—C11—C12111.59 (11)
C3—C2—H2A106.4O5—C11—H11A107.8
C1—C2—H2A106.4O2—C11—H11A107.8
C12—C2—H2A106.4C12—C11—H11A107.8
C4—C3—C2111.63 (11)C11—C12—C17111.82 (12)
C4—C3—H3A109.3C11—C12—C2112.41 (10)
C2—C3—H3A109.3C17—C12—C2113.72 (11)
C4—C3—H3B109.3C11—C12—H12A106.1
C2—C3—H3B109.3C17—C12—H12A106.1
H3A—C3—H3B108.0C2—C12—H12A106.1
C5—C4—C3110.91 (11)C5—C13—H13A109.5
C5—C4—H4A109.5C5—C13—H13B109.5
C3—C4—H4A109.5H13A—C13—H13B109.5
C5—C4—H4B109.5C5—C13—H13C109.5
C3—C4—H4B109.5H13A—C13—H13C109.5
H4A—C4—H4B108.0H13B—C13—H13C109.5
C4—C5—C13111.57 (11)C9—C14—H14A109.5
C4—C5—C6109.36 (11)C9—C14—H14B109.5
C13—C5—C6111.87 (12)H14A—C14—H14B109.5
C4—C5—H5A108.0C9—C14—H14C109.5
C13—C5—H5A108.0H14A—C14—H14C109.5
C6—C5—H5A108.0H14B—C14—H14C109.5
C7—C6—C5111.24 (11)O5—C15—C16107.69 (11)
C7—C6—C1112.97 (10)O5—C15—H15A110.2
C5—C6—C1112.30 (10)C16—C15—H15A110.2
C7—C6—H6A106.6O5—C15—H15B110.2
C5—C6—H6A106.6C16—C15—H15B110.2
C1—C6—H6A106.6H15A—C15—H15B108.5
C8—C7—C6116.04 (11)C15—C16—H16A109.5
C8—C7—H7A108.3C15—C16—H16B109.5
C6—C7—H7A108.3H16A—C16—H16B109.5
C8—C7—H7B108.3C15—C16—H16C109.5
C6—C7—H7B108.3H16A—C16—H16C109.5
H7A—C7—H7B107.4H16B—C16—H16C109.5
C7—C8—C9114.06 (11)C12—C17—H17A109.5
C7—C8—H8A108.7C12—C17—H17B109.5
C9—C8—H8A108.7H17A—C17—H17B109.5
C7—C8—H8B108.7C12—C17—H17C109.5
C9—C8—H8B108.7H17A—C17—H17C109.5
H8A—C8—H8B107.6H17B—C17—H17C109.5
O3—C9—O1108.78 (10)
C9—O3—O4—C145.64 (12)O4—O3—C9—C848.52 (12)
O3—O4—C1—C1015.48 (13)C10—O1—C9—O331.99 (14)
O3—O4—C1—C2134.33 (10)C10—O1—C9—C14144.59 (11)
O3—O4—C1—C6107.17 (10)C10—O1—C9—C890.91 (12)
O4—C1—C2—C3162.62 (10)C7—C8—C9—O395.86 (13)
C10—C1—C2—C379.19 (13)C7—C8—C9—O125.20 (14)
C6—C1—C2—C348.60 (14)C7—C8—C9—C14145.62 (12)
O4—C1—C2—C1268.02 (12)C9—O1—C10—O293.06 (11)
C10—C1—C2—C1250.16 (12)C9—O1—C10—C130.57 (14)
C6—C1—C2—C12177.96 (10)C11—O2—C10—O1176.80 (9)
C1—C2—C3—C452.31 (14)C11—O2—C10—C153.70 (13)
C12—C2—C3—C4178.73 (10)O4—C1—C10—O155.59 (13)
C2—C3—C4—C558.53 (14)C2—C1—C10—O1170.00 (10)
C3—C4—C5—C13175.80 (11)C6—C1—C10—O162.68 (12)
C3—C4—C5—C659.90 (14)O4—C1—C10—O263.33 (12)
C4—C5—C6—C7175.83 (11)C2—C1—C10—O251.08 (12)
C13—C5—C6—C751.70 (14)C6—C1—C10—O2178.40 (9)
C4—C5—C6—C156.44 (13)C15—O5—C11—O261.59 (14)
C13—C5—C6—C1179.43 (10)C15—O5—C11—C12173.97 (11)
O4—C1—C6—C769.20 (12)C10—O2—C11—O569.63 (13)
C10—C1—C6—C751.41 (13)C10—O2—C11—C1253.74 (14)
C2—C1—C6—C7178.04 (10)O5—C11—C12—C1757.32 (15)
O4—C1—C6—C5163.99 (9)O2—C11—C12—C17178.03 (11)
C10—C1—C6—C575.39 (12)O5—C11—C12—C272.01 (13)
C2—C1—C6—C551.23 (13)O2—C11—C12—C252.64 (14)
C5—C6—C7—C8164.04 (11)C3—C2—C12—C1175.94 (13)
C1—C6—C7—C836.68 (15)C1—C2—C12—C1151.80 (13)
C6—C7—C8—C956.69 (15)C3—C2—C12—C1752.41 (15)
O4—O3—C9—O173.25 (12)C1—C2—C12—C17179.85 (10)
O4—O3—C9—C14172.50 (10)C11—O5—C15—C16166.33 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i1.002.453.3150 (15)144
C7—H7A···O4i0.992.553.4704 (16)155
Symmetry code: (i) y+1, x, z.

Experimental details

Crystal data
Chemical formulaC17H28O5
Mr312.39
Crystal system, space groupTrigonal, P3221
Temperature (K)103
a, c (Å)10.0253 (6), 28.628 (3)
V3)2491.8 (3)
Z6
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
27842, 4935, 4517
Rint0.034
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.05
No. of reflections4935
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.17
Absolute structureFlack (1983), 2049 Friedel pairs

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i1.002.453.3150 (15)144
C7—H7A···O4i0.992.553.4704 (16)155
Symmetry code: (i) y+1, x, z.
 

Acknowledgements

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington DC, USA, for access to their diffractometers. BN thanks Strides Arco Labs, Mangalore, India, for a gift sample of the title compound.

References

First citationBrossi, A., Venugopalan, B., Dominguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhousand, W. & Peters, W. (1988). J. Med. Chem. 31, 645–650.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o3291–o3292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Feraly, F. S., Al-Yahya, M. A., Orabi, K. Y., McPhail, D. R. & McPhail, A. T. (1992). J. Nat. Prod. 55, 878–883.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlippen-Anderson, J. L., George, C., Gilardi, R., Yu, Q.-S., Dominguez, L. & Brossi, A. (1989). Acta Cryst. C45, 292–294.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrace, J. M., Aguilar, A. J., Trotman, K. M. & Brewer, T. G. (1998). Drug Metab. Dispos. 26, 313–317.  Web of Science CAS PubMed Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008). Acta Cryst. E64, o89–o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarle, J. M. & Lin, Ai. J. (1995). Acta Cryst. B51, 1063–1068.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Y., Shan, F., Wu, J. M., Wu, G. S., Ding, J., Xiao, D., Yang, W. Y., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Bioorg. Med. Chem. Lett. 11, 5–8.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLi, S.-H., Yue, Z.-Y., Gao, P. & Yan, P.-F. (2006). Acta Cryst. E62, o1898–o1900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLisgarten, J., Potter, B. S., Bantuzeko, C. & Palmer, A. (1998). J. Chem. Crystallogr. 28, 539–542.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X. (1980). Chin. Pharm. Bull. 15, 183–183.  Google Scholar
First citationLui, J.-M., Ni, M.-Y., Fan, Y.-E., Tu, Y.-Y., Wu, Z.-H., Wu, Y.-L. & Chou, W.-S. (1979). Acta Chim. Sinica, 37, 129–141.  Google Scholar
First citationLuo, X. D., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gillardi, R. (1984). Helv. Chim. Acta, 67, 1515–1522.  CSD CrossRef CAS Web of Science Google Scholar
First citationMaggs, J. L., Bishop, L. P. D., Edwards, G., O'Neill, P. M., Ward, S. A., Winstanley, P. A. & Park, K. (2000). Drug Metab. Dispos. 28, 209–217.  Web of Science PubMed CAS Google Scholar
First citationQinghaosu Research Group (1980). Sci. Sin. (Engl. Ed.), 23, 380–396.  Google Scholar
First citationRobert, A., Benoit-Vical, F., Dechy-Cabaret, O. & Meunier, B. (2001). Pure Appl. Chem. 73, 1173–1188.  Web of Science CrossRef CAS Google Scholar
First citationSaxena, S., Pant, N., Jain, D. C. & Bhakuni, R. S. (2003). Curr. Sci. 85, 1314–1329.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, C. C. & Zhuang, L. (1984). Med. Res. Rev. 4, 57–59.  CrossRef Web of Science Google Scholar
First citationVenugopalan, B., Karnik, P. J., Bapat, C. J., Chatterjee, D. K., Iyer, N. & Lepcha, D. (1995). Eur. J. Med. Chem. 30, 697–706.  CrossRef CAS Web of Science Google Scholar
First citationWu, Y.-L. & Li, Y. (1995). Med. Chem. Res. 5, 569–586.  CAS Google Scholar
First citationWu, J. M., Shan, F., Wu, G. S., Ying, L., Ding, J., Xiao, D., Han, J.-X., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Eur. J. Med. Chem. 36, 469–479.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, X. P., Pan, Q. C., Liang, Y.-G. & Zikang, Y.-L. (1997). Cancer, 16, 186–187.  Google Scholar
First citationYue, Z.-Y., Li, S.-H., Gao, P., Zhang, J.-H. & Yan, P.-F. (2006). Acta Cryst. C62, o281–o282.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o585-o586
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds