organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-1-(penta­noyl)pyrimidine-2,4(1H,3H)-dione

aDepartment of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 11 February 2008; accepted 13 February 2008; online 22 February 2008)

The penta­noyl group and the 5-fluoro­uracil moiety of the title compound, C9H11FN2O3, are essentially coplanar, with the penta­noyl carbonyl group oriented towards the ring CH group and away from the nearer ring carbonyl group. In the crystal structure, two inversion-related mol­ecules form a dimer structure, in which two N—H⋯O hydrogen bonds generate an inter­molecular R22(8) ring. In addition, there are intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For similar 5-fluoro­pyrimidine-2,4(1H,3H)-dione structures with N1-acyl substituents, see: Beall et al. (1997[Beall, H. D., Prankerd, R. J. & Sloan, K. B. (1997). Drug Dev. Ind. Pharm. 23, 517-525.]); Jiang et al. (1988[Jiang, A., Hu, S., Wang, Y. & Chen, Q. (1988). Gaodeng Xuexiao Huaxue Xuebao, 9, 307-309.]); Lehmler & Parkin (2000[Lehmler, H.-J. & Parkin, S. (2000). Acta Cryst. C56, e518-e519.]). For related literature, see: Roberts & Sloan (1999[Roberts, W. J. & Sloan, K. B. (1999). J. Pharm. Sci. 88, 515-522.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11FN2O3

  • Mr = 214.20

  • Triclinic, [P \overline 1]

  • a = 5.3165 (2) Å

  • b = 9.3986 (4) Å

  • c = 10.1895 (5) Å

  • α = 96.000 (3)°

  • β = 100.957 (3)°

  • γ = 105.539 (3)°

  • V = 475.04 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 87.8 (2) K

  • 0.30 × 0.30 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.963, Tmax = 0.996

  • 12409 measured reflections

  • 2167 independent reflections

  • 1727 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.092

  • S = 1.02

  • 2167 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4i 0.88 1.99 2.8588 (16) 170
C6—H6⋯O7 0.95 2.28 2.6102 (17) 100
C6—H6⋯O7ii 0.95 2.34 3.2266 (19) 154
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Despite the potential pharmaceutical application of acyl-5-fluorouracil prodrugs, the crystal structures of only three acyl derivatives have been reported (Beall et al., 1997; Jiang et al., 1988; Lehmler & Parkin, 2000). We herein describe the crystal structures of another acyl-5-fluorouracil prodrug, 5-fluoro-1-(1-oxopentyl)-2,4(1H,3H)-pyrimidinedione.

The molecular structures of the title compound and the other 1-acyl-5-fluorouracil derivatives are very similar. Specifically, the 1-acyl group and the 5-fluorouracil moiety are almost coplanar, with the C7?O7 carbonyl group oriented towards the C6—H group and away from the C2?O2 group in all four crystal structures. The C6—N1—C7—O7 dihedral angle of all 1-acyl-5-fluorouracil derivatives is comparable and ranges from 1.6 to 17.3° (Beall et al., 1997; Jiang et al., 1988; Lehmler & Parkin, 2000). In the crystal structure, two inversion-related molecules form a dimer structure, in which two N—H···O hydrogen bonds generate an intermolecular R22(8) ring. In addition, there are C—H···O type-intra and intermolecular interactions.

Related literature top

For similar 5-fluoropyrimidine-2,4(1H,3H)-dione structures with N1-acyl substituents, see: Beall et al. (1997); Jiang et al. (1988); Lehmler & Parkin (2000). For related literature, see: Roberts & Sloan (1999).

Experimental top

5-Fluoro-1-(1-oxopentyl)-2,4(1H,3H)-pyrimidinedione was synthesized by acylation of 5-fluorouracil with pentanoyl chloride and recrystallized from diethylether at 253 K (Beall et al., 1997; Lehmler & Parkin, 2000; Roberts & Sloan, 1999).

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 0.95 Å (CArH) and 0.88 Å (NH) with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
5-Fluoro-1-(pentanoyl)pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C9H11FN2O3Z = 2
Mr = 214.20F(000) = 224
Triclinic, P1Dx = 1.497 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3165 (2) ÅCell parameters from 6994 reflections
b = 9.3986 (4) Åθ = 1.0–27.5°
c = 10.1895 (5) ŵ = 0.13 mm1
α = 96.000 (3)°T = 88 K
β = 100.957 (3)°Irregular plate, colourless
γ = 105.539 (3)°0.30 × 0.30 × 0.03 mm
V = 475.04 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
2167 independent reflections
Radiation source: fine-focus sealed tube1727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scans at fixed χ = 55°h = 66
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.963, Tmax = 0.996l = 1313
12409 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.2309P]
where P = (Fo2 + 2Fc2)/3
2167 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C9H11FN2O3γ = 105.539 (3)°
Mr = 214.20V = 475.04 (4) Å3
Triclinic, P1Z = 2
a = 5.3165 (2) ÅMo Kα radiation
b = 9.3986 (4) ŵ = 0.13 mm1
c = 10.1895 (5) ÅT = 88 K
α = 96.000 (3)°0.30 × 0.30 × 0.03 mm
β = 100.957 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2167 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1727 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.996Rint = 0.037
12409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2167 reflectionsΔρmin = 0.24 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4196 (2)0.37039 (13)0.62262 (12)0.0131 (3)
O20.7435 (2)0.24634 (12)0.65488 (10)0.0208 (3)
C20.6455 (3)0.33911 (17)0.69638 (15)0.0146 (3)
N30.7532 (2)0.42493 (13)0.82378 (12)0.0149 (3)
H30.89130.40490.87230.018*
O40.7890 (2)0.60838 (12)0.99779 (10)0.0176 (3)
C40.6725 (3)0.53737 (16)0.88432 (15)0.0148 (3)
F50.34305 (17)0.66618 (10)0.85412 (8)0.0198 (2)
C50.4391 (3)0.56025 (16)0.80080 (15)0.0142 (3)
C60.3224 (3)0.48168 (16)0.67833 (14)0.0135 (3)
H60.16980.50130.62730.016*
O70.1183 (2)0.35259 (12)0.42664 (10)0.0189 (3)
C70.2850 (3)0.30070 (16)0.48388 (15)0.0139 (3)
C80.3615 (3)0.17280 (17)0.41877 (15)0.0162 (3)
H8A0.34940.09490.47750.019*
H8B0.55000.20880.41080.019*
C90.1823 (3)0.10375 (17)0.27854 (15)0.0170 (3)
H9A0.16440.18530.22670.020*
H9B0.27100.04180.23020.020*
C100.0962 (3)0.00735 (17)0.28048 (16)0.0192 (4)
H10A0.18280.06680.33300.023*
H10B0.08090.07880.32620.023*
C110.2706 (3)0.0500 (2)0.13778 (17)0.0266 (4)
H11A0.28900.03510.09290.040*
H11B0.44820.11170.14270.040*
H11C0.18680.11030.08600.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0116 (6)0.0140 (6)0.0139 (6)0.0054 (5)0.0013 (5)0.0013 (5)
O20.0197 (6)0.0233 (6)0.0206 (6)0.0133 (5)0.0006 (5)0.0007 (5)
C20.0119 (7)0.0156 (8)0.0167 (8)0.0044 (6)0.0029 (6)0.0047 (6)
N30.0117 (6)0.0165 (7)0.0155 (7)0.0060 (5)0.0016 (5)0.0023 (5)
O40.0164 (6)0.0196 (6)0.0153 (6)0.0061 (5)0.0002 (4)0.0007 (5)
C40.0141 (8)0.0139 (8)0.0170 (8)0.0031 (6)0.0050 (6)0.0047 (6)
F50.0199 (5)0.0208 (5)0.0193 (5)0.0116 (4)0.0009 (4)0.0027 (4)
C50.0142 (7)0.0139 (8)0.0170 (8)0.0069 (6)0.0049 (6)0.0033 (6)
C60.0106 (7)0.0152 (8)0.0166 (8)0.0062 (6)0.0037 (6)0.0043 (6)
O70.0197 (6)0.0210 (6)0.0163 (6)0.0108 (5)0.0009 (5)0.0011 (5)
C70.0115 (7)0.0153 (8)0.0149 (7)0.0030 (6)0.0035 (6)0.0036 (6)
C80.0159 (8)0.0166 (8)0.0172 (8)0.0066 (6)0.0035 (6)0.0037 (6)
C90.0175 (8)0.0176 (8)0.0156 (8)0.0064 (7)0.0026 (6)0.0006 (6)
C100.0189 (8)0.0175 (8)0.0219 (8)0.0066 (7)0.0051 (7)0.0029 (7)
C110.0242 (9)0.0236 (9)0.0270 (9)0.0045 (7)0.0013 (7)0.0024 (7)
Geometric parameters (Å, º) top
N1—C61.3999 (18)C7—C81.499 (2)
N1—C21.4093 (19)C8—C91.526 (2)
N1—C71.4526 (18)C8—H8A0.9900
O2—C21.2084 (17)C8—H8B0.9900
C2—N31.3837 (18)C9—C101.520 (2)
N3—C41.3743 (19)C9—H9A0.9900
N3—H30.8800C9—H9B0.9900
O4—C41.2291 (17)C10—C111.523 (2)
C4—C51.446 (2)C10—H10A0.9900
F5—C51.3462 (16)C10—H10B0.9900
C5—C61.325 (2)C11—H11A0.9800
C6—H60.9500C11—H11B0.9800
O7—C71.2077 (17)C11—H11C0.9800
C6—N1—C2120.42 (12)C9—C8—H8A109.1
C6—N1—C7115.53 (12)C7—C8—H8B109.1
C2—N1—C7123.89 (12)C9—C8—H8B109.1
O2—C2—N3121.00 (13)H8A—C8—H8B107.9
O2—C2—N1124.45 (13)C10—C9—C8114.16 (12)
N3—C2—N1114.55 (13)C10—C9—H9A108.7
C4—N3—C2128.41 (13)C8—C9—H9A108.7
C4—N3—H3115.8C10—C9—H9B108.7
C2—N3—H3115.8C8—C9—H9B108.7
O4—C4—N3122.41 (13)H9A—C9—H9B107.6
O4—C4—C5124.89 (14)C9—C10—C11111.57 (13)
N3—C4—C5112.70 (13)C9—C10—H10A109.3
C6—C5—F5120.95 (13)C11—C10—H10A109.3
C6—C5—C4122.57 (14)C9—C10—H10B109.3
F5—C5—C4116.48 (13)C11—C10—H10B109.3
C5—C6—N1121.32 (13)H10A—C10—H10B108.0
C5—C6—H6119.3C10—C11—H11A109.5
N1—C6—H6119.3C10—C11—H11B109.5
O7—C7—N1116.83 (13)H11A—C11—H11B109.5
O7—C7—C8123.69 (13)C10—C11—H11C109.5
N1—C7—C8119.47 (12)H11A—C11—H11C109.5
C7—C8—C9112.37 (12)H11B—C11—H11C109.5
C7—C8—H8A109.1
C6—N1—C2—O2179.04 (14)F5—C5—C6—N1179.41 (12)
C7—N1—C2—O23.7 (2)C4—C5—C6—N10.2 (2)
C6—N1—C2—N30.63 (19)C2—N1—C6—C50.1 (2)
C7—N1—C2—N3175.95 (12)C7—N1—C6—C5175.62 (13)
O2—C2—N3—C4177.79 (14)C6—N1—C7—O75.59 (19)
N1—C2—N3—C41.9 (2)C2—N1—C7—O7169.94 (13)
C2—N3—C4—O4178.30 (14)C6—N1—C7—C8175.64 (12)
C2—N3—C4—C52.1 (2)C2—N1—C7—C88.8 (2)
O4—C4—C5—C6179.25 (14)O7—C7—C8—C96.9 (2)
N3—C4—C5—C61.2 (2)N1—C7—C8—C9174.46 (12)
O4—C4—C5—F51.1 (2)C7—C8—C9—C1074.69 (17)
N3—C4—C5—F5178.46 (12)C8—C9—C10—C11176.35 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.992.8588 (16)170
C6—H6···O70.952.282.6102 (17)100
C6—H6···O7ii0.952.343.2266 (19)154
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H11FN2O3
Mr214.20
Crystal system, space groupTriclinic, P1
Temperature (K)88
a, b, c (Å)5.3165 (2), 9.3986 (4), 10.1895 (5)
α, β, γ (°)96.000 (3), 100.957 (3), 105.539 (3)
V3)475.04 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.30 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.963, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12409, 2167, 1727
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.092, 1.02
No. of reflections2167
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.992.8588 (16)170
C6—H6···O70.952.282.6102 (17)100
C6—H6···O7ii0.952.343.2266 (19)154
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z+1.
 

References

First citationBeall, H. D., Prankerd, R. J. & Sloan, K. B. (1997). Drug Dev. Ind. Pharm. 23, 517–525.  CrossRef CAS Google Scholar
First citationJiang, A., Hu, S., Wang, Y. & Chen, Q. (1988). Gaodeng Xuexiao Huaxue Xuebao, 9, 307–309.  CAS Google Scholar
First citationLehmler, H.-J. & Parkin, S. (2000). Acta Cryst. C56, e518–e519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoberts, W. J. & Sloan, K. B. (1999). J. Pharm. Sci. 88, 515–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds