metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-(1,2-Di­phenyl­ethane-1,2-di­yl)bis­­(pyridine-2-carboxamidato)]nickel(II) di­ethyl ether hemisolvate

aInstitute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: scuzhouxg@163.com

(Received 19 November 2007; accepted 25 January 2008; online 6 February 2008)

In the title compound, [Ni(C26H20N4O2)]·0.5C4H10O, the central metal ion is coordinated by four atoms of the tetra­dentate picolinamide ligand, forming a slightly distorted square-planar configuration, with an average Ni—N(pyridine) distance of 1.94 Å and an average Ni—N(amide) distance of 1.83 Å. The asymmetric unit contains one half-molecule of diethyl ether; this solvent molecule is disordered across a twofold rotation axis..

Related literature

For related literature, see: Barnes et al. (1981[Barnes, D. J., Chapman, R. L. F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 51, 155-162.]); Doukov et al. (2002[Doukov, T. I., Iverson, T. M., Seravalli, J., Ragsdale, S. W. & Drennan, C. L. (2002). Science, 298, 567-572.]); Fenton et al. (1991[Fenton, R. R., Stephens, F. S. & Vagg, R. S. (1991). J. Coord. Chem. 23, 291-311.]); Halcrow et al. (1994[Halcrow, M. A., Christou, G., Halcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421-2481.]); Mulqi et al. (1981[Mulqi, M., Stephens, F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 52, 73-77.]); Yang et al. (2007[Yang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A: Chem. 266, 284-289.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C26H20N4O2)]·0.5C4H10O

  • Mr = 516.23

  • Monoclinic, C 2

  • a = 21.838 (3) Å

  • b = 11.1675 (15) Å

  • c = 11.0443 (15) Å

  • β = 100.949 (3)°

  • V = 2644.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 294 (2) K

  • 0.38 × 0.14 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.879, Tmax = 0.956

  • 12577 measured reflections

  • 6078 independent reflections

  • 3405 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.162

  • S = 1.01

  • 6078 reflections

  • 325 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2840 Friedel pairs

  • Flack parameter: 0.03 (2)

Table 1
Selected bond lengths (Å)

Ni1—N3 1.8227 (13)
Ni1—N1 1.8349 (17)
Ni1—N2 1.9410 (17)
Ni1—N4 1.9527 (17)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel exists in organism as a trace element and it often acts as component or secondary factor of enzyme (Doukov et al., 2002). In the latest two decades, the coordination chemistry of nickel has made a great progress (Halcrow et al., 1994). On the other hand, pyridine carboxamides, being a burgeoning class of multidentate ligands, are available easily from condensation reactions of pyridine carboxylic acid and amine. Continuing of our study in the synthesis and application of complexes containing picolinamide ligands in catalysis (Yang et al., 2007), herein is reported the crystal structure of Ni(II) with chiral pyridine carboxamide ligand, 1,2-bis(2-pyridinecarboxamido)-1,2-diphenylethane(s,s-bpdpeH2).

Selected bond lengths and angles in the title compound are listed in Table 1. Figure 1 shows a perspective drawing of the molecule with atom labeling. In the title compound, there is one solvent ether molecules per two complex molecules. X-Ray crystallography revealed that the nickel ion coordinates with the four nitrogen atoms of picolinamide ligand with Ni–N bond distances ranging from 1.8227 (13) to 1.9527 (17) Å. The sum of the four N—Ni—N angles is 360.48°. The dihedral angle between the two pyridyl rings is less than 2°, the Ni(II) ion seems to form a slightly distorted square plane configuration. Furthermore, the Ni—N(amide) distances are shorter than the Ni—N(pyridine) distances, which is similar with the reported complex such as [Ni(bcph)](H2bpch=1, 2-bis(2-pyridinecarboxamido)-1, 2- cyclohexane) with Ni—N(amide)=1.87 Å and Ni—N(pyridine)=1.94 Å (Mulqi et al., 1981).

Related literature top

For related literature, see: Barnes et al. (1981); Doukov et al. (2002); Fenton et al. (1991); Halcrow et al. (1994); Mulqi et al. (1981); Yang et al. (2007).

Experimental top

The ligand was prepared by a previously described method (Fenton et al., 1991). The title complex was obtained analogous to (Barnes et al., 1981). Single crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a DMF solution of the complex. Selected IR data (KBr, cm-1): 2980 (m), 1650 (amide I band, s), 1610(amide II band, s), 1470 (s), 1360 (s), 1120(s), 1020 (m), 870 (m). Analysis calculated for C26H20N4NiO2: C 65.17, H 4.21, N 11.69%; found: C 65.23, H 4.43, N 11.54%. MS (FAB): 479([Ni(bpdpe)]+).

Refinement top

All H atoms of the complex were positioned geometrically and refined as riding, with C—H = 0.93 Å(aromatic) and 0.98 Å(methylene) with Uiso(H) =1.2Ueq(aromatic, methylene).

When solvent disorder was treated, there are 4 larger electron density peaks in different electron density map (Fourier synthesis). And two peaks are located on special positions. These special positions are considered as disorder oxygen atom of ether, O3 and O3'. When these peaks are grown, the whole ether molecule was got. O3 and O3' have occupancy factor as 0.5 defined by special position.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. 1 A view of [Ni(C26H20N4O2)].1/2(C2H5OC2H5), with displacement ellipsoids drawn at the 30% propability level.
[N,N'-(1,2-Diphenylethane-1,2-diyl)bis(pyridine-2-carboxamidato)]nickel(II) diethyl ether hemisolvate top
Crystal data top
[Ni(C26H20N4O2)]·0.5C4H10OF(000) = 1076
Mr = 516.23Dx = 1.297 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 21.838 (3) ÅCell parameters from 4983 reflections
b = 11.1675 (15) Åθ = 1–27.5°
c = 11.0443 (15) ŵ = 0.77 mm1
β = 100.949 (3)°T = 294 K
V = 2644.5 (6) Å3Needle, green
Z = 40.38 × 0.14 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6078 independent reflections
Radiation source: fine-focus sealed tube3405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2828
Tmin = 0.879, Tmax = 0.956k = 1414
12577 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.067P)2] and P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.007
6078 reflectionsΔρmax = 0.82 e Å3
325 parametersΔρmin = 0.43 e Å3
17 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
[Ni(C26H20N4O2)]·0.5C4H10OV = 2644.5 (6) Å3
Mr = 516.23Z = 4
Monoclinic, C2Mo Kα radiation
a = 21.838 (3) ŵ = 0.77 mm1
b = 11.1675 (15) ÅT = 294 K
c = 11.0443 (15) Å0.38 × 0.14 × 0.06 mm
β = 100.949 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6078 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3405 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.956Rint = 0.067
12577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.82 e Å3
S = 1.01Δρmin = 0.43 e Å3
6078 reflectionsAbsolute structure: Flack (1983)
325 parametersAbsolute structure parameter: 0.03 (2)
17 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes..

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.685445 (11)0.41062 (2)0.575362 (19)0.03992 (6)
O10.68109 (9)0.75302 (12)0.48680 (13)0.0649 (6)
O20.71735 (10)0.29814 (15)0.91975 (14)0.0807 (7)
N10.69128 (8)0.57385 (15)0.59271 (15)0.0448 (6)
N20.67548 (8)0.44546 (14)0.40053 (15)0.0463 (6)
N30.70417 (7)0.41280 (19)0.74336 (12)0.0404 (4)
N40.67459 (9)0.23904 (15)0.59807 (15)0.0472 (6)
C10.73171 (10)0.52214 (17)0.80298 (19)0.0427 (6)
H10.71990.53050.88390.051*
C20.70105 (11)0.62494 (17)0.71610 (18)0.0437 (7)
H20.73130.69040.72020.052*
C30.68186 (11)0.64212 (19)0.49332 (19)0.0501 (7)
C40.67389 (11)0.56614 (19)0.37879 (19)0.0455 (7)
C50.66656 (13)0.6111 (2)0.2626 (2)0.0642 (9)
H50.66220.69330.25060.077*
C60.66545 (15)0.5382 (2)0.1635 (2)0.0763 (10)
H60.66180.56910.08430.092*
C70.66992 (12)0.4171 (3)0.18509 (18)0.0763 (8)
H70.67000.36420.12010.092*
C80.67431 (12)0.37406 (18)0.30362 (19)0.0579 (8)
H80.67650.29170.31630.069*
C90.70290 (12)0.3139 (2)0.8047 (2)0.0528 (8)
C100.68154 (12)0.21015 (19)0.7192 (2)0.0480 (7)
C110.67415 (14)0.0961 (2)0.7604 (2)0.0704 (9)
H110.67930.07980.84430.084*
C120.65897 (14)0.0069 (2)0.6752 (2)0.0777 (10)
H120.65200.07040.70080.093*
C130.65399 (16)0.0315 (2)0.5531 (3)0.0847 (11)
H130.64640.02940.49470.102*
C140.66052 (14)0.1488 (2)0.5177 (2)0.0718 (10)
H140.65490.16600.43390.086*
C150.80143 (10)0.52376 (17)0.81812 (17)0.0390 (6)
C160.83346 (10)0.45226 (18)0.74753 (19)0.0507 (7)
H160.81150.40010.68940.061*
C170.89797 (11)0.4584 (2)0.7635 (2)0.0614 (8)
H170.91890.40980.71630.074*
C180.93127 (12)0.5359 (2)0.8487 (2)0.0700 (10)
H180.97450.54000.85920.084*
C190.90017 (11)0.6058 (2)0.9169 (2)0.0680 (9)
H190.92240.65800.97470.082*
C200.83604 (11)0.60110 (19)0.9019 (2)0.0579 (8)
H200.81570.65090.94920.070*
C210.64296 (11)0.67357 (18)0.7536 (2)0.0484 (7)
C220.64900 (12)0.7353 (2)0.86491 (19)0.0651 (9)
H220.68860.74570.91240.078*
C230.59732 (12)0.7826 (3)0.9082 (2)0.0837 (10)
H230.60230.82220.98350.100*
C240.54060 (14)0.7686 (3)0.8374 (2)0.1052 (12)
H240.50600.79880.86490.126*
C250.53215 (14)0.7107 (3)0.7252 (3)0.1189 (15)
H250.49260.70420.67660.143*
C260.58374 (12)0.6620 (3)0.6855 (3)0.0820 (11)
H260.57790.62070.61100.098*
C280.5081 (3)0.3730 (6)0.7884 (4)0.364 (3)
H28A0.54510.33510.76250.545*
H28B0.49320.43320.73100.545*
H28C0.47790.31020.78700.545*
C270.5289 (3)0.4225 (3)0.9168 (4)0.251 (3)
H27A0.54300.35170.96550.301*
H27B0.56540.46710.91130.301*
O30.50000.4919 (6)1.00000.219 (6)0.50
O3'0.50000.3518 (7)1.00000.380 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.06559 (13)0.02383 (9)0.03095 (10)0.00039 (17)0.01070 (9)0.00210 (15)
O10.1240 (13)0.0250 (8)0.0457 (9)0.0052 (9)0.0160 (9)0.0088 (7)
O20.1566 (16)0.0453 (9)0.0339 (8)0.0197 (11)0.0019 (10)0.0124 (8)
N10.0760 (12)0.0243 (8)0.0353 (9)0.0007 (9)0.0135 (9)0.0004 (7)
N20.0710 (11)0.0316 (10)0.0374 (9)0.0087 (8)0.0134 (8)0.0049 (7)
N30.0659 (9)0.0242 (6)0.0322 (7)0.0023 (13)0.0121 (6)0.0067 (11)
N40.0769 (13)0.0262 (9)0.0393 (9)0.0040 (9)0.0135 (9)0.0007 (8)
C10.0740 (14)0.0244 (9)0.0277 (10)0.0028 (10)0.0046 (10)0.0016 (8)
C20.0765 (14)0.0247 (10)0.0303 (10)0.0015 (10)0.0116 (10)0.0004 (9)
C30.0876 (16)0.0279 (10)0.0345 (11)0.0060 (11)0.0106 (11)0.0093 (9)
C40.0681 (14)0.0292 (10)0.0391 (11)0.0008 (10)0.0100 (11)0.0042 (9)
C50.1020 (19)0.0462 (14)0.0438 (13)0.0003 (14)0.0126 (13)0.0142 (11)
C60.155 (2)0.0498 (14)0.0255 (11)0.0059 (16)0.0196 (14)0.0090 (11)
C70.1395 (19)0.0557 (13)0.0351 (10)0.003 (2)0.0202 (12)0.0076 (17)
C80.1057 (18)0.0313 (12)0.0371 (11)0.0017 (11)0.0143 (12)0.0059 (9)
C90.0805 (16)0.0366 (11)0.0392 (12)0.0092 (12)0.0064 (12)0.0019 (11)
C100.0764 (15)0.0277 (10)0.0385 (11)0.0036 (11)0.0071 (11)0.0032 (10)
C110.126 (2)0.0362 (12)0.0477 (14)0.0156 (14)0.0135 (15)0.0124 (11)
C120.138 (2)0.0313 (12)0.0627 (16)0.0212 (15)0.0159 (16)0.0045 (12)
C130.164 (3)0.0283 (12)0.0686 (17)0.0175 (16)0.0389 (17)0.0009 (12)
C140.130 (2)0.0402 (13)0.0430 (14)0.0073 (16)0.0109 (15)0.0037 (12)
C150.0572 (13)0.0281 (10)0.0299 (10)0.0041 (10)0.0038 (10)0.0008 (9)
C160.0786 (15)0.0347 (11)0.0374 (11)0.0045 (11)0.0078 (11)0.0029 (9)
C170.0718 (16)0.0565 (15)0.0536 (14)0.0109 (12)0.0061 (13)0.0005 (12)
C180.0674 (16)0.0630 (16)0.0749 (18)0.0069 (15)0.0016 (15)0.0033 (15)
C190.0727 (17)0.0471 (14)0.0736 (18)0.0122 (13)0.0130 (15)0.0155 (13)
C200.0940 (18)0.0326 (11)0.0450 (12)0.0006 (13)0.0075 (13)0.0119 (10)
C210.0674 (14)0.0300 (11)0.0467 (12)0.0131 (11)0.0082 (11)0.0017 (10)
C220.1067 (19)0.0447 (14)0.0461 (13)0.0150 (14)0.0198 (13)0.0005 (12)
C230.134 (2)0.0629 (16)0.0640 (15)0.0292 (17)0.0439 (14)0.0049 (14)
C240.111 (2)0.134 (3)0.0792 (18)0.0655 (19)0.0387 (15)0.0075 (19)
C250.081 (2)0.149 (3)0.126 (3)0.053 (2)0.017 (2)0.004 (3)
C260.0860 (19)0.091 (2)0.0678 (18)0.0157 (17)0.0106 (16)0.0138 (16)
C280.301 (5)0.388 (7)0.344 (7)0.243 (5)0.087 (6)0.170 (6)
C270.293 (6)0.249 (7)0.188 (5)0.067 (7)0.011 (5)0.015 (6)
O30.167 (8)0.173 (9)0.306 (14)0.0000.022 (9)0.000
O3'0.382 (16)0.400 (3)0.398 (3)0.26 (2)0.176 (13)0.13 (4)
Geometric parameters (Å, º) top
Ni1—N31.8227 (13)C13—C141.383 (4)
Ni1—N11.8349 (17)C13—H130.9300
Ni1—N21.9410 (17)C14—H140.9300
Ni1—N41.9527 (17)C15—C201.381 (3)
O1—C31.241 (3)C15—C161.394 (3)
O2—C91.263 (3)C16—C171.388 (3)
N1—C31.320 (3)C16—H160.9300
N1—C21.455 (3)C17—C181.380 (3)
N2—C81.331 (3)C17—H170.9300
N2—C41.368 (3)C18—C191.354 (4)
N3—C91.298 (3)C18—H180.9300
N3—C11.461 (3)C19—C201.380 (3)
N4—C141.339 (3)C19—H190.9300
N4—C101.357 (3)C20—H200.9300
C1—C151.500 (3)C21—C261.373 (3)
C1—C21.563 (3)C21—C221.393 (3)
C1—H10.9800C22—C231.409 (4)
C2—C211.509 (3)C22—H220.9300
C2—H20.9800C23—C241.342 (4)
C3—C41.506 (3)C23—H230.9300
C4—C51.359 (3)C24—C251.378 (4)
C5—C61.361 (3)C24—H240.9300
C5—H50.9300C25—C261.395 (4)
C6—C71.373 (4)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—C81.381 (3)C28—C271.510 (6)
C7—H70.9300C28—H28A1.0002
C8—H80.9300C28—H28B0.9388
C9—C101.511 (3)C28—H28C0.9612
C10—C111.372 (3)C27—O31.436 (6)
C11—C121.366 (3)C27—H27A0.9730
C11—H110.9300C27—H27B0.9523
C12—C131.360 (4)O3—C27i1.436 (6)
C12—H120.9300
N3—Ni1—N183.26 (8)C13—C12—H12120.0
N3—Ni1—N2166.18 (8)C11—C12—H12120.0
N1—Ni1—N284.10 (7)C12—C13—C14118.6 (2)
N3—Ni1—N483.78 (8)C12—C13—H13120.7
N1—Ni1—N4165.74 (8)C14—C13—H13120.7
N2—Ni1—N4109.33 (7)N4—C14—C13123.3 (2)
C3—N1—C2121.62 (17)N4—C14—H14118.4
C3—N1—Ni1119.35 (14)C13—C14—H14118.4
C2—N1—Ni1118.83 (13)C20—C15—C16117.7 (2)
C8—N2—C4116.94 (17)C20—C15—C1119.79 (19)
C8—N2—Ni1131.39 (14)C16—C15—C1122.51 (17)
C4—N2—Ni1111.49 (13)C17—C16—C15120.40 (19)
C9—N3—C1121.56 (15)C17—C16—H16119.8
C9—N3—Ni1119.77 (16)C15—C16—H16119.8
C1—N3—Ni1117.61 (14)C18—C17—C16120.5 (2)
C14—N4—C10116.33 (19)C18—C17—H17119.7
C14—N4—Ni1132.16 (16)C16—C17—H17119.7
C10—N4—Ni1111.49 (13)C19—C18—C17119.1 (2)
N3—C1—C15112.49 (17)C19—C18—H18120.4
N3—C1—C2104.21 (15)C17—C18—H18120.4
C15—C1—C2111.53 (18)C18—C19—C20121.1 (2)
N3—C1—H1109.5C18—C19—H19119.5
C15—C1—H1109.5C20—C19—H19119.5
C2—C1—H1109.5C19—C20—C15121.2 (2)
N1—C2—C21114.66 (17)C19—C20—H20119.4
N1—C2—C1104.85 (16)C15—C20—H20119.4
C21—C2—C1112.35 (18)C26—C21—C22116.8 (2)
N1—C2—H2108.2C26—C21—C2124.7 (2)
C21—C2—H2108.2C22—C21—C2118.5 (2)
C1—C2—H2108.2C21—C22—C23122.5 (2)
O1—C3—N1128.5 (2)C21—C22—H22118.8
O1—C3—C4121.05 (19)C23—C22—H22118.8
N1—C3—C4110.37 (18)C24—C23—C22118.0 (3)
C5—C4—N2121.6 (2)C24—C23—H23121.0
C5—C4—C3124.0 (2)C22—C23—H23121.0
N2—C4—C3114.37 (18)C23—C24—C25121.9 (3)
C4—C5—C6121.3 (2)C23—C24—H24119.0
C4—C5—H5119.4C25—C24—H24119.0
C6—C5—H5119.4C24—C25—C26119.2 (3)
C5—C6—C7117.4 (2)C24—C25—H25120.4
C5—C6—H6121.3C26—C25—H25120.4
C7—C6—H6121.3C21—C26—C25121.6 (3)
C6—C7—C8119.8 (2)C21—C26—H26119.2
C6—C7—H7120.1C25—C26—H26119.2
C8—C7—H7120.1C27—C28—H28A108.0
N2—C8—C7122.8 (2)C27—C28—H28B112.0
N2—C8—H8118.6H28A—C28—H28B107.9
C7—C8—H8118.6C27—C28—H28C111.4
O2—C9—N3128.2 (2)H28A—C28—H28C106.1
O2—C9—C10120.6 (2)H28B—C28—H28C111.2
N3—C9—C10111.19 (18)O3—C27—C28135.1 (5)
N4—C10—C11123.3 (2)O3—C27—H27A102.5
N4—C10—C9113.38 (19)C28—C27—H27A103.2
C11—C10—C9123.2 (2)O3—C27—H27B103.6
C12—C11—C10118.5 (2)C28—C27—H27B103.7
C12—C11—H11120.7H27A—C27—H27B106.1
C10—C11—H11120.7C27—O3—C27i114.7 (6)
C13—C12—C11119.9 (2)
N3—Ni1—N1—C3179.99 (19)C4—C5—C6—C72.1 (4)
N2—Ni1—N1—C35.60 (18)C5—C6—C7—C81.0 (4)
N4—Ni1—N1—C3155.1 (3)C4—N2—C8—C71.8 (4)
N3—Ni1—N1—C25.08 (16)Ni1—N2—C8—C7176.47 (19)
N2—Ni1—N1—C2179.49 (17)C6—C7—C8—N21.2 (4)
N4—Ni1—N1—C219.8 (4)C1—N3—C9—O28.3 (4)
N3—Ni1—N2—C8147.3 (3)Ni1—N3—C9—O2176.2 (2)
N1—Ni1—N2—C8171.2 (2)C1—N3—C9—C10171.00 (19)
N4—Ni1—N2—C813.7 (2)Ni1—N3—C9—C103.1 (3)
N3—Ni1—N2—C427.6 (4)C14—N4—C10—C110.8 (4)
N1—Ni1—N2—C43.66 (15)Ni1—N4—C10—C11177.7 (2)
N4—Ni1—N2—C4171.40 (15)C14—N4—C10—C9174.9 (2)
N1—Ni1—N3—C9173.64 (18)Ni1—N4—C10—C96.6 (3)
N2—Ni1—N3—C9162.4 (3)O2—C9—C10—N4173.0 (2)
N4—Ni1—N3—C90.38 (18)N3—C9—C10—N46.4 (3)
N1—Ni1—N3—C117.93 (15)O2—C9—C10—C112.8 (4)
N2—Ni1—N3—C16.0 (4)N3—C9—C10—C11177.9 (2)
N4—Ni1—N3—C1168.04 (15)N4—C10—C11—C120.1 (4)
N3—Ni1—N4—C14177.7 (3)C9—C10—C11—C12175.3 (3)
N1—Ni1—N4—C14157.5 (3)C10—C11—C12—C132.6 (5)
N2—Ni1—N4—C142.2 (3)C11—C12—C13—C144.2 (5)
N3—Ni1—N4—C104.10 (16)C10—N4—C14—C130.9 (4)
N1—Ni1—N4—C1020.7 (4)Ni1—N4—C14—C13179.0 (2)
N2—Ni1—N4—C10179.62 (16)C12—C13—C14—N43.4 (5)
C9—N3—C1—C1580.8 (2)N3—C1—C15—C20161.45 (18)
Ni1—N3—C1—C1587.42 (17)C2—C1—C15—C2081.9 (2)
C9—N3—C1—C2158.3 (2)N3—C1—C15—C1620.7 (3)
Ni1—N3—C1—C233.5 (2)C2—C1—C15—C1696.0 (2)
C3—N1—C2—C2174.7 (3)C20—C15—C16—C171.0 (3)
Ni1—N1—C2—C21100.11 (18)C1—C15—C16—C17178.9 (2)
C3—N1—C2—C1161.6 (2)C15—C16—C17—C180.5 (3)
Ni1—N1—C2—C123.6 (2)C16—C17—C18—C190.1 (4)
N3—C1—C2—N132.9 (2)C17—C18—C19—C200.3 (4)
C15—C1—C2—N188.7 (2)C18—C19—C20—C150.8 (4)
N3—C1—C2—C2192.29 (19)C16—C15—C20—C191.2 (3)
C15—C1—C2—C21146.11 (17)C1—C15—C20—C19179.2 (2)
C2—N1—C3—O11.8 (4)N1—C2—C21—C266.3 (3)
Ni1—N1—C3—O1176.5 (2)C1—C2—C21—C26113.2 (3)
C2—N1—C3—C4179.4 (2)N1—C2—C21—C22173.36 (19)
Ni1—N1—C3—C45.8 (3)C1—C2—C21—C2267.0 (2)
C8—N2—C4—C55.0 (3)C26—C21—C22—C231.1 (4)
Ni1—N2—C4—C5179.3 (2)C2—C21—C22—C23179.2 (2)
C8—N2—C4—C3174.1 (2)C21—C22—C23—C241.2 (4)
Ni1—N2—C4—C31.6 (2)C22—C23—C24—C250.4 (5)
O1—C3—C4—C51.2 (4)C23—C24—C25—C262.0 (6)
N1—C3—C4—C5176.6 (2)C22—C21—C26—C250.6 (4)
O1—C3—C4—N2179.7 (2)C2—C21—C26—C25179.2 (3)
N1—C3—C4—N22.4 (3)C24—C25—C26—C212.1 (5)
N2—C4—C5—C65.3 (4)C28—C27—O3—C27i91.6 (7)
C3—C4—C5—C6173.7 (3)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C26H20N4O2)]·0.5C4H10O
Mr516.23
Crystal system, space groupMonoclinic, C2
Temperature (K)294
a, b, c (Å)21.838 (3), 11.1675 (15), 11.0443 (15)
β (°) 100.949 (3)
V3)2644.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.38 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.879, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
12577, 6078, 3405
Rint0.067
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 1.01
No. of reflections6078
No. of parameters325
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.43
Absolute structureFlack (1983)
Absolute structure parameter0.03 (2)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N31.8227 (13)Ni1—N21.9410 (17)
Ni1—N11.8349 (17)Ni1—N41.9527 (17)
 

Acknowledgements

This project was sponsored by the NSFC (grant Nos. 20672075, 20771076) and the Student Innovation Foundation of Sichuan University.

References

First citationBarnes, D. J., Chapman, R. L. F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 51, 155–162.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoukov, T. I., Iverson, T. M., Seravalli, J., Ragsdale, S. W. & Drennan, C. L. (2002). Science, 298, 567–572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFenton, R. R., Stephens, F. S. & Vagg, R. S. (1991). J. Coord. Chem. 23, 291–311.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHalcrow, M. A., Christou, G., Halcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421–2481.  CrossRef CAS Web of Science Google Scholar
First citationMulqi, M., Stephens, F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 52, 73–77.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A: Chem. 266, 284–289.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds