organic compounds
1,3-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde
aChemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia, bFaculty of Applied Sciences, Universiti Teknologi MARA Malaysia, 40450 Shah Alam, Selangor, Malaysia, and cICSN-CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: pascal.retailleau@icsn.cnrs-gif.fr
The title compound, C15H8O5, also known as nordamnacanthal, was isolated from the Malaysian Morinda citrifolia L. The 20 non-H atoms are coplanar. The structure is stabilized by intramolecular O—H⋯O hydrogen bonds and intermolecular O—H⋯O and C—H⋯O hydrogen bonds, forming bilayers of molecular tapes with alternating stacking directions along the a axis.
Related literature
For related literature, see: Chan-Blanco et al. (2006); Ismail (1998); Ohsawa & Ohba (1993); Singh et al. (1984); Whistler (1985); Wijnsma & Verpoorte (1986); Zhu et al. (2008).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); cell DENZO and COLLECT; data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808004169/bg2162sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004169/bg2162Isup2.hkl
Morinda citrifolia used in this study was collected from kg. Tanjung Keramat, Langkap, Perak. The roots were harvested, washed, chopped into small pieces and then dried at room temperature for one week. The dried sample was then ground to small size using grinder. The ground roots (1.5 kg) were soaked at room temperature in dichloromethane for 48 h. The solvent was then removed by filtration and fresh solvent added to the plant material. The extraction was repeated three times. The combined filtrate was evaporated under reduced pressure to give brown coloured residue (35.6 g). The crude extract was fractionated using Medium Pressure
(MPLC) system fitted with Buchi Pump Module C-601. The sample (10 g) was introduced dry after being pre-absorbed onto acid-washed silica gel (10 g) in two portions. The column (150 mm x 40 mm) was packed with 90 g acid-washed silica gel (Merck 7734) and eluted gradiently with petroleum ether, chloroform and chloroform enriched with increasing percentages of methanol (1%, 2% and 5%). Seven combined fractions were collected based on thin layer (TLC) pattern (labeled A, B, C, D, E, F, and G).Nordamnacanthal (1.65 g) were isolated from fraction A after
The fraction was re-chromatographed using small column (400 mm x 20 mm) packed with 2% acid-washed silica gel (Merck 9385) eluted gradiently with petroleum ether and chloroform. The first orange band eluted out from the column was collected in small vials and inspected using analytical TLC developed in PE:CHCl3 (4:6) showing a single spot of a purified compound. Recrystallization from hot CHCl3 gave bright orange crystals.All H atoms were located in difference maps but then were treated as riding in geometrically positions, with O—H = 0.82 Å, and C—H = 0.93 Å (sp2) and with Uiso(H) = 1.2Ueq(carrier).
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2008).C15H8O5 | F(000) = 552 |
Mr = 268.21 | Dx = 1.574 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 10451 reflections |
a = 10.547 (2) Å | θ = 0.4–26.4° |
b = 5.669 (1) Å | µ = 0.12 mm−1 |
c = 20.231 (3) Å | T = 293 K |
β = 110.62 (4)° | Prism, orange |
V = 1132.1 (5) Å3 | 0.60 × 0.39 × 0.14 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1554 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 26.4°, θmin = 2.1° |
ϕ and ω scans | h = 0→13 |
14030 measured reflections | k = −7→0 |
2298 independent reflections | l = −25→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0705P)2 + 0.3487P] where P = (Fo2 + 2Fc2)/3 |
2296 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C15H8O5 | V = 1132.1 (5) Å3 |
Mr = 268.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.547 (2) Å | µ = 0.12 mm−1 |
b = 5.669 (1) Å | T = 293 K |
c = 20.231 (3) Å | 0.60 × 0.39 × 0.14 mm |
β = 110.62 (4)° |
Nonius KappaCCD diffractometer | 1554 reflections with I > 2σ(I) |
14030 measured reflections | Rint = 0.029 |
2298 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.27 e Å−3 |
2296 reflections | Δρmin = −0.20 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections (2298) except two reflections with Delta(F2)/e.s.d. greater than 9 (2296). The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.32777 (16) | 1.4401 (3) | −0.05914 (8) | 0.0669 (5) | |
O5 | 0.02849 (14) | 0.7077 (2) | −0.03142 (7) | 0.0531 (4) | |
O1 | 0.22406 (15) | 0.5649 (2) | 0.07880 (7) | 0.0525 (4) | |
H1 | 0.1487 | 0.5610 | 0.0479 | 0.063* | |
O3 | 0.62014 (15) | 1.0321 (3) | 0.15870 (9) | 0.0746 (5) | |
H3 | 0.6408 | 0.9283 | 0.1889 | 0.090* | |
O2 | 0.58762 (18) | 0.6610 (3) | 0.22568 (9) | 0.0811 (6) | |
C6 | 0.2604 (2) | 1.2727 (3) | −0.05264 (10) | 0.0437 (5) | |
C7 | 0.12238 (19) | 1.2323 (3) | −0.10446 (9) | 0.0388 (5) | |
C12 | 0.04523 (18) | 1.0390 (3) | −0.09796 (9) | 0.0364 (4) | |
C13 | 0.09986 (19) | 0.8728 (3) | −0.03790 (10) | 0.0388 (5) | |
C14 | 0.23549 (18) | 0.9106 (3) | 0.01290 (10) | 0.0377 (4) | |
C5 | 0.31419 (18) | 1.1053 (3) | 0.00715 (10) | 0.0396 (5) | |
C4 | 0.4429 (2) | 1.1451 (4) | 0.05601 (11) | 0.0493 (5) | |
H4 | 0.4935 | 1.2742 | 0.0513 | 0.059* | |
C3 | 0.4949 (2) | 0.9898 (4) | 0.11180 (11) | 0.0521 (6) | |
C2 | 0.4211 (2) | 0.7925 (4) | 0.11979 (10) | 0.0461 (5) | |
C1 | 0.2905 (2) | 0.7533 (3) | 0.06963 (10) | 0.0425 (5) | |
C15 | 0.4762 (3) | 0.6333 (4) | 0.17886 (13) | 0.0652 (7) | |
H15 | 0.4247 | 0.5031 | 0.1817 | 0.078* | |
C11 | −0.0846 (2) | 1.0056 (4) | −0.14710 (10) | 0.0446 (5) | |
H11 | −0.1359 | 0.8766 | −0.1430 | 0.054* | |
C10 | −0.1371 (2) | 1.1638 (4) | −0.20178 (10) | 0.0509 (5) | |
H10 | −0.2239 | 1.1414 | −0.2346 | 0.061* | |
C9 | −0.0613 (2) | 1.3547 (4) | −0.20791 (11) | 0.0539 (6) | |
H9 | −0.0975 | 1.4613 | −0.2447 | 0.065* | |
C8 | 0.0679 (2) | 1.3894 (4) | −0.15996 (10) | 0.0486 (5) | |
H8 | 0.1185 | 1.5183 | −0.1648 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0621 (10) | 0.0626 (10) | 0.0708 (11) | −0.0288 (8) | 0.0169 (8) | 0.0066 (8) |
O5 | 0.0512 (9) | 0.0466 (8) | 0.0591 (9) | −0.0150 (7) | 0.0163 (7) | 0.0068 (7) |
O1 | 0.0511 (9) | 0.0471 (8) | 0.0565 (9) | −0.0020 (7) | 0.0155 (7) | 0.0087 (7) |
O3 | 0.0437 (9) | 0.0866 (12) | 0.0726 (11) | −0.0075 (8) | −0.0056 (8) | −0.0060 (9) |
O2 | 0.0657 (11) | 0.0934 (13) | 0.0606 (11) | 0.0183 (10) | −0.0071 (9) | 0.0054 (9) |
C6 | 0.0458 (11) | 0.0411 (11) | 0.0474 (11) | −0.0107 (9) | 0.0201 (9) | −0.0052 (9) |
C7 | 0.0434 (11) | 0.0367 (10) | 0.0381 (10) | −0.0049 (8) | 0.0167 (9) | −0.0044 (8) |
C12 | 0.0367 (10) | 0.0360 (10) | 0.0374 (10) | −0.0028 (8) | 0.0142 (8) | −0.0048 (8) |
C13 | 0.0419 (11) | 0.0355 (10) | 0.0421 (11) | −0.0054 (8) | 0.0187 (9) | −0.0036 (8) |
C14 | 0.0370 (10) | 0.0388 (10) | 0.0378 (10) | 0.0018 (8) | 0.0138 (8) | −0.0027 (8) |
C5 | 0.0359 (10) | 0.0413 (10) | 0.0426 (11) | −0.0048 (8) | 0.0152 (8) | −0.0075 (8) |
C4 | 0.0450 (12) | 0.0496 (12) | 0.0536 (13) | −0.0085 (9) | 0.0176 (10) | −0.0075 (10) |
C3 | 0.0386 (11) | 0.0605 (13) | 0.0511 (13) | 0.0012 (10) | 0.0081 (10) | −0.0113 (11) |
C2 | 0.0427 (11) | 0.0504 (12) | 0.0423 (11) | 0.0075 (9) | 0.0112 (9) | −0.0026 (9) |
C1 | 0.0432 (11) | 0.0404 (11) | 0.0474 (11) | 0.0016 (8) | 0.0202 (9) | −0.0033 (8) |
C15 | 0.0664 (15) | 0.0655 (15) | 0.0561 (14) | 0.0136 (12) | 0.0122 (12) | 0.0028 (12) |
C11 | 0.0413 (11) | 0.0467 (11) | 0.0457 (11) | −0.0068 (9) | 0.0149 (9) | −0.0065 (9) |
C10 | 0.0433 (11) | 0.0603 (13) | 0.0430 (11) | 0.0026 (10) | 0.0075 (9) | −0.0059 (10) |
C9 | 0.0634 (14) | 0.0528 (13) | 0.0422 (12) | 0.0073 (11) | 0.0146 (11) | 0.0072 (9) |
C8 | 0.0578 (13) | 0.0430 (11) | 0.0471 (12) | −0.0066 (9) | 0.0209 (11) | 0.0014 (9) |
O4—C6 | 1.220 (2) | C14—C5 | 1.410 (3) |
O5—C13 | 1.237 (2) | C5—C4 | 1.388 (3) |
O1—C1 | 1.326 (2) | C4—C3 | 1.383 (3) |
O1—H1 | 0.8200 | C4—H4 | 0.9300 |
O3—C3 | 1.349 (3) | C3—C2 | 1.404 (3) |
O3—H3 | 0.8200 | C2—C1 | 1.411 (3) |
O2—C15 | 1.233 (3) | C2—C15 | 1.446 (3) |
C6—C7 | 1.482 (3) | C15—H15 | 0.9300 |
C6—C5 | 1.484 (3) | C11—C10 | 1.380 (3) |
C7—C8 | 1.389 (3) | C11—H11 | 0.9300 |
C7—C12 | 1.399 (2) | C10—C9 | 1.377 (3) |
C12—C11 | 1.393 (3) | C10—H10 | 0.9300 |
C12—C13 | 1.484 (3) | C9—C8 | 1.380 (3) |
C13—C14 | 1.454 (3) | C9—H9 | 0.9300 |
C14—C1 | 1.407 (3) | C8—H8 | 0.9300 |
C1—O1—H1 | 109.5 | O3—C3—C2 | 120.4 (2) |
C3—O3—H3 | 109.5 | C4—C3—C2 | 121.61 (18) |
O4—C6—C7 | 120.56 (18) | C3—C2—C1 | 118.88 (18) |
O4—C6—C5 | 121.01 (18) | C3—C2—C15 | 121.0 (2) |
C7—C6—C5 | 118.43 (16) | C1—C2—C15 | 120.1 (2) |
C8—C7—C12 | 119.32 (18) | O1—C1—C14 | 122.54 (18) |
C8—C7—C6 | 119.77 (17) | O1—C1—C2 | 117.17 (18) |
C12—C7—C6 | 120.91 (17) | C14—C1—C2 | 120.29 (18) |
C11—C12—C7 | 119.84 (17) | O2—C15—C2 | 123.5 (3) |
C11—C12—C13 | 119.92 (16) | O2—C15—H15 | 118.2 |
C7—C12—C13 | 120.23 (16) | C2—C15—H15 | 118.2 |
O5—C13—C14 | 121.38 (17) | C10—C11—C12 | 120.01 (19) |
O5—C13—C12 | 119.46 (17) | C10—C11—H11 | 120.0 |
C14—C13—C12 | 119.15 (16) | C12—C11—H11 | 120.0 |
C1—C14—C5 | 118.53 (17) | C9—C10—C11 | 120.08 (19) |
C1—C14—C13 | 120.26 (17) | C9—C10—H10 | 120.0 |
C5—C14—C13 | 121.21 (17) | C11—C10—H10 | 120.0 |
C4—C5—C14 | 121.66 (18) | C10—C9—C8 | 120.6 (2) |
C4—C5—C6 | 118.30 (17) | C10—C9—H9 | 119.7 |
C14—C5—C6 | 120.04 (17) | C8—C9—H9 | 119.7 |
C3—C4—C5 | 119.03 (19) | C9—C8—C7 | 120.12 (19) |
C3—C4—H4 | 120.5 | C9—C8—H8 | 119.9 |
C5—C4—H4 | 120.5 | C7—C8—H8 | 119.9 |
O3—C3—C4 | 118.0 (2) | ||
O4—C6—C7—C8 | −1.6 (3) | C6—C5—C4—C3 | −179.58 (18) |
C5—C6—C7—C8 | 178.31 (17) | C5—C4—C3—O3 | −179.91 (17) |
O4—C6—C7—C12 | 179.08 (18) | C5—C4—C3—C2 | 0.5 (3) |
C5—C6—C7—C12 | −1.0 (3) | O3—C3—C2—C1 | −179.82 (18) |
C8—C7—C12—C11 | 0.3 (3) | C4—C3—C2—C1 | −0.3 (3) |
C6—C7—C12—C11 | 179.58 (17) | O3—C3—C2—C15 | 1.2 (3) |
C8—C7—C12—C13 | −178.19 (17) | C4—C3—C2—C15 | −179.25 (19) |
C6—C7—C12—C13 | 1.1 (3) | C5—C14—C1—O1 | −179.51 (17) |
C11—C12—C13—O5 | −1.1 (3) | C13—C14—C1—O1 | 1.1 (3) |
C7—C12—C13—O5 | 177.34 (17) | C5—C14—C1—C2 | 0.7 (3) |
C11—C12—C13—C14 | −179.93 (16) | C13—C14—C1—C2 | −178.70 (17) |
C7—C12—C13—C14 | −1.5 (3) | C3—C2—C1—O1 | 179.83 (17) |
O5—C13—C14—C1 | 2.3 (3) | C15—C2—C1—O1 | −1.2 (3) |
C12—C13—C14—C1 | −178.89 (16) | C3—C2—C1—C14 | −0.3 (3) |
O5—C13—C14—C5 | −177.04 (18) | C15—C2—C1—C14 | 178.65 (18) |
C12—C13—C14—C5 | 1.8 (3) | C3—C2—C15—O2 | 1.2 (4) |
C1—C14—C5—C4 | −0.4 (3) | C1—C2—C15—O2 | −177.7 (2) |
C13—C14—C5—C4 | 178.95 (17) | C7—C12—C11—C10 | −0.4 (3) |
C1—C14—C5—C6 | 178.98 (16) | C13—C12—C11—C10 | 178.07 (17) |
C13—C14—C5—C6 | −1.7 (3) | C12—C11—C10—C9 | 0.0 (3) |
O4—C6—C5—C4 | 0.6 (3) | C11—C10—C9—C8 | 0.4 (3) |
C7—C6—C5—C4 | −179.34 (17) | C10—C9—C8—C7 | −0.5 (3) |
O4—C6—C5—C14 | −178.84 (19) | C12—C7—C8—C9 | 0.2 (3) |
C7—C6—C5—C14 | 1.3 (3) | C6—C7—C8—C9 | −179.14 (18) |
C14—C5—C4—C3 | −0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.82 | 1.86 | 2.590 (3) | 148 |
O1—H1···O5 | 0.82 | 1.86 | 2.577 (2) | 146 |
O1—H1···O5i | 0.82 | 2.34 | 2.933 (2) | 130 |
C4—H4···O4ii | 0.93 | 2.45 | 3.358 (2) | 166 |
C10—H10···O2iii | 0.93 | 2.53 | 3.312 (3) | 142 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+3, −z; (iii) x−1, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H8O5 |
Mr | 268.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.547 (2), 5.669 (1), 20.231 (3) |
β (°) | 110.62 (4) |
V (Å3) | 1132.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.60 × 0.39 × 0.14 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14030, 2298, 1554 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.150, 1.06 |
No. of reflections | 2296 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.20 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.82 | 1.86 | 2.590 (3) | 147.6 |
O1—H1···O5 | 0.82 | 1.86 | 2.577 (2) | 146.2 |
O1—H1···O5i | 0.82 | 2.34 | 2.933 (2) | 129.5 |
C4—H4···O4ii | 0.93 | 2.45 | 3.358 (2) | 166.0 |
C10—H10···O2iii | 0.93 | 2.53 | 3.312 (3) | 141.6 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+3, −z; (iii) x−1, −y+3/2, z−1/2. |
Acknowledgements
KA thanks the Universiti Teknologi MARA and the Ministry of Science and Technology for financial support, and the Institut de Chimie des Substances Naturelles for research facilities.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chan-Blanco, Y., Vaillant, F., Perez, A. M., Reynes, M., Brillonet, J. M. & Brat, P. (2006). J. Food Compos. Anal. 19, 645–654. Web of Science CrossRef Google Scholar
Ismail, N. H. (1998). PhD thesis, Universiti Putra Malaysia. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ohsawa, Y. & Ohba, S. (1993). Acta Cryst. C49, 2149–2151. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, Y., Ikahihifo, T., Pamive, M. & Slatter, C. (1984). J. Ethnopharmacol. 12, 305–325. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
Whistler, W. A. (1985). J. Ethnopharmacol. 13, 239–280. CrossRef CAS PubMed Web of Science Google Scholar
Wijnsma, R. & Verpoorte, R. (1986). Anthraquinones Rubiaceae in Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Griesebach, G. W. Kirby & C. H. Tamn, pp. 79–149. New York: Springer-Verlag. Google Scholar
Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2008). Acta Cryst. E64, o371. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Morinda citrifolia Linn. (Noni), has been one of the most used traditional folk medicinal plants in Polynesia for over 2000 years (Whistler,1985). It has been reported to have a broad range of therapeutic and nutritional properties (Chan-Blanco et al.,2006) including antibacterial, antiviral, antifungal, antitumor, analgesic, hypotensive, anti-inflammatory and immune enhancing effects (Singh et al., 1984). Nordamnacanthal, damnacanthal and morindone (Ismail, 1998; Wijnsma & Verpoorte, 1986) have been isolated from the Malaysian Morinda citrifolia Linn. The crystal structure of damnacanthal having been reported by Ohsawa & Ohba (1993), we present in this communication the crystal structure of nordamnacanthal (I). (Fig. 1) shows its molecular structure. The C—C bond lengths in the anthraquinone ring range from 1.377 (3) Å to 1.484 (3) Å, the carbonyl bond distances from 1.220 (2) Å to 1.237 (2) Å and the two hydroxyl bond distances are 1.326 (2) Å and 1.349 (2) Å; all are comparable to those observed in similar structures (Ohsawa & Ohba, 1993; Zhu et al., 2008). All 20 non-H atoms of (I) are essentially coplanar, their mean deviation from the least-squares molecular plane being 0.028 Å and the dihedral angle between the two benzene rings being 1.27 (10)°. The molecule features two intramolecular O—H···O hydrogen bonds, with O3···O2 distance of 2.590 (3) Å and O1···O5 distance of 2.577 (2) Å. Additionally, atom O1 is also engaged into an intermolecular hydrogen bond with atom O5, viz. O1—H1···O5i [symmetry code:(i) -x, 1 - y, -z] leading to the formation of a coplanar centrosymmetric dimer via the key {H—O1—C1—C14—C13—O5}2 synthon, R22(12). Adjacent dimers extend through synthon R22(10) of weak C4—H4···O4ii [symmetry code:(ii) 1 - x, 3 - y, -z] hydrogen bond to form molecular tapes running parallel to the [120] and [120] directions (Fig. 2). The dihedral angle between the two molecular tape orientations is 66.03° and an additional weak C10—H10···O4iii [symmetry code:(ii) -1 + x, 3/2 - y, -1/2 + z] hydrogen bond links the tapes along the c axis. The tapes are stacked along the a axis, forming two kinds of layers in which molecules related by an inversion center stack with an interplanar spacing of 3.255 (4) Å and a centroid offset of ca 3.5 Å (Fig. 3).