organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o610-o611

(±)-N-[4-Acetyl-5-methyl-5-(4-methyl­cyclo­hex-3-en­yl)-4,5-di­hydro-1,3,4-thia­diazol-2-yl]acetamide

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, Faculté des Sciences, Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: daran@lcc-toulouse.fr

(Received 11 February 2008; accepted 18 February 2008; online 20 February 2008)

The new title thiadiazole compound, C14H21N3O2S, was semi-synthesized starting from 1-(4-methyl­cyclo­hex-3-en­yl)ethanone, a natural product isolated from Cedrus atlantica essential oil. The stereochemistry has been confirmed by single-crystal X-ray diffraction. The thia­diazo­line ring is roughly planar, although it may be regarded as having a half-chair conformation. The cyclo­hexenyl ring has a half-chair conformation. The most inter­esting feature is the formation of a pseudo-ring formed by four mol­ecules associated through N—H⋯O hydrogen bonds around a fourfold inversion axis, forming an R44(28) motif.

Related literature

For related literature, see: Aly et al. (2007[Aly, A. A., Hassan, A. A., Gomaa, M. A.-M. & El-Sheref, E. M. (2007). Arkivoc, xiv, 1-11.]); Beatriz et al. (2002[Beatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, x, 14-23.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Demirbas et al. (2005[Demirbas, N., Demirbas, A., Karaoglu, S. A. & Çelik, E. (2005). Arkivoc, i, 75-91.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Farghaly et al. (2006[Farghaly, A.-R., De Clercq, E. & El-Kashef, H. (2006). Arkivoc, x, 137-151.]); Invidiata et al. (1996[Invidiata, F. P., Simoni, D., Scintu, F. & Pinna, N. (1996). Farmaco, 51, 659-664.]); Kubota et al. (1982[Kubota, S., Toyooka, K., Yamamoto, N., Shibuya, M. & Kido, M. (1982). Chem. Commun. pp. 901-902.]); Nizamuddin et al. (1999[Nizamuddin, Gupta, M., Khan, M. H. & Srivastava, M. K. (1999). J. Sci. Ind. Res. 58, 538-542.]); Ourhriss et al. (2005[Ourhriss, N., Giorgi, M., Mazoir, N. & Benharref, A. (2005). Acta Cryst. C61, o699-o701.]); Paolo et al. (2005[Paolo, L. M., Michelangelo, G. & Renato, N. (2005). Arkivok, i, 114-115.]); Radul et al. (2005[Radul, O. M., Malinovskii, S. T., Lyuboradskii, R. & Makaev, F. Z. (2005). J. Struct. Chem. 46, 732-737.]); Sun et al. (1999[Sun, X.-W., Zhang, Y., Zhang, Z.-Y., Wang, Q. & Wang, S.-F. (1999). Indian J. Chem. 38B, 380-382.]); Udupi et al. (2000[Udupi, R. H., Suresh, G. V., Sety, S. R. & Bhat, A. R. (2000). J. Indian Chem. Soc. 77, 302-304.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21N3O2S

  • Mr = 295.40

  • Tetragonal, I 41 /a

  • a = 16.6855 (3) Å

  • c = 21.8961 (8) Å

  • V = 6096.0 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 180 (2) K

  • 0.29 × 0.24 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 87517 measured reflections

  • 4637 independent reflections

  • 3849 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 1.11

  • 4637 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 1.95 2.8223 (14) 171
Symmetry code: (i) [y+{\script{1\over 4}}, -x+{\script{7\over 4}}, -z+{\script{3\over 4}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiadiazolic compounds have beenreported in a large number of papers (Beatriz et al., 2002, Farghaly et al., 2006). These compounds are associated with diverse biological activities. Likewise, the 1,3,4-thiadiazoles nuclei which incorporate toxiphoric –N=C—S– linkage possess anti-inflammatory (Udupi et al., 2000), herbicidal (Nizamuddin et al., 1999), antimicrobial (Demirbas et al., 2005) bactericidal (Sun et al., 1999) and anti-HIV-1 properties(Invidiata et al., 1996).

In this connection, the chemical modification of a natural product isolated from Cedrus atlantica essential oil, 1-(4-methylcyclohex-3-enyl) ethanone, using thiosemicarbazide (Paolo et al., 2005; Ourhriss et al., 2005; Aly et al., 2007) followed by treatment of acetic anhydride and pyridine yielded the 1,3,4-thiadiazolic compound (II) with a good yield and high chimiospecifity.

The structure of (II) was established by 1H and 13CNMR and confirmed by its single-Crystal X-ray structure (Fig. 1).

The thiadiazoline ring may be regarded as having a half-chair conformation with puckering parameters Q= 0.184 (1) Å and ϕ= 34.1 (4)° (Cremer & Pople, 1975); however it could be also considered as roughly planar with the largest deviation from the mean plane being -0.1069 (8) Å at N1. Such conformation is usual for thiadiazoline rings (Kubota et al., 1982; Radul et al., 2005). The cyclohexenyl ring has a half-chair conformation with puckering parameters Q=0.489 (2) Å, θ= 49.5 (2)° and ϕ= 344.8 (3)°.

The most interesting feature is the formation of a pseudo ring formed by four molecules associated through N—H···O hydrogen bonds around a fourfold screw axis (Fig. 2, Table 1) so completing a R44(28) motif (Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For related literature, see: Aly et al. (2007); Beatriz et al. (2002); Bernstein et al. (1995); Cremer & Pople (1975); Demirbas et al. (2005); Etter et al. (1990); Farghaly et al. (2006); Invidiata et al. (1996); Kubota et al. (1982); Nizamuddin et al. (1999); Ourhriss et al. (2005); Paolo et al. (2005); Radul et al. (2005); Sun et al. (1999); Udupi et al. (2000).

Experimental top

To a solution of an equimolecular quantity of compound (I) and thiosemicarbazide dissolved in ethanol, several drops of HCl (c) were added. The reactional mixture was heated at reflux during 5 h and then evaporated under reduced pressure. The residue obtained was analysed on silica gel column with hexane: ethyl acetate (95:5) as an eluent. 0.25 mmol of the thiosemicarbazone obtained was dissolved in 2 ml of pyridine and 2 ml of acetic anhydride. The mixture was heated at reflux during 1 h with magnetic stirring, and then evaporated under reduced pressure. The residue obtained was purified on a silicagel column using hexane-ethyl acetate (90:10) as an eluent yielded compound (II) in 60% yield. Suitable crystals were obtained by evaporation of a dichloromethane solution at 277 K. m.p.= 483–484 K (dichloromethane); Spectroscopic analysis: 1H NMR (300 MHz, CDCl3) δ (p.p.m.): 9.49 (NH, s), 1.80 (3H2, s), 2.07 (1H1', m), 5.57 (1H3', dd, J1 = 10 Hz, J2 = 6 Hz), 1.58 (3H-7', s), 2.13, 2.27 (CH3CO, 2 s); 13C NMR (75 MHz, CDCl3) δ (p.p.m.): 85.4 (C-1), 19.2 (C-2), 36.7 (C-1'), 26.2 (C-2'), 118.1 (C-3'), 132.7 (C-4'), 28.2 (C-5'), 23.0 (C-6'), 22.2 (C-7'), 158.1 (C=N), 169.5, 170.4 (COCH3), 22.6, 24.5 (COCH3).

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.95 (aromatic), 0.98 (methyl) or 0.99 Å(methylene) and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006; data reduction: APEX2 (Bruker, 2006; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular view of compound (II), showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Projection down the c axis, showing the formation of the R44(28) motif through N—H···O hydrogen bonds around the fourfold screw axis 4. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The formation of the title compound.
(±)-N-[4-Acetyl-5-methyl-5-(4-methylcyclohex-3-enyl)-4,5-dihydro-\1,3,4-thiadiazol-2-yl]acetamide top
Crystal data top
C14H21N3O2SDx = 1.287 Mg m3
Mr = 295.40Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9915 reflections
Hall symbol: -I 4adθ = 2.5–36.1°
a = 16.6855 (3) ŵ = 0.22 mm1
c = 21.8961 (8) ÅT = 180 K
V = 6096.0 (3) Å3Platelet, colourless
Z = 160.29 × 0.24 × 0.08 mm
F(000) = 2528
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3849 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 30.5°, θmin = 2.4°
ϕ and ω scansh = 2323
87517 measured reflectionsk = 2323
4637 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0505P)2 + 5.869P]
where P = (Fo2 + 2Fc2)/3
4637 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H21N3O2SZ = 16
Mr = 295.40Mo Kα radiation
Tetragonal, I41/aµ = 0.22 mm1
a = 16.6855 (3) ÅT = 180 K
c = 21.8961 (8) Å0.29 × 0.24 × 0.08 mm
V = 6096.0 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3849 reflections with I > 2σ(I)
87517 measured reflectionsRint = 0.032
4637 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.11Δρmax = 0.39 e Å3
4637 reflectionsΔρmin = 0.26 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65060 (7)0.64068 (7)0.33934 (6)0.0214 (2)
C20.64575 (8)0.56723 (8)0.29765 (6)0.0287 (3)
H2A0.68000.57550.26180.043*
H2B0.59020.55940.28440.043*
H2C0.66390.51970.32000.043*
C30.68632 (7)0.78535 (7)0.31834 (6)0.0211 (2)
C110.79352 (7)0.62428 (7)0.37378 (6)0.0235 (2)
C120.87096 (7)0.66585 (8)0.38792 (7)0.0281 (3)
H12A0.90940.62700.40430.042*
H12B0.86150.70810.41820.042*
H12C0.89260.68970.35050.042*
C310.62901 (8)0.90880 (8)0.27886 (6)0.0270 (2)
C320.64169 (10)0.99767 (9)0.27574 (10)0.0446 (4)
H32A0.66341.01200.23560.067*
H32B0.67961.01400.30760.067*
H32C0.59041.02520.28200.067*
C1'0.61004 (7)0.62529 (7)0.40168 (6)0.0230 (2)
H1'0.63420.57540.41900.028*
C2'0.52001 (8)0.61027 (9)0.39510 (6)0.0298 (3)
H2E0.49500.65670.37430.036*
H2F0.51140.56240.36930.036*
C3'0.47984 (9)0.59770 (10)0.45606 (7)0.0360 (3)
H3'0.43070.56900.45780.043*
C4'0.51280 (9)0.62689 (10)0.50920 (7)0.0351 (3)
C5'0.58895 (11)0.66893 (12)0.50955 (7)0.0433 (4)
H5A0.62870.63490.53090.052*
H5B0.58250.71840.53400.052*
C6'0.62334 (9)0.69185 (9)0.44820 (6)0.0309 (3)
H6A0.68150.70230.45240.037*
H6B0.59750.74170.43360.037*
C7'0.47125 (12)0.61447 (13)0.56956 (8)0.0504 (4)
H710.42310.58180.56340.076*
H720.45610.66650.58670.076*
H730.50760.58690.59780.076*
S10.604309 (17)0.726031 (18)0.298610 (14)0.02284 (9)
O10.78216 (6)0.55218 (6)0.38435 (5)0.0313 (2)
O20.57194 (6)0.87583 (6)0.25536 (5)0.0338 (2)
N10.73445 (6)0.66905 (6)0.34821 (5)0.0224 (2)
N20.74763 (6)0.75163 (6)0.34255 (5)0.0231 (2)
N30.68691 (6)0.86761 (6)0.31029 (5)0.0251 (2)
H30.72680.89510.32630.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (5)0.0197 (5)0.0262 (5)0.0009 (4)0.0014 (4)0.0010 (4)
C20.0296 (6)0.0251 (6)0.0312 (6)0.0016 (5)0.0005 (5)0.0063 (5)
C30.0177 (5)0.0211 (5)0.0245 (5)0.0012 (4)0.0000 (4)0.0011 (4)
C110.0200 (5)0.0228 (5)0.0277 (6)0.0034 (4)0.0003 (4)0.0000 (4)
C120.0202 (5)0.0264 (6)0.0376 (7)0.0022 (4)0.0047 (5)0.0019 (5)
C310.0242 (6)0.0267 (6)0.0302 (6)0.0032 (4)0.0007 (5)0.0060 (5)
C320.0397 (8)0.0253 (7)0.0687 (12)0.0039 (6)0.0089 (8)0.0114 (7)
C1'0.0211 (5)0.0236 (5)0.0244 (5)0.0011 (4)0.0006 (4)0.0008 (4)
C2'0.0239 (6)0.0370 (7)0.0287 (6)0.0066 (5)0.0005 (5)0.0027 (5)
C3'0.0288 (7)0.0432 (8)0.0359 (7)0.0025 (6)0.0059 (5)0.0077 (6)
C4'0.0340 (7)0.0396 (8)0.0318 (7)0.0040 (6)0.0066 (6)0.0060 (6)
C5'0.0507 (9)0.0514 (9)0.0278 (7)0.0088 (7)0.0052 (6)0.0059 (6)
C6'0.0320 (7)0.0322 (7)0.0286 (6)0.0054 (5)0.0009 (5)0.0046 (5)
C7'0.0547 (11)0.0607 (11)0.0360 (8)0.0001 (9)0.0146 (8)0.0057 (8)
S10.01844 (14)0.02350 (15)0.02657 (15)0.00176 (10)0.00422 (10)0.00242 (10)
O10.0263 (4)0.0217 (4)0.0460 (6)0.0025 (3)0.0046 (4)0.0038 (4)
O20.0284 (5)0.0368 (5)0.0361 (5)0.0003 (4)0.0088 (4)0.0073 (4)
N10.0171 (4)0.0185 (4)0.0316 (5)0.0000 (3)0.0017 (4)0.0015 (4)
N20.0183 (4)0.0195 (4)0.0314 (5)0.0011 (3)0.0014 (4)0.0024 (4)
N30.0200 (5)0.0208 (5)0.0345 (6)0.0007 (4)0.0038 (4)0.0035 (4)
Geometric parameters (Å, º) top
C1—N11.4897 (15)C32—H32C0.9800
C1—C21.5303 (17)C1'—C6'1.5232 (18)
C1—C1'1.5451 (17)C1'—C2'1.5298 (17)
C1—S11.8493 (12)C1'—H1'1.0000
C2—H2A0.9800C2'—C3'1.508 (2)
C2—H2B0.9800C2'—H2E0.9900
C2—H2C0.9800C2'—H2F0.9900
C3—N21.2822 (15)C3'—C4'1.376 (2)
C3—N31.3839 (15)C3'—H3'0.9500
C3—S11.7431 (12)C4'—C5'1.451 (2)
C11—O11.2396 (15)C4'—C7'1.507 (2)
C11—N11.3577 (15)C5'—C6'1.510 (2)
C11—C121.4987 (18)C5'—H5A0.9900
C12—H12A0.9800C5'—H5B0.9900
C12—H12B0.9800C6'—H6A0.9900
C12—H12C0.9800C6'—H6B0.9900
C31—O21.2141 (17)C7'—H710.9800
C31—N31.3710 (16)C7'—H720.9800
C31—C321.499 (2)C7'—H730.9800
C32—H32A0.9800N1—N21.4009 (14)
C32—H32B0.9800N3—H30.8800
N1—C1—C2112.45 (10)C3'—C2'—C1'112.07 (12)
N1—C1—C1'110.42 (10)C3'—C2'—H2E109.2
C2—C1—C1'111.76 (10)C1'—C2'—H2E109.2
N1—C1—S1102.15 (7)C3'—C2'—H2F109.2
C2—C1—S1107.88 (9)C1'—C2'—H2F109.2
C1'—C1—S1111.79 (8)H2E—C2'—H2F107.9
C1—C2—H2A109.5C4'—C3'—C2'121.44 (13)
C1—C2—H2B109.5C4'—C3'—H3'119.3
H2A—C2—H2B109.5C2'—C3'—H3'119.3
C1—C2—H2C109.5C3'—C4'—C5'121.69 (14)
H2A—C2—H2C109.5C3'—C4'—C7'120.61 (15)
H2B—C2—H2C109.5C5'—C4'—C7'117.69 (15)
N2—C3—N3118.82 (11)C4'—C5'—C6'116.78 (14)
N2—C3—S1118.67 (9)C4'—C5'—H5A108.1
N3—C3—S1122.49 (9)C6'—C5'—H5A108.1
O1—C11—N1119.99 (11)C4'—C5'—H5B108.1
O1—C11—C12122.86 (11)C6'—C5'—H5B108.1
N1—C11—C12117.15 (11)H5A—C5'—H5B107.3
C11—C12—H12A109.5C5'—C6'—C1'110.78 (12)
C11—C12—H12B109.5C5'—C6'—H6A109.5
H12A—C12—H12B109.5C1'—C6'—H6A109.5
C11—C12—H12C109.5C5'—C6'—H6B109.5
H12A—C12—H12C109.5C1'—C6'—H6B109.5
H12B—C12—H12C109.5H6A—C6'—H6B108.1
O2—C31—N3122.57 (12)C4'—C7'—H71109.5
O2—C31—C32122.65 (13)C4'—C7'—H72109.5
N3—C31—C32114.79 (12)H71—C7'—H72109.5
C31—C32—H32A109.5C4'—C7'—H73109.5
C31—C32—H32B109.5H71—C7'—H73109.5
H32A—C32—H32B109.5H72—C7'—H73109.5
C31—C32—H32C109.5C3—S1—C189.42 (5)
H32A—C32—H32C109.5C11—N1—N2117.63 (10)
H32B—C32—H32C109.5C11—N1—C1124.11 (10)
C6'—C1'—C2'109.00 (11)N2—N1—C1116.65 (9)
C6'—C1'—C1113.93 (10)C3—N2—N1110.05 (10)
C2'—C1'—C1111.97 (10)C31—N3—C3123.79 (11)
C6'—C1'—H1'107.2C31—N3—H3118.1
C2'—C1'—H1'107.2C3—N3—H3118.1
C1—C1'—H1'107.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.952.8223 (14)171
Symmetry code: (i) y+1/4, x+7/4, z+3/4.

Experimental details

Crystal data
Chemical formulaC14H21N3O2S
Mr295.40
Crystal system, space groupTetragonal, I41/a
Temperature (K)180
a, c (Å)16.6855 (3), 21.8961 (8)
V3)6096.0 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.29 × 0.24 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
87517, 4637, 3849
Rint0.032
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.11
No. of reflections4637
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2006), APEX2 (Bruker, 2006, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.952.8223 (14)171.0
Symmetry code: (i) y+1/4, x+7/4, z+3/4.
 

Acknowledgements

The authors thank Professor Abdelkader Mokhlisse for fruitful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAly, A. A., Hassan, A. A., Gomaa, M. A.-M. & El-Sheref, E. M. (2007). Arkivoc, xiv, 1–11.  CrossRef Google Scholar
First citationBeatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, x, 14–23.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemirbas, N., Demirbas, A., Karaoglu, S. A. & Çelik, E. (2005). Arkivoc, i, 75–91.  CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarghaly, A.-R., De Clercq, E. & El-Kashef, H. (2006). Arkivoc, x, 137–151.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationInvidiata, F. P., Simoni, D., Scintu, F. & Pinna, N. (1996). Farmaco, 51, 659–664.  CAS PubMed Web of Science Google Scholar
First citationKubota, S., Toyooka, K., Yamamoto, N., Shibuya, M. & Kido, M. (1982). Chem. Commun. pp. 901–902.  CrossRef Google Scholar
First citationNizamuddin, Gupta, M., Khan, M. H. & Srivastava, M. K. (1999). J. Sci. Ind. Res. 58, 538–542.  CAS Google Scholar
First citationOurhriss, N., Giorgi, M., Mazoir, N. & Benharref, A. (2005). Acta Cryst. C61, o699–o701.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaolo, L. M., Michelangelo, G. & Renato, N. (2005). Arkivok, i, 114–115.  Google Scholar
First citationRadul, O. M., Malinovskii, S. T., Lyuboradskii, R. & Makaev, F. Z. (2005). J. Struct. Chem. 46, 732–737.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X.-W., Zhang, Y., Zhang, Z.-Y., Wang, Q. & Wang, S.-F. (1999). Indian J. Chem. 38B, 380–382.  CAS Google Scholar
First citationUdupi, R. H., Suresh, G. V., Sety, S. R. & Bhat, A. R. (2000). J. Indian Chem. Soc. 77, 302–304.  CAS Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o610-o611
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds