organic compounds
(±)-N-[4-Acetyl-5-methyl-5-(4-methylcyclohex-3-enyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide
aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, Faculté des Sciences, Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: daran@lcc-toulouse.fr
The new title thiadiazole compound, C14H21N3O2S, was semi-synthesized starting from 1-(4-methylcyclohex-3-enyl)ethanone, a natural product isolated from Cedrus atlantica essential oil. The stereochemistry has been confirmed by single-crystal X-ray diffraction. The thiadiazoline ring is roughly planar, although it may be regarded as having a half-chair conformation. The cyclohexenyl ring has a half-chair conformation. The most interesting feature is the formation of a pseudo-ring formed by four molecules associated through N—H⋯O hydrogen bonds around a fourfold inversion axis, forming an R44(28) motif.
Related literature
For related literature, see: Aly et al. (2007); Beatriz et al. (2002); Bernstein et al. (1995); Cremer & Pople (1975); Demirbas et al. (2005); Etter et al. (1990); Farghaly et al. (2006); Invidiata et al. (1996); Kubota et al. (1982); Nizamuddin et al. (1999); Ourhriss et al. (2005); Paolo et al. (2005); Radul et al. (2005); Sun et al. (1999); Udupi et al. (2000).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808004728/bg2164sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004728/bg2164Isup2.hkl
To a solution of an equimolecular quantity of compound (I) and thiosemicarbazide dissolved in ethanol, several drops of HCl (c) were added. The reactional mixture was heated at reflux during 5 h and then evaporated under reduced pressure. The residue obtained was analysed on silica gel column with hexane: ethyl acetate (95:5) as an δ (p.p.m.): 9.49 (NH, s), 1.80 (3H2, s), 2.07 (1H1', m), 5.57 (1H3', dd, J1 = 10 Hz, J2 = 6 Hz), 1.58 (3H-7', s), 2.13, 2.27 (CH3CO, 2 s); 13C NMR (75 MHz, CDCl3) δ (p.p.m.): 85.4 (C-1), 19.2 (C-2), 36.7 (C-1'), 26.2 (C-2'), 118.1 (C-3'), 132.7 (C-4'), 28.2 (C-5'), 23.0 (C-6'), 22.2 (C-7'), 158.1 (C=N), 169.5, 170.4 (COCH3), 22.6, 24.5 (COCH3).
0.25 mmol of the thiosemicarbazone obtained was dissolved in 2 ml of pyridine and 2 ml of acetic anhydride. The mixture was heated at reflux during 1 h with magnetic stirring, and then evaporated under reduced pressure. The residue obtained was purified on a silicagel column using hexane-ethyl acetate (90:10) as an yielded compound (II) in 60% yield. Suitable crystals were obtained by evaporation of a dichloromethane solution at 277 K. m.p.= 483–484 K (dichloromethane); Spectroscopic analysis: 1H NMR (300 MHz, CDCl3)All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.95 (aromatic), 0.98 (methyl) or 0.99 Å(methylene) and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006; data reduction: APEX2 (Bruker, 2006; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).C14H21N3O2S | Dx = 1.287 Mg m−3 |
Mr = 295.40 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 9915 reflections |
Hall symbol: -I 4ad | θ = 2.5–36.1° |
a = 16.6855 (3) Å | µ = 0.22 mm−1 |
c = 21.8961 (8) Å | T = 180 K |
V = 6096.0 (3) Å3 | Platelet, colourless |
Z = 16 | 0.29 × 0.24 × 0.08 mm |
F(000) = 2528 |
Bruker APEXII CCD area-detector diffractometer | 3849 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 30.5°, θmin = 2.4° |
ϕ and ω scans | h = −23→23 |
87517 measured reflections | k = −23→23 |
4637 independent reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0505P)2 + 5.869P] where P = (Fo2 + 2Fc2)/3 |
4637 reflections | (Δ/σ)max = 0.001 |
185 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C14H21N3O2S | Z = 16 |
Mr = 295.40 | Mo Kα radiation |
Tetragonal, I41/a | µ = 0.22 mm−1 |
a = 16.6855 (3) Å | T = 180 K |
c = 21.8961 (8) Å | 0.29 × 0.24 × 0.08 mm |
V = 6096.0 (3) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3849 reflections with I > 2σ(I) |
87517 measured reflections | Rint = 0.032 |
4637 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.39 e Å−3 |
4637 reflections | Δρmin = −0.26 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.65060 (7) | 0.64068 (7) | 0.33934 (6) | 0.0214 (2) | |
C2 | 0.64575 (8) | 0.56723 (8) | 0.29765 (6) | 0.0287 (3) | |
H2A | 0.6800 | 0.5755 | 0.2618 | 0.043* | |
H2B | 0.5902 | 0.5594 | 0.2844 | 0.043* | |
H2C | 0.6639 | 0.5197 | 0.3200 | 0.043* | |
C3 | 0.68632 (7) | 0.78535 (7) | 0.31834 (6) | 0.0211 (2) | |
C11 | 0.79352 (7) | 0.62428 (7) | 0.37378 (6) | 0.0235 (2) | |
C12 | 0.87096 (7) | 0.66585 (8) | 0.38792 (7) | 0.0281 (3) | |
H12A | 0.9094 | 0.6270 | 0.4043 | 0.042* | |
H12B | 0.8615 | 0.7081 | 0.4182 | 0.042* | |
H12C | 0.8926 | 0.6897 | 0.3505 | 0.042* | |
C31 | 0.62901 (8) | 0.90880 (8) | 0.27886 (6) | 0.0270 (2) | |
C32 | 0.64169 (10) | 0.99767 (9) | 0.27574 (10) | 0.0446 (4) | |
H32A | 0.6634 | 1.0120 | 0.2356 | 0.067* | |
H32B | 0.6796 | 1.0140 | 0.3076 | 0.067* | |
H32C | 0.5904 | 1.0252 | 0.2820 | 0.067* | |
C1' | 0.61004 (7) | 0.62529 (7) | 0.40168 (6) | 0.0230 (2) | |
H1' | 0.6342 | 0.5754 | 0.4190 | 0.028* | |
C2' | 0.52001 (8) | 0.61027 (9) | 0.39510 (6) | 0.0298 (3) | |
H2E | 0.4950 | 0.6567 | 0.3743 | 0.036* | |
H2F | 0.5114 | 0.5624 | 0.3693 | 0.036* | |
C3' | 0.47984 (9) | 0.59770 (10) | 0.45606 (7) | 0.0360 (3) | |
H3' | 0.4307 | 0.5690 | 0.4578 | 0.043* | |
C4' | 0.51280 (9) | 0.62689 (10) | 0.50920 (7) | 0.0351 (3) | |
C5' | 0.58895 (11) | 0.66893 (12) | 0.50955 (7) | 0.0433 (4) | |
H5A | 0.6287 | 0.6349 | 0.5309 | 0.052* | |
H5B | 0.5825 | 0.7184 | 0.5340 | 0.052* | |
C6' | 0.62334 (9) | 0.69185 (9) | 0.44820 (6) | 0.0309 (3) | |
H6A | 0.6815 | 0.7023 | 0.4524 | 0.037* | |
H6B | 0.5975 | 0.7417 | 0.4336 | 0.037* | |
C7' | 0.47125 (12) | 0.61447 (13) | 0.56956 (8) | 0.0504 (4) | |
H71 | 0.4231 | 0.5818 | 0.5634 | 0.076* | |
H72 | 0.4561 | 0.6665 | 0.5867 | 0.076* | |
H73 | 0.5076 | 0.5869 | 0.5978 | 0.076* | |
S1 | 0.604309 (17) | 0.726031 (18) | 0.298610 (14) | 0.02284 (9) | |
O1 | 0.78216 (6) | 0.55218 (6) | 0.38435 (5) | 0.0313 (2) | |
O2 | 0.57194 (6) | 0.87583 (6) | 0.25536 (5) | 0.0338 (2) | |
N1 | 0.73445 (6) | 0.66905 (6) | 0.34821 (5) | 0.0224 (2) | |
N2 | 0.74763 (6) | 0.75163 (6) | 0.34255 (5) | 0.0231 (2) | |
N3 | 0.68691 (6) | 0.86761 (6) | 0.31029 (5) | 0.0251 (2) | |
H3 | 0.7268 | 0.8951 | 0.3263 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0182 (5) | 0.0197 (5) | 0.0262 (5) | −0.0009 (4) | −0.0014 (4) | −0.0010 (4) |
C2 | 0.0296 (6) | 0.0251 (6) | 0.0312 (6) | −0.0016 (5) | −0.0005 (5) | −0.0063 (5) |
C3 | 0.0177 (5) | 0.0211 (5) | 0.0245 (5) | −0.0012 (4) | 0.0000 (4) | 0.0011 (4) |
C11 | 0.0200 (5) | 0.0228 (5) | 0.0277 (6) | 0.0034 (4) | −0.0003 (4) | 0.0000 (4) |
C12 | 0.0202 (5) | 0.0264 (6) | 0.0376 (7) | 0.0022 (4) | −0.0047 (5) | 0.0019 (5) |
C31 | 0.0242 (6) | 0.0267 (6) | 0.0302 (6) | 0.0032 (4) | 0.0007 (5) | 0.0060 (5) |
C32 | 0.0397 (8) | 0.0253 (7) | 0.0687 (12) | 0.0039 (6) | −0.0089 (8) | 0.0114 (7) |
C1' | 0.0211 (5) | 0.0236 (5) | 0.0244 (5) | −0.0011 (4) | −0.0006 (4) | 0.0008 (4) |
C2' | 0.0239 (6) | 0.0370 (7) | 0.0287 (6) | −0.0066 (5) | −0.0005 (5) | 0.0027 (5) |
C3' | 0.0288 (7) | 0.0432 (8) | 0.0359 (7) | −0.0025 (6) | 0.0059 (5) | 0.0077 (6) |
C4' | 0.0340 (7) | 0.0396 (8) | 0.0318 (7) | 0.0040 (6) | 0.0066 (6) | 0.0060 (6) |
C5' | 0.0507 (9) | 0.0514 (9) | 0.0278 (7) | −0.0088 (7) | 0.0052 (6) | −0.0059 (6) |
C6' | 0.0320 (7) | 0.0322 (7) | 0.0286 (6) | −0.0054 (5) | 0.0009 (5) | −0.0046 (5) |
C7' | 0.0547 (11) | 0.0607 (11) | 0.0360 (8) | −0.0001 (9) | 0.0146 (8) | 0.0057 (8) |
S1 | 0.01844 (14) | 0.02350 (15) | 0.02657 (15) | −0.00176 (10) | −0.00422 (10) | 0.00242 (10) |
O1 | 0.0263 (4) | 0.0217 (4) | 0.0460 (6) | 0.0025 (3) | −0.0046 (4) | 0.0038 (4) |
O2 | 0.0284 (5) | 0.0368 (5) | 0.0361 (5) | 0.0003 (4) | −0.0088 (4) | 0.0073 (4) |
N1 | 0.0171 (4) | 0.0185 (4) | 0.0316 (5) | 0.0000 (3) | −0.0017 (4) | 0.0015 (4) |
N2 | 0.0183 (4) | 0.0195 (4) | 0.0314 (5) | −0.0011 (3) | −0.0014 (4) | 0.0024 (4) |
N3 | 0.0200 (5) | 0.0208 (5) | 0.0345 (6) | −0.0007 (4) | −0.0038 (4) | 0.0035 (4) |
C1—N1 | 1.4897 (15) | C32—H32C | 0.9800 |
C1—C2 | 1.5303 (17) | C1'—C6' | 1.5232 (18) |
C1—C1' | 1.5451 (17) | C1'—C2' | 1.5298 (17) |
C1—S1 | 1.8493 (12) | C1'—H1' | 1.0000 |
C2—H2A | 0.9800 | C2'—C3' | 1.508 (2) |
C2—H2B | 0.9800 | C2'—H2E | 0.9900 |
C2—H2C | 0.9800 | C2'—H2F | 0.9900 |
C3—N2 | 1.2822 (15) | C3'—C4' | 1.376 (2) |
C3—N3 | 1.3839 (15) | C3'—H3' | 0.9500 |
C3—S1 | 1.7431 (12) | C4'—C5' | 1.451 (2) |
C11—O1 | 1.2396 (15) | C4'—C7' | 1.507 (2) |
C11—N1 | 1.3577 (15) | C5'—C6' | 1.510 (2) |
C11—C12 | 1.4987 (18) | C5'—H5A | 0.9900 |
C12—H12A | 0.9800 | C5'—H5B | 0.9900 |
C12—H12B | 0.9800 | C6'—H6A | 0.9900 |
C12—H12C | 0.9800 | C6'—H6B | 0.9900 |
C31—O2 | 1.2141 (17) | C7'—H71 | 0.9800 |
C31—N3 | 1.3710 (16) | C7'—H72 | 0.9800 |
C31—C32 | 1.499 (2) | C7'—H73 | 0.9800 |
C32—H32A | 0.9800 | N1—N2 | 1.4009 (14) |
C32—H32B | 0.9800 | N3—H3 | 0.8800 |
N1—C1—C2 | 112.45 (10) | C3'—C2'—C1' | 112.07 (12) |
N1—C1—C1' | 110.42 (10) | C3'—C2'—H2E | 109.2 |
C2—C1—C1' | 111.76 (10) | C1'—C2'—H2E | 109.2 |
N1—C1—S1 | 102.15 (7) | C3'—C2'—H2F | 109.2 |
C2—C1—S1 | 107.88 (9) | C1'—C2'—H2F | 109.2 |
C1'—C1—S1 | 111.79 (8) | H2E—C2'—H2F | 107.9 |
C1—C2—H2A | 109.5 | C4'—C3'—C2' | 121.44 (13) |
C1—C2—H2B | 109.5 | C4'—C3'—H3' | 119.3 |
H2A—C2—H2B | 109.5 | C2'—C3'—H3' | 119.3 |
C1—C2—H2C | 109.5 | C3'—C4'—C5' | 121.69 (14) |
H2A—C2—H2C | 109.5 | C3'—C4'—C7' | 120.61 (15) |
H2B—C2—H2C | 109.5 | C5'—C4'—C7' | 117.69 (15) |
N2—C3—N3 | 118.82 (11) | C4'—C5'—C6' | 116.78 (14) |
N2—C3—S1 | 118.67 (9) | C4'—C5'—H5A | 108.1 |
N3—C3—S1 | 122.49 (9) | C6'—C5'—H5A | 108.1 |
O1—C11—N1 | 119.99 (11) | C4'—C5'—H5B | 108.1 |
O1—C11—C12 | 122.86 (11) | C6'—C5'—H5B | 108.1 |
N1—C11—C12 | 117.15 (11) | H5A—C5'—H5B | 107.3 |
C11—C12—H12A | 109.5 | C5'—C6'—C1' | 110.78 (12) |
C11—C12—H12B | 109.5 | C5'—C6'—H6A | 109.5 |
H12A—C12—H12B | 109.5 | C1'—C6'—H6A | 109.5 |
C11—C12—H12C | 109.5 | C5'—C6'—H6B | 109.5 |
H12A—C12—H12C | 109.5 | C1'—C6'—H6B | 109.5 |
H12B—C12—H12C | 109.5 | H6A—C6'—H6B | 108.1 |
O2—C31—N3 | 122.57 (12) | C4'—C7'—H71 | 109.5 |
O2—C31—C32 | 122.65 (13) | C4'—C7'—H72 | 109.5 |
N3—C31—C32 | 114.79 (12) | H71—C7'—H72 | 109.5 |
C31—C32—H32A | 109.5 | C4'—C7'—H73 | 109.5 |
C31—C32—H32B | 109.5 | H71—C7'—H73 | 109.5 |
H32A—C32—H32B | 109.5 | H72—C7'—H73 | 109.5 |
C31—C32—H32C | 109.5 | C3—S1—C1 | 89.42 (5) |
H32A—C32—H32C | 109.5 | C11—N1—N2 | 117.63 (10) |
H32B—C32—H32C | 109.5 | C11—N1—C1 | 124.11 (10) |
C6'—C1'—C2' | 109.00 (11) | N2—N1—C1 | 116.65 (9) |
C6'—C1'—C1 | 113.93 (10) | C3—N2—N1 | 110.05 (10) |
C2'—C1'—C1 | 111.97 (10) | C31—N3—C3 | 123.79 (11) |
C6'—C1'—H1' | 107.2 | C31—N3—H3 | 118.1 |
C2'—C1'—H1' | 107.2 | C3—N3—H3 | 118.1 |
C1—C1'—H1' | 107.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.88 | 1.95 | 2.8223 (14) | 171 |
Symmetry code: (i) y+1/4, −x+7/4, −z+3/4. |
Experimental details
Crystal data | |
Chemical formula | C14H21N3O2S |
Mr | 295.40 |
Crystal system, space group | Tetragonal, I41/a |
Temperature (K) | 180 |
a, c (Å) | 16.6855 (3), 21.8961 (8) |
V (Å3) | 6096.0 (3) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.29 × 0.24 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 87517, 4637, 3849 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.113, 1.11 |
No. of reflections | 4637 |
No. of parameters | 185 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.26 |
Computer programs: APEX2 (Bruker, 2006), APEX2 (Bruker, 2006, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.88 | 1.95 | 2.8223 (14) | 171.0 |
Symmetry code: (i) y+1/4, −x+7/4, −z+3/4. |
Acknowledgements
The authors thank Professor Abdelkader Mokhlisse for fruitful discussions.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aly, A. A., Hassan, A. A., Gomaa, M. A.-M. & El-Sheref, E. M. (2007). Arkivoc, xiv, 1–11. CrossRef Google Scholar
Beatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, x, 14–23. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Demirbas, N., Demirbas, A., Karaoglu, S. A. & Çelik, E. (2005). Arkivoc, i, 75–91. CrossRef Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farghaly, A.-R., De Clercq, E. & El-Kashef, H. (2006). Arkivoc, x, 137–151. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Invidiata, F. P., Simoni, D., Scintu, F. & Pinna, N. (1996). Farmaco, 51, 659–664. CAS PubMed Web of Science Google Scholar
Kubota, S., Toyooka, K., Yamamoto, N., Shibuya, M. & Kido, M. (1982). Chem. Commun. pp. 901–902. CrossRef Google Scholar
Nizamuddin, Gupta, M., Khan, M. H. & Srivastava, M. K. (1999). J. Sci. Ind. Res. 58, 538–542. CAS Google Scholar
Ourhriss, N., Giorgi, M., Mazoir, N. & Benharref, A. (2005). Acta Cryst. C61, o699–o701. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Paolo, L. M., Michelangelo, G. & Renato, N. (2005). Arkivok, i, 114–115. Google Scholar
Radul, O. M., Malinovskii, S. T., Lyuboradskii, R. & Makaev, F. Z. (2005). J. Struct. Chem. 46, 732–737. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, X.-W., Zhang, Y., Zhang, Z.-Y., Wang, Q. & Wang, S.-F. (1999). Indian J. Chem. 38B, 380–382. CAS Google Scholar
Udupi, R. H., Suresh, G. V., Sety, S. R. & Bhat, A. R. (2000). J. Indian Chem. Soc. 77, 302–304. CAS Google Scholar
Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiadiazolic compounds have beenreported in a large number of papers (Beatriz et al., 2002, Farghaly et al., 2006). These compounds are associated with diverse biological activities. Likewise, the 1,3,4-thiadiazoles nuclei which incorporate toxiphoric –N=C—S– linkage possess anti-inflammatory (Udupi et al., 2000), herbicidal (Nizamuddin et al., 1999), antimicrobial (Demirbas et al., 2005) bactericidal (Sun et al., 1999) and anti-HIV-1 properties(Invidiata et al., 1996).
In this connection, the chemical modification of a natural product isolated from Cedrus atlantica essential oil, 1-(4-methylcyclohex-3-enyl) ethanone, using thiosemicarbazide (Paolo et al., 2005; Ourhriss et al., 2005; Aly et al., 2007) followed by treatment of acetic anhydride and pyridine yielded the 1,3,4-thiadiazolic compound (II) with a good yield and high chimiospecifity.
The structure of (II) was established by 1H and 13CNMR and confirmed by its single-Crystal X-ray structure (Fig. 1).
The thiadiazoline ring may be regarded as having a half-chair conformation with puckering parameters Q= 0.184 (1) Å and ϕ= 34.1 (4)° (Cremer & Pople, 1975); however it could be also considered as roughly planar with the largest deviation from the mean plane being -0.1069 (8) Å at N1. Such conformation is usual for thiadiazoline rings (Kubota et al., 1982; Radul et al., 2005). The cyclohexenyl ring has a half-chair conformation with puckering parameters Q=0.489 (2) Å, θ= 49.5 (2)° and ϕ= 344.8 (3)°.
The most interesting feature is the formation of a pseudo ring formed by four molecules associated through N—H···O hydrogen bonds around a fourfold screw axis (Fig. 2, Table 1) so completing a R44(28) motif (Etter et al., 1990; Bernstein et al., 1995).