metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m498-m499

catena-Poly[[bis­­[μ-2-(3-pyrid­yl)-1H-benzimidazole]-κ2N2:N3;κ2N3:N2-disilver(I)]-μ-2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ato-κ2O2:O5]

aDepartment of Civil Engineering, Fujian University of Technology, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: yq014@163.com

(Received 24 December 2007; accepted 21 February 2008; online 27 February 2008)

The title coordination polymer, [Ag2(C10H4O8)(C12H9N3)2]n, was prepared by a hydro­thermal method. The AgI atom exists in a strongly distorted trigonal coordination environment. Two AgI ions related by an inversion centre are coordinated by two 2-(3-pyrid­yl)benzimidazole ligands, forming a centrosymmetric cyclic dimer. The bridging bidentate 2,5-dicarboxy­benzene-1,4-dicarboxyl­ate ligand is also located on an inversion centre and connects the binuclear units, generating a one-dimensional polymer. The almost-planar conformation of this ligand allows it to form a strong intra­molecular O—H⋯O hydrogen bond. Finally, inter­molecular N—H⋯O hydrogen bonds aggregate the chains into a three-dimensional framework.

Related literature

For related literature, see: Alcalde et al. (1992[Alcalde, E., Dinarés, I., Pérez-García, L. & Roca, T. (1992). Synthesis, pp. 395-398.]); Cao et al. (2002[Cao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087-2094.]); Hu et al. (2004[Hu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112-m113.]); Li et al. (2003[Li, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119-3124.]); Xia et al. (2007[Xia, C.-K., Wu, W., Qiu, L. & Xie, J.-M. (2007). Acta Cryst. E63, m2881.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C10H4O8)(C12H9N3)2]

  • Mr = 858.32

  • Monoclinic, P 21 /n

  • a = 4.8940 (11) Å

  • b = 16.011 (4) Å

  • c = 19.077 (4) Å

  • β = 92.393 (3)°

  • V = 1493.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 (2) K

  • 0.48 × 0.13 × 0.13 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalStructure (Version 3.7.0) and CrystalClear (Version 1.36). Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.806, Tmax = 0.842

  • 11420 measured reflections

  • 3405 independent reflections

  • 3079 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.07

  • 3405 reflections

  • 230 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N2 2.1663 (18)
Ag1—N1i 2.207 (2)
Ag1—O1 2.3889 (18)
N2—Ag1—N1i 150.61 (7)
N2—Ag1—O1 115.06 (7)
N1i—Ag1—O1 93.66 (7)
Symmetry code: (i) -x+2, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O4 0.846 (19) 1.56 (2) 2.399 (3) 171 (4)
N3—H3A⋯O3ii 0.86 1.92 2.742 (3) 159
Symmetry code: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalStructure (Version 3.7.0) and CrystalClear (Version 1.36). Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2000[Rigaku (2000). CrystalStructure (Version 3.7.0) and CrystalClear (Version 1.36). Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4,5-Benzenetetracarboxylic acid (H4BTEC) has been regarded as an excellent candidate for the construction of multi-dimensional coordination polymers for its versatile coordination modes and rich hydrogen bonding (Cao et al., 2002; Hu et al., 2004; Li et al., 2003). The coordination supramolecular architectures are controlled by the extent of the deprotonation of H4BTEC, nature of the auxiliary ligands, and metal coordination centers.

In the title coordination polymer, (I), the AgI is three coordinated (Fig. 1). Two symmetry related AgI ions are bonded by four N atoms from two 2-(3-pyridyl)-1H-benzimidazole ligands in the head to end mode, forming a centrosymmetric cyclic dimer. The coordination sphere of the cyclic dimer is completed by the 2,5-dicarboxybenzene-1,4-dicarboxylate coordinating in a bis(monodentate) fashion, which is similar to the coordination mode reported by Xia et al. (2007). The centrosymmetric bridging 2,5-dicarboxybenzene-1,4-dicarboxylate ligands link the binuclear units into a one-dimensional polymeric chain (Fig. 2). Interestingly, the coordinating O atom is provided by the undeprotonated carboxylic group rather than the deprotonated one. The O2—H group in the undeprotonated carboxylic group forms a strong intramolecular hydrogen bond with the adjacent carboxylate group [O2···O4: 2.399 (3) Å]. This contact allows planarity for the bridging ligand, which may be related to the non-coordinating character of carboxylate functionalities. The uncoordinated carboxylate group also provides another O atom for the formation of intermolecular hydrogen bonds [N3···O3: 2.742 (3) Å], forming a three-dimensional framework (Fig. 3). Despite of the presence of aromatic rings, no apparent π···π stacking interactions are found in the crystal structure.

Related literature top

For related literature, see: Alcalde et al. (1992); Cao et al. (2002); Hu et al. (2004); Li et al. (2003); Xia et al. (2007).

Experimental top

A solution of Ag2O (0.07 g, 0.30 mmol), 2-(3-pyridyl)-1H-benzimidazole (Alcalde et al., 1992) (0.14 g, 0.61 mmol), 1,2,4,5-benzenetetracarboxylic acid (0.066 g, 0.30 mmol) and H2O (15 ml) was stirred under ambient conditions. The solution was sealed in a 25 ml Teflon-lined stainless steel vessel, heated at 413 K for 4 days and cooled to room temperature for 3 days. The resulting product was recovered by filtration, washed with distilled water and dried in air (65% yield).

Refinement top

Anisotropic thermal parameters were applied to all non-hydrogen atoms. The carboxylic acid H atom H2B was initially located in a difference map, and then refined with a restrained O—H bond length of 0.83 (1) Å. Other H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(carrier atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atomic labels and 30% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (i) 2 - x, -y, 2 - z; (ii) 1 - x, 1 - y, 2 - z].
[Figure 2] Fig. 2. A view of the one-dimensional chain of (I). H atoms are omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of (I). H atoms are omitted for clarity.
catena-Poly[[bis[µ-2-(3-pyridyl)-1H-benzimidazole]- κ2N2:N3;κ2N3:N2-disilver(I)]-µ-2,5-dicarboxybenzene-1,4- dicarboxylato-κ2O2:O5] top
Crystal data top
[Ag2(C10H4O8)(C12H9N3)2]F(000) = 852
Mr = 858.32Dx = 1.909 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3641 reflections
a = 4.8940 (11) Åθ = 2.5–27.5°
b = 16.011 (4) ŵ = 1.38 mm1
c = 19.077 (4) ÅT = 293 K
β = 92.393 (3)°Prism, colourless
V = 1493.6 (6) Å30.48 × 0.13 × 0.13 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
3405 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 66
Tmin = 0.806, Tmax = 0.842k = 2020
11420 measured reflectionsl = 1824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.9191P]
where P = (Fo2 + 2Fc2)/3
3405 reflections(Δ/σ)max = 0.005
230 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.85 e Å3
Crystal data top
[Ag2(C10H4O8)(C12H9N3)2]V = 1493.6 (6) Å3
Mr = 858.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.8940 (11) ŵ = 1.38 mm1
b = 16.011 (4) ÅT = 293 K
c = 19.077 (4) Å0.48 × 0.13 × 0.13 mm
β = 92.393 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3405 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
3079 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.842Rint = 0.023
11420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
3405 reflectionsΔρmin = 0.85 e Å3
230 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.71244 (4)0.134099 (11)1.018347 (10)0.04125 (9)
C11.1680 (5)0.15500 (14)1.13812 (13)0.0343 (5)
H1A1.29970.19631.13360.041*
C21.0649 (5)0.14053 (14)1.20320 (14)0.0359 (5)
H2A1.12750.17171.24180.043*
C30.8688 (5)0.07976 (15)1.21087 (12)0.0329 (5)
H3B0.79800.06951.25450.039*
C40.7781 (4)0.03380 (13)1.15231 (12)0.0265 (4)
C50.8913 (5)0.05275 (13)1.08884 (12)0.0324 (5)
H5A0.83000.02321.04930.039*
C60.5728 (4)0.03242 (13)1.15806 (11)0.0264 (4)
C70.3021 (5)0.13812 (13)1.13776 (12)0.0269 (4)
C80.1575 (5)0.20687 (14)1.11051 (13)0.0347 (5)
H8A0.18600.22691.06560.042*
C90.0299 (5)0.24392 (16)1.15313 (14)0.0386 (6)
H9A0.12870.29001.13650.046*
C100.0745 (5)0.21380 (16)1.22058 (14)0.0383 (6)
H10A0.20390.23991.24740.046*
C110.0682 (5)0.14644 (15)1.24842 (13)0.0332 (5)
H11A0.03960.12671.29340.040*
C120.2577 (4)0.10963 (13)1.20541 (11)0.0264 (4)
C130.5075 (5)0.32005 (13)0.96973 (12)0.0322 (5)
C140.4884 (5)0.41435 (13)0.98108 (11)0.0271 (4)
C150.3175 (5)0.47238 (13)0.94531 (11)0.0271 (4)
C160.1144 (5)0.45603 (15)0.88456 (12)0.0320 (5)
C170.3352 (5)0.55568 (14)0.96571 (12)0.0297 (5)
H17A0.22140.59390.94220.036*
N11.0845 (4)0.11132 (12)1.08101 (11)0.0347 (4)
N20.5015 (4)0.08847 (11)1.10831 (9)0.0273 (4)
N30.4299 (4)0.04296 (11)1.21627 (9)0.0273 (4)
H3A0.44430.01311.25370.033*
O10.6918 (4)0.28180 (11)1.00119 (11)0.0484 (5)
O20.3341 (4)0.28260 (11)0.92949 (12)0.0486 (5)
H2B0.217 (7)0.316 (2)0.912 (2)0.082 (13)*
O30.0298 (4)0.51666 (11)0.84962 (9)0.0440 (4)
O40.0356 (4)0.38153 (11)0.87095 (10)0.0456 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05515 (15)0.02899 (12)0.04086 (13)0.01185 (8)0.01680 (9)0.00789 (7)
C10.0358 (12)0.0225 (10)0.0449 (14)0.0059 (9)0.0042 (10)0.0043 (9)
C20.0383 (13)0.0301 (12)0.0393 (13)0.0058 (10)0.0011 (10)0.0093 (9)
C30.0362 (12)0.0305 (12)0.0320 (12)0.0041 (10)0.0018 (9)0.0010 (9)
C40.0274 (11)0.0187 (9)0.0333 (11)0.0010 (8)0.0010 (8)0.0001 (8)
C50.0411 (13)0.0216 (10)0.0347 (12)0.0054 (9)0.0037 (10)0.0026 (8)
C60.0283 (11)0.0205 (10)0.0303 (11)0.0005 (8)0.0007 (8)0.0007 (8)
C70.0263 (11)0.0219 (10)0.0323 (11)0.0002 (8)0.0002 (8)0.0008 (8)
C80.0368 (13)0.0280 (11)0.0386 (13)0.0034 (10)0.0037 (10)0.0050 (9)
C90.0372 (13)0.0284 (12)0.0492 (15)0.0097 (10)0.0073 (11)0.0006 (10)
C100.0324 (12)0.0360 (13)0.0463 (14)0.0081 (10)0.0001 (10)0.0107 (10)
C110.0319 (12)0.0337 (12)0.0339 (12)0.0015 (9)0.0014 (9)0.0027 (9)
C120.0259 (11)0.0223 (10)0.0307 (11)0.0005 (8)0.0023 (8)0.0012 (8)
C130.0455 (14)0.0189 (10)0.0327 (12)0.0017 (9)0.0057 (10)0.0001 (8)
C140.0379 (12)0.0173 (9)0.0261 (10)0.0030 (8)0.0037 (9)0.0002 (7)
C150.0347 (12)0.0219 (10)0.0249 (10)0.0022 (9)0.0035 (8)0.0003 (8)
C160.0380 (13)0.0309 (11)0.0269 (11)0.0029 (9)0.0012 (9)0.0016 (9)
C170.0400 (13)0.0207 (10)0.0282 (11)0.0055 (9)0.0013 (9)0.0031 (8)
N10.0428 (12)0.0208 (9)0.0410 (11)0.0040 (8)0.0082 (9)0.0028 (8)
N20.0303 (10)0.0220 (9)0.0297 (9)0.0025 (7)0.0020 (7)0.0016 (7)
N30.0304 (10)0.0244 (9)0.0272 (9)0.0038 (7)0.0014 (7)0.0023 (7)
O10.0691 (13)0.0194 (8)0.0554 (11)0.0126 (8)0.0126 (10)0.0003 (7)
O20.0545 (12)0.0220 (8)0.0680 (13)0.0009 (8)0.0133 (10)0.0091 (8)
O30.0638 (12)0.0335 (9)0.0334 (9)0.0062 (9)0.0137 (8)0.0009 (7)
O40.0538 (12)0.0345 (9)0.0471 (11)0.0065 (8)0.0147 (9)0.0035 (8)
Geometric parameters (Å, º) top
Ag1—N22.1663 (18)C9—H9A0.9300
Ag1—N1i2.207 (2)C10—C111.379 (3)
Ag1—O12.3889 (18)C10—H10A0.9300
C1—N11.344 (3)C11—C121.394 (3)
C1—C21.379 (4)C11—H11A0.9300
C1—H1A0.9300C12—N31.370 (3)
C2—C31.379 (3)C13—O11.226 (3)
C2—H2A0.9300C13—O21.271 (3)
C3—C41.395 (3)C13—C141.529 (3)
C3—H3B0.9300C14—C17ii1.390 (3)
C4—C51.386 (3)C14—C151.407 (3)
C4—C61.468 (3)C15—C171.391 (3)
C5—N11.344 (3)C15—C161.518 (3)
C5—H5A0.9300C16—O31.239 (3)
C6—N31.347 (3)C16—O41.277 (3)
C6—N21.342 (3)C16—O41.277 (3)
C7—C81.397 (3)C17—H17A0.9300
C7—N21.395 (3)N3—O3iii2.742 (3)
C7—C121.394 (3)N3—H3A0.8600
C8—C91.384 (4)O2—O42.399 (3)
C8—H8A0.9300O2—H2B0.846 (19)
C9—C101.400 (4)
N2—Ag1—N1i150.61 (7)C12—C11—H11A121.9
N2—Ag1—O1115.06 (7)N3—C12—C11131.3 (2)
N1i—Ag1—O193.66 (7)N3—C12—C7106.02 (18)
N1—C1—C2122.1 (2)C11—C12—C7122.7 (2)
N1—C1—H1A118.9O1—C13—O2121.3 (2)
C2—C1—H1A118.9O1—C13—C14118.2 (2)
C3—C2—C1119.8 (2)O2—C13—C14120.5 (2)
C3—C2—H2A120.1C17ii—C14—C15117.68 (19)
C1—C2—H2A120.1C17ii—C14—C13113.86 (19)
C2—C3—C4119.1 (2)C15—C14—C13128.5 (2)
C2—C3—H3B120.4C17—C15—C14117.9 (2)
C4—C3—H3B120.4C17—C15—C16114.22 (19)
C5—C4—C3117.3 (2)C14—C15—C16127.83 (19)
C5—C4—C6121.6 (2)O3—C16—O4122.1 (2)
C3—C4—C6121.1 (2)O3—C16—O4122.1 (2)
N1—C5—C4124.0 (2)O3—C16—C15118.0 (2)
N1—C5—H5A118.0O4—C16—C15119.9 (2)
C4—C5—H5A118.0O4—C16—C15119.9 (2)
N3—C6—N2111.75 (19)C15—C17—C14ii124.4 (2)
N3—C6—C4122.18 (19)C15—C17—H17A117.8
N2—C6—C4126.1 (2)C14ii—C17—H17A117.8
C8—C7—N2130.6 (2)C5—N1—C1117.7 (2)
C8—C7—C12120.4 (2)C5—N1—Ag1i123.69 (16)
N2—C7—C12108.97 (19)C1—N1—Ag1i118.53 (16)
C9—C8—C7117.2 (2)C6—N2—C7105.18 (18)
C9—C8—H8A121.4C6—N2—Ag1131.88 (15)
C7—C8—H8A121.4C7—N2—Ag1119.44 (14)
C8—C9—C10121.7 (2)C6—N3—C12108.07 (18)
C8—C9—H9A119.2C6—N3—O3iii129.98 (14)
C10—C9—H9A119.2C12—N3—O3iii119.74 (14)
C11—C10—C9121.9 (2)C6—N3—H3A126.0
C11—C10—H10A119.1C12—N3—H3A126.0
C9—C10—H10A119.1C13—O1—Ag1125.98 (17)
C10—C11—C12116.3 (2)C13—O2—O4110.37 (15)
C10—C11—H11A121.9C13—O2—H2B111 (3)
N1—C1—C2—C30.3 (4)C14—C15—C17—C14ii0.3 (4)
C1—C2—C3—C40.0 (4)C16—C15—C17—C14ii178.4 (2)
C2—C3—C4—C50.4 (3)C4—C5—N1—C11.3 (4)
C2—C3—C4—C6179.0 (2)C4—C5—N1—Ag1i174.85 (17)
C3—C4—C5—N11.1 (4)C2—C1—N1—C50.9 (4)
C6—C4—C5—N1178.3 (2)C2—C1—N1—Ag1i175.50 (19)
C5—C4—C6—N3169.4 (2)N3—C6—N2—C70.7 (2)
C3—C4—C6—N311.2 (3)C4—C6—N2—C7179.8 (2)
C5—C4—C6—N210.2 (3)N3—C6—N2—Ag1158.67 (15)
C3—C4—C6—N2169.2 (2)C4—C6—N2—Ag121.7 (3)
N2—C7—C8—C9179.8 (2)C8—C7—N2—C6179.0 (2)
C12—C7—C8—C90.6 (3)C12—C7—N2—C60.3 (2)
C7—C8—C9—C100.3 (4)C8—C7—N2—Ag117.7 (3)
C8—C9—C10—C110.9 (4)C12—C7—N2—Ag1161.64 (14)
C9—C10—C11—C120.5 (4)N1i—Ag1—N2—C657.2 (3)
C10—C11—C12—N3179.8 (2)O1—Ag1—N2—C6135.92 (19)
C10—C11—C12—C70.4 (4)N1i—Ag1—N2—C7147.28 (17)
C8—C7—C12—N3179.5 (2)O1—Ag1—N2—C719.57 (18)
N2—C7—C12—N30.1 (2)N2—C6—N3—C120.8 (2)
C8—C7—C12—C110.9 (4)C4—C6—N3—C12179.6 (2)
N2—C7—C12—C11179.7 (2)N2—C6—N3—O3iii163.40 (15)
O1—C13—C14—C17ii8.4 (3)C4—C6—N3—O3iii17.0 (3)
O2—C13—C14—C17ii170.6 (2)C11—C12—N3—C6180.0 (2)
O1—C13—C14—C15172.0 (2)C7—C12—N3—C60.5 (2)
O2—C13—C14—C159.0 (4)C11—C12—N3—O3iii15.2 (3)
C17ii—C14—C15—C170.3 (4)C7—C12—N3—O3iii165.26 (14)
C13—C14—C15—C17179.3 (2)O2—C13—O1—Ag115.7 (4)
C17ii—C14—C15—C16178.2 (2)C14—C13—O1—Ag1163.34 (15)
C13—C14—C15—C162.1 (4)N2—Ag1—O1—C1385.5 (2)
C17—C15—C16—O315.1 (3)N1i—Ag1—O1—C1388.1 (2)
C14—C15—C16—O3163.5 (2)O1—C13—O2—O4175.0 (2)
C17—C15—C16—O4164.8 (2)C14—C13—O2—O46.0 (3)
C14—C15—C16—O416.6 (4)O3—C16—O4—O40.0 (4)
C17—C15—C16—O4164.8 (2)C15—C16—O4—O40.0 (3)
C14—C15—C16—O416.6 (4)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+2; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O40.85 (2)1.56 (2)2.399 (3)171 (4)
N3—H3A···O3iii0.861.922.742 (3)159
Symmetry code: (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2(C10H4O8)(C12H9N3)2]
Mr858.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.8940 (11), 16.011 (4), 19.077 (4)
β (°) 92.393 (3)
V3)1493.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.48 × 0.13 × 0.13
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.806, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
11420, 3405, 3079
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.07
No. of reflections3405
No. of parameters230
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.85

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2000).

Selected geometric parameters (Å, º) top
Ag1—N22.1663 (18)Ag1—O12.3889 (18)
Ag1—N1i2.207 (2)
N2—Ag1—N1i150.61 (7)N1i—Ag1—O193.66 (7)
N2—Ag1—O1115.06 (7)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O40.846 (19)1.56 (2)2.399 (3)171 (4)
N3—H3A···O3ii0.861.922.742 (3)159.4
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
 

Footnotes

Alternative address: Fuzhou University, Fuzhou, Fujian 350002 People's Republic of China.

Acknowledgements

The author gratefully acknowledges the financial support of the Key Science and Technology Project of Fujian Province (grant No. 2005H045).

References

First citationAlcalde, E., Dinarés, I., Pérez-García, L. & Roca, T. (1992). Synthesis, pp. 395–398.  CrossRef Google Scholar
First citationCao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087–2094.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112–m113.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalStructure (Version 3.7.0) and CrystalClear (Version 1.36). Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, C.-K., Wu, W., Qiu, L. & Xie, J.-M. (2007). Acta Cryst. E63, m2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m498-m499
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds