organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Chloro-3-methyl-1-phenyl­pyrazol-4-ylcarbon­yl)-N′-(2-meth­oxy­phen­yl)thio­urea

aDepartment of Biology and Environmental Technology, Guiyang College, Guiyang 550005, People's Republic of China, bSchool of Chemistry and Environmental Science, Guizhou University for Nationalites, Guiyang 550025, People's Republic of China, cSchool of Computer Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and dDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: haitangdu@sohu.com

(Received 17 November 2007; accepted 25 December 2007; online 20 February 2008)

In the title compound, C19H17ClN4O2S, the dihedral angle between the pyrazole and phenyl rings is 43.3 (3)°. The bridging unit between the pyrazole and methoxyphenyl rings is planar within 0.0169 Å and makes dihedral angles of 2.3 and 26.4°, respectively, with these two rings. This conformation is influenced by intramolecular N—H⋯O and N—H⋯Cl hydrogen bonds. The crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For related literature, see: Du et al. (2007[Du, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.]); Saeed & Flörke (2007[Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.]); Wang et al. (2007[Wang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN4O2S

  • Mr = 400.88

  • Monoclinic, P 21 /c

  • a = 20.339 (2) Å

  • b = 7.4408 (9) Å

  • c = 12.7919 (15) Å

  • β = 107.029 (2)°

  • V = 1851.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.941

  • 10087 measured reflections

  • 3793 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.04

  • 3793 reflections

  • 254 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1 0.890 (9) 2.398 (14) 3.1657 (14) 144.6 (17)
N4—H4A⋯O1 0.895 (9) 1.913 (15) 2.6589 (19) 139.6 (18)
C2—H2⋯Cg1i 0.93 2.88 3.613 (2) 136
C10—H10BCg2ii 0.96 2.98 3.809 (2) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.611) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.611) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of (I) with the atom-numbering scheme is shown in Fig.1. The pyrazole ring makes dihedral angles of 43.3° and 24.5°, with C1—C6 and C13—C18 rings, respectively; these two six-membered rings are twisted by 19.6° with respect to each other. However, in the similar structure, N-(5-chloro-3-methyl-1-phenyl pyrazole-4-ylcarbonyl)-N'-(4-methphenyl)thiourea (Du et al., 2007), the two phenyl rings deviate from the central pyrazole system with dihedral angles of 74.3° and 2.9°, respectively, the dihedral angle between them being 71.6°. All the bond lengths and angles are in the normal range, corresponding to the related references (Du et al., 2007; Saeed & Flörke, 2007; Wang et al., 2007). There also exist two intramolecular N—H···O and N—H···Cl hydrogen bonds and two C—H···pi interaction (Table 1.). Investigation on the packing pattern demonstrates that those discrete molecules are interconnected by slightly weak contacts C2—H2···Cg1 and C10—H10B···Cg2 [Cg1=C1—C6 and Cg2=C13—C18] into a two-dimensional network, as shown in Fig. 2.

Related literature top

For related literature, see: Du et al. (2007); Saeed & Flörke (2007); Wang et al. (2007).

Experimental top

Powdered ammonium thiocyanate (15 mmol), 5-chloro-3-methyl-1-phenyl-pyrazole-4-carbonyl chloride (10 mmol), PEG-400 (0.15 mmol) and acetone (25 mL) were placed in a dried round-bottomed flask containing a magnetic stirrer bar and stirred at room temperature for 1 h. Then 2-methoxybenzenamine (9.5 mmol) was added, and the mixture was stirred for 5 h. The mixture was poured into water (20 mL). The resulting solid was filtered, dried and recrystallized from DMF-EtOH to give N-(5-chloro-3-methyl-1-phenyl pyrazole-4-ylcarbonyl)-N'-(2-methoxyphenyl)thiourea. Single crystals of the title compound were obtained by slow evaporation of a solution in DMF-EtOH(1:1,v/v).

Refinement top

H atoms bonded to N atoms were located in a difference map and refined with distance restraint of N—H = 0.89 Å with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme, showing N—H···O and N—H···Cl intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The two-dimensional supramolecular framework showing the C—H···pi contacts [Cg1=C1—C6, Cg2=C13—C18].
N-(5-Chloro-3-methyl-1-phenylpyrazol-4-ylcarbonyl)- N'-(2-methoxyphenyl)thiourea top
Crystal data top
C19H17ClN4O2SF(000) = 832
Mr = 400.88Dx = 1.439 Mg m3
Monoclinic, P21/cMelting point: 437 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 20.339 (2) ÅCell parameters from 5493 reflections
b = 7.4408 (9) Åθ = 2.7–26.4°
c = 12.7919 (15) ŵ = 0.34 mm1
β = 107.029 (2)°T = 294 K
V = 1851.0 (4) Å3Prism, colorless
Z = 40.24 × 0.22 × 0.18 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3793 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1925
Tmin = 0.922, Tmax = 0.941k = 97
10087 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4744P]
where P = (Fo2 + 2Fc2)/3
3793 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H17ClN4O2SV = 1851.0 (4) Å3
Mr = 400.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.339 (2) ŵ = 0.34 mm1
b = 7.4408 (9) ÅT = 294 K
c = 12.7919 (15) Å0.24 × 0.22 × 0.18 mm
β = 107.029 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3793 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3065 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.941Rint = 0.024
10087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
3793 reflectionsΔρmin = 0.23 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32848 (2)0.38045 (8)0.78067 (4)0.05368 (16)
Cl10.39634 (2)0.49010 (7)0.47794 (3)0.04935 (14)
O10.16432 (6)0.5391 (2)0.46861 (10)0.0554 (4)
O20.06377 (6)0.3605 (2)0.62638 (10)0.0530 (3)
N10.32052 (6)0.59589 (19)0.27986 (10)0.0375 (3)
N20.25436 (7)0.6246 (2)0.21555 (11)0.0419 (3)
N30.27109 (7)0.4682 (2)0.57720 (11)0.0438 (4)
N40.19402 (7)0.4401 (2)0.67699 (11)0.0418 (3)
C10.43578 (9)0.6916 (3)0.27971 (15)0.0472 (4)
H10.44280.74520.34780.057*
C20.48659 (9)0.6974 (3)0.22681 (16)0.0523 (5)
H20.52840.75280.26070.063*
C30.47554 (9)0.6224 (3)0.12530 (16)0.0520 (5)
H30.50970.62760.09050.062*
C40.41394 (10)0.5393 (3)0.07479 (15)0.0542 (5)
H40.40640.49030.00540.065*
C50.36327 (9)0.5282 (3)0.12681 (14)0.0472 (4)
H50.32200.47000.09340.057*
C60.37472 (8)0.6047 (2)0.22901 (13)0.0371 (4)
C70.32183 (8)0.5520 (2)0.38253 (13)0.0357 (3)
C80.25474 (8)0.5552 (2)0.38879 (13)0.0363 (4)
C90.21508 (8)0.6007 (2)0.28072 (13)0.0384 (4)
C100.13868 (8)0.6187 (3)0.23440 (15)0.0495 (5)
H10A0.12760.65390.15900.074*
H10B0.12230.70820.27470.074*
H10C0.11720.50550.23980.074*
C110.22584 (8)0.5214 (2)0.47961 (13)0.0387 (4)
C120.25973 (8)0.4323 (2)0.67773 (13)0.0378 (4)
C130.16530 (8)0.4213 (2)0.76497 (13)0.0389 (4)
C140.20047 (9)0.4519 (3)0.87383 (14)0.0521 (5)
H140.24690.48160.89370.063*
C150.16671 (11)0.4384 (3)0.95325 (15)0.0604 (5)
H150.19050.45961.02620.072*
C160.09837 (11)0.3938 (3)0.92464 (16)0.0601 (5)
H160.07630.38220.97850.072*
C170.06196 (9)0.3661 (3)0.81632 (16)0.0516 (5)
H170.01540.33790.79730.062*
C180.09501 (8)0.3806 (2)0.73614 (14)0.0404 (4)
C190.00924 (9)0.3381 (4)0.59165 (18)0.0673 (6)
H19A0.02110.23070.62360.101*
H19B0.02510.32860.51340.101*
H19C0.03050.43980.61460.101*
H3A0.3155 (5)0.467 (3)0.5812 (17)0.062 (6)*
H4A0.1642 (8)0.468 (3)0.6123 (10)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0354 (2)0.0762 (4)0.0463 (3)0.0095 (2)0.00703 (19)0.0106 (2)
Cl10.0290 (2)0.0731 (3)0.0433 (2)0.00205 (19)0.00649 (17)0.0023 (2)
O10.0294 (6)0.0926 (11)0.0459 (7)0.0051 (6)0.0140 (5)0.0108 (7)
O20.0300 (6)0.0846 (10)0.0443 (7)0.0058 (6)0.0108 (5)0.0054 (6)
N10.0276 (6)0.0478 (8)0.0377 (7)0.0009 (6)0.0107 (5)0.0008 (6)
N20.0298 (7)0.0543 (9)0.0407 (7)0.0017 (6)0.0090 (6)0.0021 (6)
N30.0279 (7)0.0655 (10)0.0395 (7)0.0010 (7)0.0124 (6)0.0038 (7)
N40.0289 (7)0.0627 (10)0.0338 (7)0.0018 (6)0.0092 (6)0.0016 (7)
C10.0395 (9)0.0516 (11)0.0540 (10)0.0062 (8)0.0190 (8)0.0106 (9)
C20.0363 (9)0.0572 (12)0.0672 (12)0.0069 (8)0.0213 (8)0.0031 (10)
C30.0426 (10)0.0635 (12)0.0583 (11)0.0045 (9)0.0280 (9)0.0085 (9)
C40.0472 (10)0.0780 (14)0.0410 (9)0.0036 (10)0.0186 (8)0.0000 (9)
C50.0358 (9)0.0651 (12)0.0402 (9)0.0021 (8)0.0104 (7)0.0014 (8)
C60.0302 (8)0.0418 (9)0.0420 (8)0.0022 (7)0.0146 (7)0.0029 (7)
C70.0283 (7)0.0413 (9)0.0364 (8)0.0011 (7)0.0077 (6)0.0023 (7)
C80.0277 (7)0.0434 (9)0.0384 (8)0.0007 (7)0.0108 (6)0.0019 (7)
C90.0305 (8)0.0438 (9)0.0410 (8)0.0001 (7)0.0109 (7)0.0012 (7)
C100.0304 (9)0.0670 (13)0.0493 (10)0.0014 (8)0.0092 (7)0.0046 (9)
C110.0306 (8)0.0474 (10)0.0389 (8)0.0011 (7)0.0112 (7)0.0011 (7)
C120.0328 (8)0.0422 (9)0.0386 (8)0.0018 (7)0.0106 (7)0.0003 (7)
C130.0348 (8)0.0462 (10)0.0382 (8)0.0029 (7)0.0145 (7)0.0031 (7)
C140.0394 (9)0.0748 (14)0.0413 (9)0.0019 (9)0.0104 (8)0.0019 (9)
C150.0569 (12)0.0878 (16)0.0365 (9)0.0121 (11)0.0137 (9)0.0016 (10)
C160.0612 (12)0.0812 (15)0.0474 (10)0.0082 (11)0.0306 (10)0.0100 (10)
C170.0407 (9)0.0642 (13)0.0559 (11)0.0001 (9)0.0236 (8)0.0053 (9)
C180.0362 (8)0.0450 (10)0.0416 (9)0.0015 (7)0.0140 (7)0.0014 (7)
C190.0344 (10)0.0985 (18)0.0654 (13)0.0134 (10)0.0090 (9)0.0023 (12)
Geometric parameters (Å, º) top
S1—C121.6612 (17)C4—H40.9300
Cl1—C71.7072 (16)C5—C61.382 (2)
O1—C111.2246 (19)C5—H50.9300
O2—C181.369 (2)C7—C81.390 (2)
O2—C191.430 (2)C8—C91.422 (2)
N1—C71.346 (2)C8—C111.469 (2)
N1—N21.3729 (18)C9—C101.498 (2)
N1—C61.4361 (19)C10—H10A0.9600
N2—C91.325 (2)C10—H10B0.9600
N3—C111.374 (2)C10—H10C0.9600
N3—C121.397 (2)C13—C141.385 (2)
N3—H3A0.890 (9)C13—C181.401 (2)
N4—C121.335 (2)C14—C151.386 (3)
N4—C131.419 (2)C14—H140.9300
N4—H4A0.895 (9)C15—C161.370 (3)
C1—C61.382 (2)C15—H150.9300
C1—C21.392 (2)C16—C171.382 (3)
C1—H10.9300C16—H160.9300
C2—C31.370 (3)C17—C181.385 (2)
C2—H20.9300C17—H170.9300
C3—C41.377 (3)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.383 (2)C19—H19C0.9600
C18—O2—C19117.33 (14)C8—C9—C10129.27 (14)
C7—N1—N2110.99 (12)C9—C10—H10A109.5
C7—N1—C6130.88 (13)C9—C10—H10B109.5
N2—N1—C6117.99 (13)H10A—C10—H10B109.5
C9—N2—N1105.54 (13)C9—C10—H10C109.5
C11—N3—C12130.06 (14)H10A—C10—H10C109.5
C11—N3—H3A117.0 (13)H10B—C10—H10C109.5
C12—N3—H3A112.6 (13)O1—C11—N3121.70 (15)
C12—N4—C13129.34 (14)O1—C11—C8121.50 (15)
C12—N4—H4A114.9 (13)N3—C11—C8116.80 (14)
C13—N4—H4A115.6 (13)N4—C12—N3114.84 (14)
C6—C1—C2118.66 (17)N4—C12—S1128.64 (13)
C6—C1—H1120.7N3—C12—S1116.50 (12)
C2—C1—H1120.7C14—C13—C18119.13 (15)
C3—C2—C1120.60 (17)C14—C13—N4124.74 (15)
C3—C2—H2119.7C18—C13—N4115.98 (14)
C1—C2—H2119.7C13—C14—C15120.26 (17)
C2—C3—C4120.13 (17)C13—C14—H14119.9
C2—C3—H3119.9C15—C14—H14119.9
C4—C3—H3119.9C16—C15—C14120.21 (18)
C3—C4—C5120.31 (18)C16—C15—H15119.9
C3—C4—H4119.8C14—C15—H15119.9
C5—C4—H4119.8C15—C16—C17120.51 (17)
C6—C5—C4119.20 (17)C15—C16—H16119.7
C6—C5—H5120.4C17—C16—H16119.7
C4—C5—H5120.4C16—C17—C18119.80 (17)
C5—C6—C1121.07 (15)C16—C17—H17120.1
C5—C6—N1118.09 (14)C18—C17—H17120.1
C1—C6—N1120.82 (15)O2—C18—C17124.80 (15)
N1—C7—C8108.23 (13)O2—C18—C13115.14 (14)
N1—C7—Cl1121.51 (11)C17—C18—C13120.06 (16)
C8—C7—Cl1130.10 (13)O2—C19—H19A109.5
C7—C8—C9103.59 (13)O2—C19—H19B109.5
C7—C8—C11132.02 (14)H19A—C19—H19B109.5
C9—C8—C11124.40 (14)O2—C19—H19C109.5
N2—C9—C8111.64 (13)H19A—C19—H19C109.5
N2—C9—C10119.07 (15)H19B—C19—H19C109.5
C7—N1—N2—C91.05 (18)C11—C8—C9—C102.0 (3)
C6—N1—N2—C9177.15 (14)C12—N3—C11—O12.6 (3)
C6—C1—C2—C31.6 (3)C12—N3—C11—C8177.70 (17)
C1—C2—C3—C40.4 (3)C7—C8—C11—O1176.78 (18)
C2—C3—C4—C51.1 (3)C9—C8—C11—O13.6 (3)
C3—C4—C5—C61.3 (3)C7—C8—C11—N33.5 (3)
C4—C5—C6—C10.0 (3)C9—C8—C11—N3176.15 (16)
C4—C5—C6—N1178.21 (16)C13—N4—C12—N3176.04 (17)
C2—C1—C6—C51.4 (3)C13—N4—C12—S15.8 (3)
C2—C1—C6—N1179.60 (16)C11—N3—C12—N44.6 (3)
C7—N1—C6—C5134.17 (19)C11—N3—C12—S1176.95 (15)
N2—N1—C6—C541.0 (2)C12—N4—C13—C1423.6 (3)
C7—N1—C6—C147.6 (3)C12—N4—C13—C18160.93 (18)
N2—N1—C6—C1137.20 (17)C18—C13—C14—C151.4 (3)
N2—N1—C7—C81.46 (19)N4—C13—C14—C15176.77 (19)
C6—N1—C7—C8176.90 (16)C13—C14—C15—C160.3 (3)
N2—N1—C7—Cl1174.41 (12)C14—C15—C16—C171.5 (3)
C6—N1—C7—Cl11.0 (3)C15—C16—C17—C181.0 (3)
N1—C7—C8—C91.22 (18)C19—O2—C18—C175.6 (3)
Cl1—C7—C8—C9174.18 (14)C19—O2—C18—C13173.48 (18)
N1—C7—C8—C11179.09 (17)C16—C17—C18—O2178.28 (19)
Cl1—C7—C8—C115.5 (3)C16—C17—C18—C130.7 (3)
N1—N2—C9—C80.24 (19)C14—C13—C18—O2177.16 (17)
N1—N2—C9—C10178.72 (16)N4—C13—C18—O21.4 (2)
C7—C8—C9—N20.61 (19)C14—C13—C18—C171.9 (3)
C11—C8—C9—N2179.67 (16)N4—C13—C18—C17177.68 (17)
C7—C8—C9—C10177.68 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.89 (1)2.40 (1)3.1657 (14)145 (2)
N4—H4A···O10.90 (1)1.91 (2)2.6589 (19)140 (2)
C2—H2···Cg1i0.932.883.613 (2)136
C10—H10B···Cg2ii0.962.983.809 (2)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H17ClN4O2S
Mr400.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)20.339 (2), 7.4408 (9), 12.7919 (15)
β (°) 107.029 (2)
V3)1851.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
10087, 3793, 3065
Rint0.024
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.04
No. of reflections3793
No. of parameters254
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.890 (9)2.398 (14)3.1657 (14)144.6 (17)
N4—H4A···O10.895 (9)1.913 (15)2.6589 (19)139.6 (18)
C2—H2···Cg1i0.932.883.613 (2)136
C10—H10B···Cg2ii0.962.983.809 (2)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank Guiyang College (grant No. 2007012) for financial support.

References

First citationBruker (1997). SMART (Version 5.611) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds