inorganic compounds
A new sodium dimangnesium trivanadate, NaMg2V3O10
aInstitut Préparatoire aux Études d'Ingénieur de Monastir, Avenue Ibn-El-Jazzar, 5019 Monastir, Tunisia, and bDépartament de Chimie, Faculté des Sciences de Monastir, 5000 Monastir, Tunisia
*Correspondence e-mail: brahimayed@yahoo.fr
A single crystal of NaMg2V3O10 has been prepared by solid-state reaction at 1173 K. The [Mg2(V3O10)]− anions are built up from edge-sharing MgO6 octahedra to form [Mg4O18] units, which are linked to each other by trivanadate groups (V3O10). The Na+ ions are located in the tunnel space.
Related literature
For related literature, see: Barbier (1988); Brown & Altermatt (1985); Gopal & Calvo (1974); Krishnamachari & Calvo (1971); Mitiaev et al. (2004); Murashova et al. (1988a, 1988b); Ng & Calvo (1972); Saux & Galy (1973).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680800322X/br2067sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680800322X/br2067Isup2.hkl
The starting materials for synthesizing NaMg2V3O10 were NaVO3, V2O5 and Mg(NO3)2.7H2O. The stoichiometric mixture was heated in air, in a platinum crucible, after a progressive heating to 873 K, the mixture was heated at 1173 K, cooled to 773 K at rate of 5 K.hr-1 and then to room temperature. The parallelepiped crystals obtained after washing with hot water were brown. Quantitative analysis of these crystals, by electron microscope probe, revealed that they contain sodium, magnesium and vanadium.
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).NaMg2V3O10 | Z = 2 |
Mr = 384.42 | F(000) = 368 |
Triclinic, P1 | Dx = 3.171 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7369 (1) Å | Cell parameters from 25 reflections |
b = 6.7553 (1) Å | θ = 1.5–27.0° |
c = 9.6222 (1) Å | µ = 3.66 mm−1 |
α = 104.325 (1)° | T = 293 K |
β = 100.604 (1)° | Parallelepiped, brown |
γ = 101.696 (1)° | 0.4 × 0.07 × 0.03 mm |
V = 402.63 (1) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1415 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
ω/2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→8 |
Tmin = 0.871, Tmax = 0.965 | l = −12→12 |
3118 measured reflections | 2 standard reflections every 120 min |
1712 independent reflections | intensity decay: 0.4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0426P)2 + 0.4338P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.73 e Å−3 |
1712 reflections | Δρmin = −1.18 e Å−3 |
146 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.003 (2) |
NaMg2V3O10 | γ = 101.696 (1)° |
Mr = 384.42 | V = 402.63 (1) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7369 (1) Å | Mo Kα radiation |
b = 6.7553 (1) Å | µ = 3.66 mm−1 |
c = 9.6222 (1) Å | T = 293 K |
α = 104.325 (1)° | 0.4 × 0.07 × 0.03 mm |
β = 100.604 (1)° |
Enraf–Nonius CAD-4 diffractometer | 1415 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.049 |
Tmin = 0.871, Tmax = 0.965 | 2 standard reflections every 120 min |
3118 measured reflections | intensity decay: 0.4% |
1712 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 146 parameters |
wR(F2) = 0.095 | 0 restraints |
S = 1.06 | Δρmax = 0.73 e Å−3 |
1712 reflections | Δρmin = −1.18 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.11192 (10) | 0.04819 (10) | 0.30906 (7) | 0.00700 (18) | |
V2 | 0.23427 (10) | −0.33675 (10) | −0.04757 (7) | 0.00795 (18) | |
V3 | −0.22756 (10) | −0.42610 (10) | 0.38667 (7) | 0.00858 (19) | |
Mg1 | −0.20718 (18) | −0.18407 (18) | −0.01815 (13) | 0.0043 (3) | |
Mg2 | −0.76019 (19) | −0.4331 (2) | 0.29306 (14) | 0.0098 (3) | |
Na | 0.6408 (4) | 0.0239 (3) | 0.3640 (3) | 0.0416 (6) | |
O1 | 0.0677 (4) | 0.1930 (5) | 0.4803 (3) | 0.0156 (6) | |
O2 | 0.2277 (4) | 0.2383 (4) | 0.2402 (3) | 0.0118 (6) | |
O3 | −0.2797 (5) | −0.6006 (5) | 0.4778 (3) | 0.0172 (6) | |
O4 | −0.1271 (4) | −0.0914 (5) | 0.2063 (3) | 0.0143 (6) | |
O5 | 0.0972 (4) | −0.4778 (4) | −0.2430 (3) | 0.0118 (6) | |
O6 | 0.2690 (5) | −0.1090 (5) | 0.3424 (3) | 0.0163 (6) | |
O7 | 0.2151 (4) | −0.5009 (4) | 0.0627 (3) | 0.0130 (6) | |
O8 | −0.4437 (4) | −0.3693 (5) | 0.3187 (3) | 0.0159 (6) | |
O9 | 0.4808 (5) | −0.2374 (5) | −0.0409 (3) | 0.0188 (7) | |
O10 | 0.1292 (4) | −0.1322 (4) | 0.0086 (3) | 0.0116 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.0082 (3) | 0.0063 (3) | 0.0071 (3) | 0.0016 (2) | 0.0016 (2) | 0.0034 (2) |
V2 | 0.0112 (3) | 0.0072 (3) | 0.0066 (3) | 0.0036 (2) | 0.0021 (2) | 0.0032 (2) |
V3 | 0.0110 (3) | 0.0083 (3) | 0.0078 (3) | 0.0031 (2) | 0.0034 (2) | 0.0033 (2) |
Mg1 | 0.0063 (6) | 0.0029 (5) | 0.0037 (6) | 0.0009 (4) | 0.0012 (4) | 0.0014 (4) |
Mg2 | 0.0104 (7) | 0.0096 (6) | 0.0093 (6) | 0.0022 (5) | 0.0016 (5) | 0.0033 (5) |
Na | 0.0371 (13) | 0.0245 (11) | 0.0622 (16) | 0.0043 (9) | 0.0221 (11) | 0.0066 (11) |
O1 | 0.0171 (15) | 0.0156 (14) | 0.0122 (14) | 0.0003 (11) | 0.0059 (11) | 0.0020 (11) |
O2 | 0.0143 (14) | 0.0099 (13) | 0.0114 (13) | 0.0023 (10) | 0.0029 (11) | 0.0045 (11) |
O3 | 0.0259 (16) | 0.0128 (14) | 0.0188 (15) | 0.0092 (12) | 0.0101 (13) | 0.0087 (12) |
O4 | 0.0123 (14) | 0.0150 (14) | 0.0136 (14) | −0.0011 (11) | 0.0024 (11) | 0.0053 (11) |
O5 | 0.0140 (14) | 0.0133 (14) | 0.0101 (13) | 0.0054 (11) | 0.0050 (11) | 0.0043 (11) |
O6 | 0.0184 (15) | 0.0149 (14) | 0.0198 (15) | 0.0075 (11) | 0.0059 (12) | 0.0092 (12) |
O7 | 0.0150 (14) | 0.0129 (14) | 0.0124 (13) | 0.0059 (11) | 0.0014 (11) | 0.0057 (11) |
O8 | 0.0124 (14) | 0.0175 (14) | 0.0190 (15) | 0.0051 (11) | 0.0034 (11) | 0.0069 (12) |
O9 | 0.0173 (16) | 0.0167 (15) | 0.0241 (17) | 0.0046 (12) | 0.0073 (13) | 0.0074 (13) |
O10 | 0.0127 (13) | 0.0097 (13) | 0.0142 (13) | 0.0038 (10) | 0.0041 (11) | 0.0054 (11) |
V1—O4 | 1.672 (3) | Mg2—Mg1i | 3.1470 (17) |
V1—O6 | 1.688 (3) | Mg2—V2i | 3.4044 (14) |
V1—O2 | 1.704 (3) | Mg2—Naiv | 3.492 (3) |
V1—O1 | 1.806 (3) | Mg2—Naii | 3.575 (3) |
V2—O9 | 1.643 (3) | Na—O3viii | 2.404 (4) |
V2—O10 | 1.694 (3) | Na—O6 | 2.435 (4) |
V2—O7 | 1.717 (3) | Na—O4ix | 2.477 (4) |
V2—O5 | 1.848 (3) | Na—O8ix | 2.509 (4) |
V2—Mg1 | 3.3760 (14) | Na—O6x | 2.665 (4) |
V2—Mg2i | 3.4044 (14) | Na—O1ix | 2.771 (4) |
V3—O8 | 1.642 (3) | Na—V1ix | 3.291 (2) |
V3—O3 | 1.655 (3) | Na—V3ix | 3.380 (2) |
V3—O1ii | 1.757 (3) | Na—V1x | 3.474 (3) |
V3—O5iii | 1.827 (3) | Na—Mg2ix | 3.492 (3) |
V3—Naiv | 3.380 (2) | Na—Nax | 3.543 (5) |
V3—Nav | 3.582 (2) | O1—V3ii | 1.757 (3) |
Mg1—O9iv | 2.020 (3) | O1—Naiv | 2.771 (4) |
Mg1—O4 | 2.028 (3) | O2—Mg1vi | 2.049 (3) |
Mg1—O2vi | 2.049 (3) | O2—Mg2viii | 2.132 (3) |
Mg1—O7iii | 2.051 (3) | O3—Mg2vii | 2.120 (3) |
Mg1—O10vi | 2.069 (3) | O3—Nav | 2.404 (4) |
Mg1—O10 | 2.178 (3) | O4—Naiv | 2.477 (4) |
Mg1—Mg2i | 3.1470 (17) | O5—V3iii | 1.827 (3) |
Mg1—Mg1vi | 3.240 (2) | O5—Mg2i | 2.156 (3) |
Mg1—V1vi | 3.2839 (13) | O6—Mg2ix | 2.082 (3) |
Mg2—O8 | 2.043 (3) | O6—Nax | 2.665 (4) |
Mg2—O6iv | 2.082 (3) | O7—Mg1iii | 2.051 (3) |
Mg2—O7iv | 2.117 (3) | O7—Mg2ix | 2.117 (3) |
Mg2—O3vii | 2.120 (3) | O8—Naiv | 2.509 (4) |
Mg2—O2v | 2.132 (3) | O9—Mg1ix | 2.020 (3) |
Mg2—O5i | 2.156 (3) | O10—Mg1vi | 2.069 (3) |
O4—V1—O6 | 112.10 (15) | O10vi—Mg1—O10 | 80.59 (12) |
O4—V1—O2 | 113.54 (14) | O8—Mg2—O6iv | 88.16 (13) |
O6—V1—O2 | 111.46 (14) | O8—Mg2—O7iv | 86.61 (12) |
O4—V1—O1 | 104.42 (14) | O6iv—Mg2—O7iv | 98.45 (12) |
O6—V1—O1 | 110.07 (14) | O8—Mg2—O3vii | 90.45 (13) |
O2—V1—O1 | 104.72 (14) | O6iv—Mg2—O3vii | 88.10 (13) |
O9—V2—O10 | 107.80 (14) | O7iv—Mg2—O3vii | 172.73 (13) |
O9—V2—O7 | 110.35 (15) | O8—Mg2—O2v | 88.64 (13) |
O10—V2—O7 | 111.25 (14) | O6iv—Mg2—O2v | 176.66 (13) |
O9—V2—O5 | 107.91 (14) | O7iv—Mg2—O2v | 80.40 (12) |
O10—V2—O5 | 107.49 (13) | O3vii—Mg2—O2v | 92.89 (12) |
O7—V2—O5 | 111.87 (13) | O8—Mg2—O5i | 173.94 (13) |
O8—V3—O3 | 109.72 (15) | O6iv—Mg2—O5i | 95.28 (12) |
O8—V3—O1ii | 106.39 (15) | O7iv—Mg2—O5i | 87.95 (11) |
O3—V3—O1ii | 106.04 (14) | O3vii—Mg2—O5i | 94.64 (12) |
O8—V3—O5iii | 111.97 (14) | O2v—Mg2—O5i | 87.83 (11) |
O3—V3—O5iii | 111.02 (14) | O3viii—Na—O6 | 105.48 (13) |
O1ii—V3—O5iii | 111.43 (13) | O3viii—Na—O4ix | 115.05 (13) |
O9iv—Mg1—O4 | 96.22 (13) | O6—Na—O4ix | 131.92 (14) |
O9iv—Mg1—O2vi | 94.40 (13) | O3viii—Na—O8ix | 163.72 (16) |
O4—Mg1—O2vi | 168.05 (13) | O6—Na—O8ix | 70.96 (12) |
O9iv—Mg1—O7iii | 93.58 (13) | O4ix—Na—O8ix | 76.24 (12) |
O4—Mg1—O7iii | 100.80 (12) | O3viii—Na—O6x | 70.20 (12) |
O2vi—Mg1—O7iii | 83.95 (12) | O6—Na—O6x | 92.11 (12) |
O9iv—Mg1—O10vi | 100.55 (13) | O4ix—Na—O6x | 124.66 (14) |
O4—Mg1—O10vi | 88.02 (12) | O8ix—Na—O6x | 93.84 (13) |
O2vi—Mg1—O10vi | 84.66 (12) | O3viii—Na—O1ix | 69.27 (11) |
O7iii—Mg1—O10vi | 162.47 (13) | O6—Na—O1ix | 162.23 (15) |
O9iv—Mg1—O10 | 178.74 (12) | O4ix—Na—O1ix | 62.91 (10) |
O4—Mg1—O10 | 83.25 (12) | O8ix—Na—O1ix | 109.07 (13) |
O2vi—Mg1—O10 | 86.24 (12) | O6x—Na—O1ix | 70.12 (11) |
O7iii—Mg1—O10 | 85.40 (11) |
Symmetry codes: (i) −x−1, −y−1, −z; (ii) −x, −y, −z+1; (iii) −x, −y−1, −z; (iv) x−1, y, z; (v) x−1, y−1, z; (vi) −x, −y, −z; (vii) −x−1, −y−1, −z+1; (viii) x+1, y+1, z; (ix) x+1, y, z; (x) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | NaMg2V3O10 |
Mr | 384.42 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.7369 (1), 6.7553 (1), 9.6222 (1) |
α, β, γ (°) | 104.325 (1), 100.604 (1), 101.696 (1) |
V (Å3) | 402.63 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.66 |
Crystal size (mm) | 0.4 × 0.07 × 0.03 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.871, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3118, 1712, 1415 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.095, 1.06 |
No. of reflections | 1712 |
No. of parameters | 146 |
Δρmax, Δρmin (e Å−3) | 0.73, −1.18 |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998).
V1—O4 | 1.672 (3) | V2—O7 | 1.717 (3) |
V1—O6 | 1.688 (3) | V2—O5 | 1.848 (3) |
V1—O2 | 1.704 (3) | V3—O8 | 1.642 (3) |
V1—O1 | 1.806 (3) | V3—O3 | 1.655 (3) |
V2—O9 | 1.643 (3) | V3—O1i | 1.757 (3) |
V2—O10 | 1.694 (3) | V3—O5ii | 1.827 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y−1, −z. |
References
Barbier, J. (1988). Eur. J. Solid State Inorg. Chem. 25, 609–619. CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fair, C. K. (1990). MolEN. Enraf–Nonus, Delft, The Netherlands. Google Scholar
Gopal, R. & Calvo, C. (1974). Acta Cryst. B30, 2491–2493. CrossRef IUCr Journals Web of Science Google Scholar
Krishnamachari, N. & Calvo, C. (1971). Can. J. Chem. 49, 1629–1637. CrossRef CAS Web of Science Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Mitiaev, A., Mironov, A., Shpanchenko, R. & Antipov, E. (2004). Acta Cryst. C60, i56–i58. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murashova, E. V., Velikodnyi, Yu. A. & Trunov, V. K. (1988a). Zh. Strukt. Khim. 29, 182–184. CAS Google Scholar
Murashova, E. V., Velikodnyi, Yu. A. & Trunov, V. K. (1988b). Russ. J. Inorg. Chem. (Zh. Neorg. Khim.), 33, 904–905. Google Scholar
Ng, H. N. & Calvo, C. (1972). Can. J. Chem. 50, 3619–3624. CrossRef Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Saux, M. & Galy, J. (1973). C. R. Acad. Sci. Ser. C, 276, 81–84. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis and structural characterization of new materials characterized by mixed open frameworks of MO6 octahedra and XO4 tetrahedra sharing edges and/or corners delimiting tunnels where cations are located and study of their properties are an active area of research in solid state chemistry, due to their interest in the fields of catalysis, ion exchange and ion conduction. In the system MgO–V2O5, a small number of compounds have been structurally characterized now, namely, Mg2V2O7 (Gopal & Calvo, 1974), MgV2O6 (Ng & Calvo, 1972), Mg3(VO4)2 (Krishnamachari & Calvo, 1971) and MgV3O8 (Saux & Galy, 1973). The same is true for the inclusion of alkali elements into this system, to our knowledge, only the structure of NaMg4(VO4)3 (Murashova et al., 1988a), LiMg(VO4) (Barbier, 1988), K2MgV2O7 (Murashova et al., 1988b) and Na6Mg2(V4O15)(Mitiaev et al., 2004) have been determined. Extending our investigation a new magnesium trivanadate, NaMg2V3O10 has been prepared by a conventional solid-state reaction and characterized by single-crystal X-ray diffraction. The structure of NaMg2V3O10 consists of MgO6 octahedra and VO4 tetrahedral sharing corners and edges to form a three-dimensional framework. The Na+ are located in the tunnels space. A projection of the structure, showing the displacement ellipsoids, is presented in Fig 1. The Mg2 (V3O10)]- anions are built up from edge sharing MgO6 octahedra to form [Mg4O18] units, which are linked to each other by trivanadate groups (V3O10). The Mg4O18 basal unit is built up by the edge linkages of four MgO6 octahedra, Such a unit is formed by two kind of divalent-metal cations, one labeled as Mg1 share edge with another labelled Mg2 forming Mg2O10 dimers, repetition of the dimers ensured by centres of symmetry on the shared edge between two Mg1O6 leads to the formation of Mg4O10 unit. Each trivanadate is formed by three tetrahedra, V1O4, V2O4 and V3O4, interconnected through the corners O1 and O5. The V1, V2 and V3 tetrahedron shares the eight remaining O-atom corners with five Mg4O18 units forming ribbons running along the [011] direction (Fig. 2). The projection of the structure along the [001] show that the trivanadate groups and the MgO6 polyhedra form six side tunnels running along [001] in which Na+ cations are located (Fig3). The geometry of the VO4 tetrahedra is close to that generally observed. Two groups of distances can be distinguished. The V—O bonds corresponding to the two V—O—V bridges of the V3O10 groups are the largest one. Consequently, the two external tetrahedra V1 and V2 present one long V—O distance and three smaller ones. Whereas the cental V3 tetrahedron has two long and two shorter. The Mg atoms are surrounded by six O atoms and the sodium cations exhibit a sixfold coordination. The bond valence sums determined using the Brown & Altermatt (1985) formulation are in the agreement with the formal charges deduced from the chemical formula: 5.088, 5.020, 5.100 from V1 to V3 respectively; 0.858 for Na; 2,188, 1.960 for Mg1 and Mg2 respectively, and ranging from 1.928 to 2.197 for the oxygen atoms.