metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(4-formyl­benzoato-κO)cobalt(II) tetra­hydrate

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 January 2008; accepted 28 January 2008; online 6 February 2008)

The CoII atom in the title compound, [Co(C8H5O3)2(H2O)4]·4H2O, which exists in an all-trans octa­hedral coordination geometry, lies on a center of inversion. The coordinated and uncoordinated water mol­ecules engage in extensive hydrogen-bonding inter­actions, forming a three-dimensional hydrogen-bonded network.

Related literature

Hexaaqua­cobalt(II) bis­(4-formyl­benzoate) dihydrate was isolated from the reaction of cobalt(II) acetate and 4-formyl­benzoic acid in the presence of sodium hydroxide; see Deng et al. (2006b[Deng, Z.-P., Gao, S. & Ng, S. W. (2006b). Acta Cryst. E62, m3423-m3424.]). The reaction with pyridine in place of sodium hydroxide yielded the formylbenzoate-coordinated title compound. This is isostructural with the nickel analog; see Deng et al. (2006a[Deng, Z.-P., Gao, S. & Ng, S. W. (2006a). Acta Cryst. E62, m2904-m2905.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H5O3)2(H2O)4]·4H2O

  • Mr = 501.30

  • Triclinic, [P \overline 1]

  • a = 7.1472 (3) Å

  • b = 7.4759 (4) Å

  • c = 11.5720 (6) Å

  • α = 77.114 (2)°

  • β = 77.905 (2)°

  • γ = 63.839 (1)°

  • V = 536.61 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 295 (2) K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.666, Tmax = 0.832

  • 5294 measured reflections

  • 2426 independent reflections

  • 2270 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.080

  • S = 1.03

  • 2426 reflections

  • 174 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.098 (1)
Co1—O1W 2.113 (1)
Co1—O2W 2.116 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3i 0.86 (1) 1.77 (1) 2.611 (2) 166 (2)
O1W—H1W2⋯O3Wii 0.84 (1) 2.11 (1) 2.925 (2) 161 (2)
O2W—H2W1⋯O3W 0.85 (1) 1.97 (1) 2.808 (2) 168 (2)
O2W—H2W2⋯O4Wii 0.85 (1) 1.97 (1) 2.808 (2) 169 (2)
O3W—H3W1⋯O4W 0.85 (1) 2.00 (1) 2.810 (2) 159 (2)
O3W—H3W2⋯O1iii 0.84 (1) 2.19 (1) 2.992 (2) 159 (2)
O4W—H4W1⋯O2iv 0.85 (1) 1.93 (1) 2.771 (2) 169 (3)
O4W—H4W2⋯O3i 0.85 (1) 2.00 (1) 2.841 (2) 172 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) x, y+1, z; (iv) x, y+1, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); method used to solve structure: atomic coordinates taken from the isostructural nickel analog; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Hexaaquacobalt(II) bis(4-formylbenzoate) dihydrate was isolated from the reaction of cobalt(II) acetate and 4-formylbenzoic acid in the presence of sodium hydroxide (Deng et al., 2006b). The reaction with pyridine in place of sodium hydroxide yielded the formybenzoate-coordinated title compound.

Related literature top

Hexaaquacobalt(II) bis(4-formylbenzoate) dihydrate was isolated from the reaction of cobalt(II) acetate and 4-formylbenzoic acid in the presence of sodium hydroxide; see Deng et al. (2006b). The reaction with pyridine in place of sodium hydroxide yielded the formybenzoate-coordinated title compound. This is isostructural with the nickel analog; see Deng et al. (2006a).

Experimental top

Cobalt diacetate dihydrate (2.32 g, 10 mmol) was added to an aqueous solution of 4-formylbenzoic acid (3.0 g, 20 mmol) that was earlier been treated with 1 ml pyridine to give a pH of 6. The solution was allowed to evaporate at room temperature; pink prismatic crystals separated from the filtered solution after several days. C&H elemental analysis. Calc. for C16H26O14Co: C 38.33, H 5.23%. Found: C 38.36, H 5.24%.

Refinement top

The carbon-bound H atoms were placed in calculated positions [C–H 0.93 Å and Uiso(H) 1.2Ueq(C)], and were included in the refinement in the riding-model approximation. The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.85±0.01 Å and H···H 1.39±0.01 Å; their displacement parameters were freely refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: atomic coordinates taken from the isostructural nickel analog; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement parameter plot of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radius.
Tetraaquabis(4-formylbenzoato-κO)cobalt(II) tetrahydrate top
Crystal data top
[Co(C8H5O3)2(H2O)4]·4H2OZ = 1
Mr = 501.30F(000) = 261
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1472 (3) ÅCell parameters from 4983 reflections
b = 7.4759 (4) Åθ = 3.1–27.5°
c = 11.5720 (6) ŵ = 0.87 mm1
α = 77.114 (2)°T = 295 K
β = 77.905 (2)°Prism, pink
γ = 63.839 (1)°0.30 × 0.26 × 0.22 mm
V = 536.61 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2426 independent reflections
Radiation source: fine-focus sealed tube2270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.666, Tmax = 0.832l = 1514
5294 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1724P]
where P = (Fo2 + 2Fc2)/3
2426 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.36 e Å3
12 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Co(C8H5O3)2(H2O)4]·4H2Oγ = 63.839 (1)°
Mr = 501.30V = 536.61 (5) Å3
Triclinic, P1Z = 1
a = 7.1472 (3) ÅMo Kα radiation
b = 7.4759 (4) ŵ = 0.87 mm1
c = 11.5720 (6) ÅT = 295 K
α = 77.114 (2)°0.30 × 0.26 × 0.22 mm
β = 77.905 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2426 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2270 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.832Rint = 0.016
5294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02712 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
2426 reflectionsΔρmin = 0.27 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02806 (11)
O10.45499 (18)0.39037 (19)0.36093 (10)0.0359 (3)
O20.0927 (2)0.2392 (2)0.11561 (12)0.0492 (3)
O30.76754 (19)0.3176 (2)0.25021 (12)0.0460 (3)
O1W0.19780 (18)0.52308 (19)0.58061 (11)0.0381 (3)
H1W10.192 (3)0.570 (3)0.6429 (14)0.057 (7)*
H1W20.091 (3)0.602 (3)0.5461 (19)0.071 (8)*
O2W0.3680 (2)0.79054 (18)0.40003 (12)0.0408 (3)
H2W10.329 (4)0.893 (3)0.434 (2)0.067 (8)*
H2W20.271 (3)0.807 (4)0.362 (2)0.069 (8)*
O3W0.2016 (3)1.1588 (2)0.48800 (14)0.0544 (4)
H3W10.152 (3)1.158 (3)0.5610 (10)0.051 (6)*
H3W20.282 (4)1.218 (4)0.470 (2)0.096 (11)*
O4W0.0173 (2)1.1045 (2)0.71542 (13)0.0534 (4)
H4W10.001 (4)1.159 (3)0.767 (2)0.076 (8)*
H4W20.048 (5)0.9775 (14)0.731 (3)0.096 (11)*
C10.2664 (3)0.2311 (2)0.11986 (15)0.0384 (4)
H10.35630.20700.19100.046*
C20.3455 (2)0.2570 (2)0.01950 (13)0.0311 (3)
C30.2157 (2)0.3005 (3)0.08787 (15)0.0351 (3)
H30.07790.31390.09670.042*
C40.2921 (2)0.3237 (3)0.18106 (14)0.0344 (3)
H40.20520.35370.25250.041*
C50.4989 (2)0.3026 (2)0.16869 (13)0.0279 (3)
C60.6284 (2)0.2574 (2)0.06149 (14)0.0321 (3)
H60.76680.24200.05280.039*
C70.5514 (3)0.2353 (2)0.03205 (14)0.0334 (3)
H70.63800.20590.10370.040*
C80.5803 (2)0.3383 (2)0.26758 (13)0.0297 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02531 (16)0.03279 (16)0.02910 (16)0.01180 (12)0.00411 (10)0.01027 (11)
O10.0324 (5)0.0492 (6)0.0324 (6)0.0187 (5)0.0014 (4)0.0167 (5)
O20.0491 (8)0.0561 (8)0.0500 (8)0.0196 (6)0.0160 (6)0.0179 (6)
O30.0315 (6)0.0714 (9)0.0433 (7)0.0231 (6)0.0004 (5)0.0248 (6)
O1W0.0298 (6)0.0469 (7)0.0409 (7)0.0161 (5)0.0034 (5)0.0134 (5)
O2W0.0431 (7)0.0362 (6)0.0432 (7)0.0124 (5)0.0143 (5)0.0063 (5)
O3W0.0666 (9)0.0547 (8)0.0556 (9)0.0350 (8)0.0125 (7)0.0084 (7)
O4W0.0528 (8)0.0562 (9)0.0547 (9)0.0140 (7)0.0207 (6)0.0204 (7)
C10.0468 (9)0.0372 (8)0.0326 (8)0.0149 (7)0.0078 (7)0.0104 (6)
C20.0378 (8)0.0278 (7)0.0290 (7)0.0132 (6)0.0063 (6)0.0055 (5)
C30.0300 (7)0.0459 (9)0.0341 (8)0.0184 (7)0.0029 (6)0.0102 (6)
C40.0325 (8)0.0448 (8)0.0276 (7)0.0171 (7)0.0008 (6)0.0106 (6)
C50.0300 (7)0.0268 (6)0.0278 (7)0.0114 (6)0.0048 (5)0.0056 (5)
C60.0292 (7)0.0348 (7)0.0331 (8)0.0137 (6)0.0007 (6)0.0084 (6)
C70.0379 (8)0.0340 (7)0.0273 (7)0.0143 (6)0.0017 (6)0.0093 (6)
C80.0295 (7)0.0297 (7)0.0305 (7)0.0110 (6)0.0050 (6)0.0071 (5)
Geometric parameters (Å, º) top
Co1—O12.098 (1)O4W—H4W10.847 (10)
Co1—O1i2.098 (1)O4W—H4W20.849 (10)
Co1—O1Wi2.113 (1)C1—C21.475 (2)
Co1—O1w2.113 (1)C1—H10.9300
Co1—O2w2.116 (1)C2—C71.388 (2)
Co1—O2Wi2.116 (1)C2—C31.393 (2)
O1—C81.2630 (18)C3—C41.381 (2)
O2—C11.207 (2)C3—H30.9300
O3—C81.2543 (19)C4—C51.395 (2)
O1W—H1W10.858 (9)C4—H40.9300
O1W—H1W20.844 (9)C5—C61.393 (2)
O2W—H2W10.849 (9)C5—C81.507 (2)
O2W—H2W20.848 (9)C6—C71.382 (2)
O3W—H3W10.845 (9)C6—H60.9300
O3W—H3W20.838 (10)C7—H70.9300
O1—Co1—O1i180.0O2—C1—C2124.23 (16)
O1—Co1—O1Wi93.12 (5)O2—C1—H1117.9
O1i—Co1—O1Wi86.88 (5)C2—C1—H1117.9
O1—Co1—O1W86.88 (5)C7—C2—C3119.95 (14)
O1i—Co1—O1W93.12 (5)C7—C2—C1119.56 (14)
O1Wi—Co1—O1W180.0C3—C2—C1120.49 (14)
O1—Co1—O2W86.82 (5)C4—C3—C2119.79 (14)
O1i—Co1—O2W93.18 (5)C4—C3—H3120.1
O1Wi—Co1—O2W89.23 (5)C2—C3—H3120.1
O1W—Co1—O2W90.77 (5)C3—C4—C5120.42 (14)
O1—Co1—O2Wi93.18 (5)C3—C4—H4119.8
O1i—Co1—O2Wi86.82 (5)C5—C4—H4119.8
O1Wi—Co1—O2Wi90.77 (5)C6—C5—C4119.52 (14)
O1W—Co1—O2Wi89.23 (5)C6—C5—C8119.64 (13)
O2W—Co1—O2Wi180.0C4—C5—C8120.77 (13)
C8—O1—Co1127.37 (10)C7—C6—C5120.04 (14)
Co1—O1W—H1W197.7 (16)C7—C6—H6120.0
Co1—O1W—H1W2120.0 (19)C5—C6—H6120.0
H1W1—O1W—H1W2108.3 (14)C6—C7—C2120.27 (14)
Co1—O2W—H2W1118.7 (17)C6—C7—H7119.9
Co1—O2W—H2W2113.8 (17)C2—C7—H7119.9
H2W1—O2W—H2W2108.9 (15)O3—C8—O1124.60 (14)
H3W1—O3W—H3W2110.9 (15)O3—C8—C5117.39 (13)
H4W1—O4W—H4W2109.2 (15)O1—C8—C5118.00 (13)
O1i—Co1—O1—C80 (100)C4—C5—C6—C70.5 (2)
O1Wi—Co1—O1—C80.75 (13)C8—C5—C6—C7176.45 (13)
O1W—Co1—O1—C8179.25 (13)C5—C6—C7—C20.4 (2)
O2W—Co1—O1—C888.31 (13)C3—C2—C7—C60.2 (2)
O2Wi—Co1—O1—C891.69 (13)C1—C2—C7—C6179.45 (14)
O2—C1—C2—C7176.99 (16)Co1—O1—C8—O310.4 (2)
O2—C1—C2—C32.3 (3)Co1—O1—C8—C5168.27 (9)
C7—C2—C3—C40.6 (2)C6—C5—C8—O32.7 (2)
C1—C2—C3—C4179.83 (15)C4—C5—C8—O3179.67 (15)
C2—C3—C4—C50.4 (2)C6—C5—C8—O1176.00 (14)
C3—C4—C5—C60.1 (2)C4—C5—C8—O10.9 (2)
C3—C4—C5—C8176.80 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.86 (1)1.77 (1)2.611 (2)166 (2)
O1W—H1W2···O3Wii0.84 (1)2.11 (1)2.925 (2)161 (2)
O2W—H2W1···O3W0.85 (1)1.97 (1)2.808 (2)168 (2)
O2W—H2W2···O4Wii0.85 (1)1.97 (1)2.808 (2)169 (2)
O3W—H3W1···O4W0.85 (1)2.00 (1)2.810 (2)159 (2)
O3W—H3W2···O1iii0.84 (1)2.19 (1)2.992 (2)159 (2)
O4W—H4W1···O2iv0.85 (1)1.93 (1)2.771 (2)169 (3)
O4W—H4W2···O3i0.85 (1)2.00 (1)2.841 (2)172 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H5O3)2(H2O)4]·4H2O
Mr501.30
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.1472 (3), 7.4759 (4), 11.5720 (6)
α, β, γ (°)77.114 (2), 77.905 (2), 63.839 (1)
V3)536.61 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.666, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
5294, 2426, 2270
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.080, 1.03
No. of reflections2426
No. of parameters174
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.27

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), atomic coordinates taken from the isostructural nickel analog, SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Co1—O12.098 (1)Co1—O2w2.116 (1)
Co1—O1w2.113 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.86 (1)1.77 (1)2.611 (2)166 (2)
O1W—H1W2···O3Wii0.84 (1)2.11 (1)2.925 (2)161 (2)
O2W—H2W1···O3W0.85 (1)1.97 (1)2.808 (2)168 (2)
O2W—H2W2···O4Wii0.85 (1)1.97 (1)2.808 (2)169 (2)
O3W—H3W1···O4W0.85 (1)2.00 (1)2.810 (2)159 (2)
O3W—H3W2···O1iii0.84 (1)2.19 (1)2.992 (2)159 (2)
O4W—H4W1···O2iv0.85 (1)1.93 (1)2.771 (2)169 (3)
O4W—H4W2···O3i0.85 (1)2.00 (1)2.841 (2)172 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1.
 

Acknowledgements

We thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036), Heilongjiang University and the University of Malaya for supporting this work.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDeng, Z.-P., Gao, S. & Ng, S. W. (2006a). Acta Cryst. E62, m2904–m2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeng, Z.-P., Gao, S. & Ng, S. W. (2006b). Acta Cryst. E62, m3423–m3424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds