metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(4-formyl­benzoato-κO)zinc(II)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 January 2008; accepted 28 January 2008; online 6 February 2008)

The ZnII atom in the title compound, [Zn(C8H5O3)2(H2O)2], which lies on a twofold rotation axis, is coordinated by two monodentate carboxyl­ate groups and two water mol­ecules in a tetra­hedral geometry; the geometry is distorted towards octa­hedral owing to two long Zn⋯Ocarbon­yl contacts [2.512 (2) Å]. Hydrogen-bonding inter­actions give rise to a three-dimensional network. The formyl group is disordered approximately equally over two positions.

Related literature

A pseudo-polymorph of the title compound containing a solvent water mol­ecule exists in a P2/c modification, which features zinc in an unambiguous tetra­hedral coordination geometry; see Deng et al. (2006[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2006). Acta Cryst. E62, m3524-m3526.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5O3)2(H2O)2]

  • Mr = 399.64

  • Monoclinic, C 2/c

  • a = 27.537 (1) Å

  • b = 5.0039 (2) Å

  • c = 12.0930 (6) Å

  • β = 110.039 (2)°

  • V = 1565.4 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 295 (2) K

  • 0.34 × 0.26 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.532, Tmax = 0.760

  • 7203 measured reflections

  • 1785 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.09

  • 1785 reflections

  • 132 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1W 1.983 (2)
Zn1—O1 2.005 (2)
Zn1—O2 2.512 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.84 (1) 1.93 (1) 2.761 (2) 174 (3)
O1W—H1W2⋯O2ii 0.84 (1) 1.88 (1) 2.720 (2) 174 (3)
Symmetry codes: (i) [-x+1, y-1, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

A pseuodpolymorph of the title compound containing a solvent water molecule was isolated from the reaction of zinc acetate and 4-formylbenzoic acid in the presence of sodium hydroxide (Deng et al., 2006). The reaction with pyridine in place of sodium hydroxide yielded the title polymorph.

Related literature top

A pseudopolymorph of the title compound containing a solvent water molecule exists in a P2/c modification, which features zinc in an unambiguous tetrahedral coordination geometry; see Deng et al. (2006).

Experimental top

Zinc diacetate dihydrate (2.2 g, 10 mmol) was added to anaqueous solution of 4-formylbenzoic acid (3.0 g, 20 mmol) that has earlier been treated with 1 ml pyridine to give a pH of 6. The solution was allowed to evaporate at room temperature; colorless prismatic crystals separated from the filtered solution after several days. C&N elemental analysis. Calc. C16H14O8Zn: C 48.08, H3.53%. Found: C 48.06, H 3.56%.

Refinement top

The formyl group is disordered over two sites; the ratio of the site occupation factors refined to a 0.508 (5):0.492 (5) ratio.

The carbon-bound H atoms were placed in calculated positions [C–H 0.93 Å and Uiso(H) 1.2Ueq(C)], and were included in the refinement in the riding-model approximation. The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.85±0.01 Å and H···H 1.39±0.01 Å; their displacement parameters were freely refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement parameter plot of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radius.
Diaquabis(4-formylbenzoato-κO)zinc(II) top
Crystal data top
[Zn(C8H5O3)2(H2O)2]F(000) = 816
Mr = 399.64Dx = 1.696 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5776 reflections
a = 27.537 (1) Åθ = 3.2–27.5°
b = 5.0039 (2) ŵ = 1.61 mm1
c = 12.0930 (6) ÅT = 295 K
β = 110.039 (2)°Block, colorless
V = 1565.4 (1) Å30.34 × 0.26 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1785 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 3535
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 66
Tmin = 0.532, Tmax = 0.760l = 1515
7203 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.5739P]
where P = (Fo2 + 2Fc2)/3
1785 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.59 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn(C8H5O3)2(H2O)2]V = 1565.4 (1) Å3
Mr = 399.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.537 (1) ŵ = 1.61 mm1
b = 5.0039 (2) ÅT = 295 K
c = 12.0930 (6) Å0.34 × 0.26 × 0.18 mm
β = 110.039 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1785 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1448 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 0.760Rint = 0.034
7203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.59 e Å3
1785 reflectionsΔρmin = 0.38 e Å3
132 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.07300 (7)0.75000.03500 (15)
O1W0.52887 (7)0.2045 (3)0.67306 (15)0.0420 (4)
O10.44080 (6)0.3312 (3)0.69827 (13)0.0347 (4)
O20.46297 (6)0.2522 (3)0.54394 (14)0.0396 (4)
O30.28940 (13)1.2782 (7)0.2481 (3)0.0537 (13)0.508 (5)
O3'0.25060 (16)1.2320 (10)0.3707 (4)0.0757 (18)0.492 (5)
H1W10.5398 (10)0.346 (3)0.7104 (19)0.051 (8)*
H1W20.5313 (11)0.208 (5)0.6055 (12)0.062 (9)*
C10.43534 (8)0.3714 (4)0.59025 (19)0.0299 (5)
C20.39595 (8)0.5736 (4)0.52428 (18)0.0283 (4)
C30.35743 (9)0.6552 (5)0.5675 (2)0.0396 (5)
H30.35540.58090.63630.048*
C40.32199 (9)0.8489 (6)0.5070 (2)0.0444 (6)
H40.29630.90460.53570.053*
C50.32469 (8)0.9588 (4)0.4047 (2)0.0348 (5)
C60.36283 (9)0.8759 (5)0.3612 (2)0.0373 (5)
H60.36450.94850.29190.045*
C70.39830 (9)0.6846 (5)0.4219 (2)0.0358 (5)
H70.42400.63030.39320.043*
C80.28767 (9)1.1697 (5)0.3399 (2)0.0460 (6)
H80.26211.22330.36910.055*0.508 (5)
H8'0.29241.25510.27600.055*0.492 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0384 (2)0.02089 (19)0.0487 (3)0.0000.01878 (17)0.000
O1W0.0676 (11)0.0278 (8)0.0359 (10)0.0119 (8)0.0247 (8)0.0052 (7)
O10.0445 (9)0.0313 (8)0.0266 (8)0.0005 (7)0.0101 (6)0.0054 (6)
O20.0460 (9)0.0351 (8)0.0355 (9)0.0121 (7)0.0111 (7)0.0003 (7)
O30.051 (2)0.055 (2)0.052 (2)0.0156 (17)0.0141 (17)0.0215 (19)
O3'0.058 (3)0.086 (4)0.079 (3)0.036 (2)0.019 (2)0.008 (3)
C10.0335 (11)0.0244 (10)0.0276 (11)0.0051 (8)0.0051 (8)0.0011 (8)
C20.0318 (10)0.0251 (10)0.0264 (10)0.0022 (8)0.0078 (8)0.0022 (9)
C30.0413 (12)0.0478 (13)0.0338 (13)0.0033 (11)0.0180 (10)0.0055 (10)
C40.0356 (12)0.0557 (15)0.0458 (15)0.0093 (11)0.0190 (10)0.0025 (12)
C50.0314 (11)0.0341 (12)0.0337 (12)0.0016 (9)0.0044 (9)0.0032 (10)
C60.0418 (12)0.0386 (12)0.0322 (12)0.0061 (10)0.0135 (9)0.0093 (10)
C70.0417 (12)0.0366 (11)0.0342 (12)0.0106 (10)0.0196 (10)0.0037 (10)
C80.0368 (13)0.0432 (13)0.0497 (16)0.0091 (11)0.0043 (11)0.0036 (12)
Geometric parameters (Å, º) top
Zn1—O1w1.983 (2)C2—C31.395 (3)
Zn1—O1wi1.983 (2)C3—C41.392 (4)
Zn1—O1i2.005 (2)C3—H30.9300
Zn1—O12.005 (2)C4—C51.379 (4)
Zn1—O22.512 (2)C4—H40.9300
O1W—H1W10.84 (1)C5—C61.389 (3)
O1W—H1W20.84 (1)C5—C81.490 (3)
O1—C11.279 (3)C6—C71.385 (3)
O2—C11.241 (3)C6—H60.9300
O3—C81.251 (4)C7—H70.9300
O3'—C81.240 (5)C8—H80.9300
C1—C21.498 (3)C8—H8'0.9300
C2—C71.379 (3)
O1W—Zn1—O1Wi91.11 (10)C5—C4—H4119.8
O1W—Zn1—O1i100.59 (7)C3—C4—H4119.8
O1Wi—Zn1—O1i135.95 (7)C4—C5—C6120.0 (2)
O1W—Zn1—O1135.95 (7)C4—C5—C8121.1 (2)
O1Wi—Zn1—O1100.59 (7)C6—C5—C8118.9 (2)
O1i—Zn1—O199.75 (9)C7—C6—C5119.6 (2)
Zn1—O1W—H1W1117.8 (17)C7—C6—H6120.2
Zn1—O1W—H1W2130.4 (17)C5—C6—H6120.2
H1W1—O1W—H1W2111.8 (16)C2—C7—C6120.8 (2)
C1—O1—Zn1102.62 (13)C2—C7—H7119.6
O2—C1—O1120.65 (19)C6—C7—H7119.6
O2—C1—C2121.9 (2)O3—C8—O3'116.3 (3)
O1—C1—C2117.42 (19)O3—C8—C5123.1 (3)
C7—C2—C3119.6 (2)O3'—C8—C5120.4 (3)
C7—C2—C1120.14 (19)O3—C8—H8118.4
C3—C2—C1120.2 (2)C5—C8—H8118.4
C4—C3—C2119.5 (2)O3'—C8—H8'119.8
C4—C3—H3120.2C5—C8—H8'119.8
C2—C3—H3120.2H8—C8—H8'121.5
C5—C4—C3120.4 (2)
O1W—Zn1—O1—C127.75 (17)C3—C4—C5—C60.1 (4)
O1Wi—Zn1—O1—C1130.56 (13)C3—C4—C5—C8178.9 (2)
O1i—Zn1—O1—C188.73 (13)C4—C5—C6—C70.6 (4)
Zn1—O1—C1—O22.0 (2)C8—C5—C6—C7178.5 (2)
Zn1—O1—C1—C2175.83 (14)C3—C2—C7—C60.1 (3)
O2—C1—C2—C717.2 (3)C1—C2—C7—C6178.6 (2)
O1—C1—C2—C7160.7 (2)C5—C6—C7—C20.6 (4)
O2—C1—C2—C3164.4 (2)C4—C5—C8—O3178.6 (3)
O1—C1—C2—C317.8 (3)C6—C5—C8—O30.5 (4)
C7—C2—C3—C40.3 (4)C4—C5—C8—O3'7.0 (5)
C1—C2—C3—C4178.2 (2)C6—C5—C8—O3'173.9 (3)
C2—C3—C4—C50.3 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1ii0.84 (1)1.93 (1)2.761 (2)174 (3)
O1W—H1W2···O2iii0.84 (1)1.88 (1)2.720 (2)174 (3)
Symmetry codes: (ii) x+1, y1, z+3/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H5O3)2(H2O)2]
Mr399.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)27.537 (1), 5.0039 (2), 12.0930 (6)
β (°) 110.039 (2)
V3)1565.4 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.34 × 0.26 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.532, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
7203, 1785, 1448
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.09
No. of reflections1785
No. of parameters132
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.38

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Zn1—O1w1.983 (2)Zn1—O22.512 (2)
Zn1—O12.005 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.84 (1)1.93 (1)2.761 (2)174 (3)
O1W—H1W2···O2ii0.84 (1)1.88 (1)2.720 (2)174 (3)
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+1, y, z+1.
 

Acknowledgements

We thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036), Heilongjiang University and the University of Malaya for supporting this work.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2006). Acta Cryst. E62, m3524–m3526.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds