organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-4-Meth­oxy­benzyl­­idene]-1-methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 21 January 2008; accepted 30 January 2008; online 6 February 2008)

The piperidone ring of the title compound, C14H17NO2, adopts a half-chair conformation. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions, which generate a C(8) chain running along the b axis.

Related literature

For related literature, see: Abignente & Biniecka-Picazio (1977[Abignente, E. & Biniecka-Picazio, M. (1977). Acta Pol. Pharm. 34, 241-242.]); Angle & Breitenbucher (1995[Angle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry; Stereoselective Synthesis, edited by Atta-ur-Rahman, Vol. 16, Part J, pp 453-502. New York: Elsevier.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Wang & Wuorola (1992[Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proced. Int. 24, 585-621.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO2

  • Mr = 231.29

  • Orthorhombic, P 21 21 21

  • a = 7.5212 (7) Å

  • b = 12.4097 (11) Å

  • c = 13.5062 (12) Å

  • V = 1260.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.24 × 0.22 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10874 measured reflections

  • 1729 independent reflections

  • 1577 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.11

  • 1729 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.54 3.419 (3) 157
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Substituted 4-piperidones are important synthetic intermediates for the preparation of various pharmaceuticals (Wang & Wuorola, 1992). 4-Piperidones are also widely prevalent in natural products such as alkaloids (Angle & Breitenbucher, 1995). Derivatives of 4-piperidones have been found to exhibit spasmolytic activities (Abignente & Biniecka-Picazio, 1977). Since, the title compound is pharmacologically important, the crystal structure of the title compound has been determined by X-ray diffraction.

The sum of the bond angles around N1 [331.4 (6)°] indicate the sp3 hybridization. The torsion angles around C10—C11—O2—C14 [179.4 (2)°] and C12—C11—O2—C14 [-0.8 (3)°] indicate that the methoxy group is planar with the phenyl ring.

The piperidone ring adopts a half-chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.366 (3) Å, q3 = 0.361 (3) Å, QT = 0.515 (3)Å and θ = 45.4 (3)°. The molecular conformation is stabilized by weak C—H···O intramolecular interactions. The crystal packing is stabilized by C—H···O intermolecular interactions generating a chain C(8) running along b axis.

Related literature top

Forrelated literature, see: Abignente & Biniecka-Picazio (1977); Angle & Breitenbucher (1995); Cremer & Pople (1975); Nardelli (1983); Wang & Wuorola (1992).

Experimental top

A mixture of 1-methyl-4-piperidone (1 mmol) and pyrrolidine (1.2 mmol) was taken in a glass tube, mixed well and kept aside for 5 min at ambient temperature. To this mixture, 4-methoxybenzaldehyde (1 mmol) was added, mixed thoroughly and the tube containing the mixture was partially immersed in a silica bath placed in a microwave oven and irradiated at 4 power level for 8 minutes. The progress of the reaction was monitored after every 1 min of irradiation by TLC with petroleum ether:ethyl acetate (1:2 v/v mixture) as eluent. After each irradiation, the reaction mixture was cooled to room temperature and mixed well. The maximum temperature of the silica bath, measured immediately after each irradiation was over by stirring the silica bath with the thermometer, was found to be 65 °C. After completion of the reaction as evident from the TLC, the product was purified by column chromatography using petroleum ether:ethyl acetate (7:2 v/v) mixture and crystallized from ethyl acetate.

Refinement top

In the absence of anomalous scatterers Friedel pairs had been merged prior to refinement. All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic C atoms, 0.97 Å, Uiso = 1.2Ueq (C) for methylene and 0.96 Å, Uiso = 1.5Ueq (C) for methyl groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis.
3-[(E)-4-Methoxybenzylidene]-1-methylpiperidin-4-one top
Crystal data top
C14H17NO2F(000) = 496
Mr = 231.29Dx = 1.219 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 861 reflections
a = 7.5212 (7) Åθ = 2.2–25.0°
b = 12.4097 (11) ŵ = 0.08 mm1
c = 13.5062 (12) ÅT = 293 K
V = 1260.6 (2) Å3Block, pale yellow
Z = 40.24 × 0.22 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.1°, θmin = 2.2°
ω scansh = 99
10874 measured reflectionsk = 1616
1729 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.083P)2 + 0.0611P]
where P = (Fo2 + 2Fc2)/3
1729 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H17NO2V = 1260.6 (2) Å3
Mr = 231.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5212 (7) ŵ = 0.08 mm1
b = 12.4097 (11) ÅT = 293 K
c = 13.5062 (12) Å0.24 × 0.22 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1577 reflections with I > 2σ(I)
10874 measured reflectionsRint = 0.019
1729 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
1729 reflectionsΔρmin = 0.13 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1137 (5)0.0252 (2)1.28219 (18)0.0864 (8)
H1A0.00390.04331.31440.130*
H1B0.18160.02181.32410.130*
H1C0.18030.08981.26970.130*
C20.0338 (4)0.1243 (2)1.20225 (17)0.0802 (7)
H2A0.01490.16851.25490.096*
H2B0.15330.10311.22100.096*
C30.0400 (5)0.18853 (18)1.1072 (2)0.0845 (7)
H3A0.13210.24291.11310.101*
H3B0.07250.22571.09920.101*
C40.0749 (4)0.12308 (16)1.01586 (16)0.0697 (6)
C50.0494 (3)0.00418 (14)1.02172 (14)0.0548 (5)
C60.0120 (3)0.04524 (15)1.12177 (14)0.0558 (4)
H6A0.12320.06851.15120.067*
H6B0.06220.10851.11300.067*
C70.0594 (3)0.05043 (14)0.93680 (15)0.0560 (5)
H70.07900.00900.88050.067*
C80.0436 (3)0.16662 (14)0.91996 (13)0.0510 (4)
C90.0213 (3)0.20203 (14)0.82852 (13)0.0562 (5)
H90.05060.15150.78040.067*
C100.0427 (3)0.30978 (15)0.80817 (12)0.0576 (5)
H100.08790.33140.74720.069*
C110.0031 (2)0.38597 (14)0.87840 (13)0.0511 (4)
C120.0740 (3)0.35353 (14)0.96828 (14)0.0585 (5)
H120.10790.40451.01510.070*
C130.0938 (3)0.24434 (17)0.98781 (15)0.0581 (5)
H130.14220.22291.04810.070*
C140.0194 (4)0.57070 (15)0.92477 (17)0.0667 (6)
H14A0.04490.55700.98490.100*
H14B0.01160.64070.89990.100*
H14C0.14480.56810.93790.100*
N10.0762 (3)0.02883 (15)1.18885 (13)0.0656 (5)
O10.1230 (4)0.16737 (12)0.94008 (14)0.0993 (7)
O20.0251 (2)0.49113 (10)0.85323 (10)0.0627 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.105 (2)0.0972 (18)0.0569 (12)0.0171 (16)0.0036 (13)0.0011 (12)
C20.1040 (18)0.0634 (11)0.0731 (13)0.0072 (14)0.0128 (14)0.0222 (11)
C30.1134 (19)0.0459 (9)0.0942 (16)0.0027 (13)0.0080 (17)0.0165 (11)
C40.0965 (15)0.0404 (8)0.0723 (12)0.0031 (10)0.0171 (13)0.0023 (9)
C50.0662 (11)0.0391 (7)0.0590 (10)0.0011 (8)0.0092 (9)0.0002 (7)
C60.0660 (11)0.0464 (8)0.0551 (9)0.0030 (8)0.0093 (9)0.0009 (7)
C70.0701 (11)0.0430 (8)0.0551 (9)0.0031 (8)0.0019 (9)0.0053 (7)
C80.0603 (10)0.0433 (8)0.0493 (8)0.0005 (8)0.0021 (8)0.0001 (6)
C90.0787 (12)0.0476 (8)0.0423 (7)0.0009 (9)0.0058 (9)0.0040 (6)
C100.0793 (12)0.0538 (9)0.0397 (7)0.0015 (10)0.0022 (9)0.0058 (7)
C110.0602 (9)0.0421 (7)0.0510 (8)0.0017 (8)0.0055 (8)0.0055 (7)
C120.0744 (11)0.0443 (9)0.0568 (10)0.0085 (9)0.0103 (9)0.0004 (7)
C130.0713 (11)0.0488 (9)0.0544 (9)0.0029 (9)0.0150 (9)0.0057 (7)
C140.0878 (14)0.0414 (8)0.0708 (12)0.0001 (10)0.0100 (12)0.0005 (8)
N10.0784 (11)0.0618 (9)0.0565 (8)0.0120 (9)0.0084 (9)0.0061 (7)
O10.169 (2)0.0465 (7)0.0828 (11)0.0139 (12)0.0067 (13)0.0083 (8)
O20.0866 (10)0.0415 (6)0.0600 (7)0.0016 (7)0.0008 (8)0.0077 (5)
Geometric parameters (Å, º) top
C1—N11.456 (3)C7—C81.465 (2)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C8—C131.383 (3)
C1—H1C0.9600C8—C91.399 (3)
C2—N11.457 (3)C9—C101.374 (3)
C2—C31.511 (4)C9—H90.9300
C2—H2A0.9700C10—C111.383 (3)
C2—H2B0.9700C10—H100.9300
C3—C41.500 (3)C11—O21.365 (2)
C3—H3A0.9700C11—C121.385 (3)
C3—H3B0.9700C12—C131.389 (3)
C4—O11.217 (3)C12—H120.9300
C4—C51.490 (3)C13—H130.9300
C5—C71.334 (3)C14—O21.421 (3)
C5—C61.510 (3)C14—H14A0.9600
C6—N11.451 (3)C14—H14B0.9600
C6—H6A0.9700C14—H14C0.9600
C6—H6B0.9700
N1—C1—H1A109.5C5—C7—H7115.5
N1—C1—H1B109.5C8—C7—H7115.5
H1A—C1—H1B109.5C13—C8—C9117.47 (16)
N1—C1—H1C109.5C13—C8—C7124.17 (18)
H1A—C1—H1C109.5C9—C8—C7118.33 (16)
H1B—C1—H1C109.5C10—C9—C8121.53 (17)
N1—C2—C3109.93 (19)C10—C9—H9119.2
N1—C2—H2A109.7C8—C9—H9119.2
C3—C2—H2A109.7C9—C10—C11119.92 (17)
N1—C2—H2B109.7C9—C10—H10120.0
C3—C2—H2B109.7C11—C10—H10120.0
H2A—C2—H2B108.2O2—C11—C12123.75 (16)
C4—C3—C2114.74 (18)O2—C11—C10116.37 (16)
C4—C3—H3A108.6C12—C11—C10119.88 (16)
C2—C3—H3A108.6C11—C12—C13119.43 (17)
C4—C3—H3B108.6C11—C12—H12120.3
C2—C3—H3B108.6C13—C12—H12120.3
H3A—C3—H3B107.6C8—C13—C12121.69 (18)
O1—C4—C5122.0 (2)C8—C13—H13119.2
O1—C4—C3119.95 (19)C12—C13—H13119.2
C5—C4—C3118.0 (2)O2—C14—H14A109.5
C7—C5—C4116.75 (17)O2—C14—H14B109.5
C7—C5—C6124.98 (16)H14A—C14—H14B109.5
C4—C5—C6118.27 (16)O2—C14—H14C109.5
N1—C6—C5112.74 (16)H14A—C14—H14C109.5
N1—C6—H6A109.0H14B—C14—H14C109.5
C5—C6—H6A109.0C6—N1—C1109.72 (18)
N1—C6—H6B109.0C6—N1—C2109.5 (2)
C5—C6—H6B109.0C1—N1—C2112.18 (19)
H6A—C6—H6B107.8C11—O2—C14117.27 (15)
C5—C7—C8128.98 (17)
N1—C2—C3—C446.7 (3)C8—C9—C10—C111.1 (3)
C2—C3—C4—O1163.0 (3)C9—C10—C11—O2178.8 (2)
C2—C3—C4—C516.8 (4)C9—C10—C11—C121.3 (3)
O1—C4—C5—C78.4 (4)O2—C11—C12—C13178.5 (2)
C3—C4—C5—C7171.8 (2)C10—C11—C12—C131.7 (3)
O1—C4—C5—C6172.5 (3)C9—C8—C13—C122.7 (3)
C3—C4—C5—C67.3 (3)C7—C8—C13—C12179.2 (2)
C7—C5—C6—N1151.3 (2)C11—C12—C13—C80.4 (3)
C4—C5—C6—N127.8 (3)C5—C6—N1—C1178.0 (2)
C4—C5—C7—C8178.6 (2)C5—C6—N1—C258.5 (2)
C6—C5—C7—C82.3 (4)C3—C2—N1—C668.5 (3)
C5—C7—C8—C1330.6 (4)C3—C2—N1—C1169.4 (2)
C5—C7—C8—C9151.3 (2)C12—C11—O2—C140.8 (3)
C13—C8—C9—C103.1 (3)C10—C11—O2—C14179.37 (19)
C7—C8—C9—C10178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.543.419 (3)157
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H17NO2
Mr231.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.5212 (7), 12.4097 (11), 13.5062 (12)
V3)1260.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.22 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10874, 1729, 1577
Rint0.019
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.11
No. of reflections1729
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.543.419 (3)156.9
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC–SAP) and the Department of Science & Technology (DST–FIST), Government of India, is acknowledged by DV for providing facilities to the department.

References

First citationAbignente, E. & Biniecka-Picazio, M. (1977). Acta Pol. Pharm. 34, 241–242.  CAS PubMed Web of Science Google Scholar
First citationAngle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry; Stereoselective Synthesis, edited by Atta-ur-Rahman, Vol. 16, Part J, pp 453–502. New York: Elsevier.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proced. Int. 24, 585–621.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds