metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m464-m465

trans-Carbonyl­chloridobis(tri-p-tolyl­phosphine)rhodium(I) acetone solvate

aDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
*Correspondence e-mail: brj@chem.ubc.ca

(Received 14 December 2007; accepted 31 January 2008; online 8 February 2008)

The title compound, [RhCl(C21H21P)2(CO)]·C3H6O, was precipitated in trace yield from a reaction of RhCl(cod)(THP) with P(p-tol)3 in a 1:1 acetone-d6/CD3OD solution under a hydrogen atmosphere [p-tol = p-tolyl, THP = tris­(hydroxy­meth­yl)phosphine, P(CH2OH)3, and cod = 1,5-cyclo­octa­diene]. The complex displays a square-planar geometry around the RhI atom. The complex mol­ecules and the acetone mol­ecules are linked into a chain along the a axis by inter­molecular C—H⋯Cl and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Beck et al. (1999[Beck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311-5317.], and references therein); Evans et al. (1990[Evans, D., Osborn, J. A. & Wilkinson, G. (1990). Inorg. Synth. 28, 79-80.]); Higham et al. (2004[Higham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202-4208.]); Hoye et al. (1993[Hoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269-274.]); Lorenzini et al. (2007a[Lorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224-3226.],b[Lorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem. 46, 8998-9002.], 2008a[Lorenzini, F., Patrick, B. O. & James, B. R. (2008a). Inorg. Chim. Acta, doi: 10.1016/j.ica.2007.10.044.],b[Lorenzini, F., Patrick, B. O. & James, B. R. (2008b). Acta Cryst. E64, m179-m180.]); Vallarino (1957[Vallarino, L. (1957). J. Chem. Soc. pp. 2287-2292.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C21H21P)2(CO)]·C3H6O

  • Mr = 833.14

  • Triclinic, [P \overline 1]

  • a = 10.784 (2) Å

  • b = 12.859 (3) Å

  • c = 17.086 (3) Å

  • α = 70.852 (7)°

  • β = 84.790 (7)°

  • γ = 71.012 (6)°

  • V = 2116.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 173 (2) K

  • 0.25 × 0.10 × 0.07 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.683, Tmax = 0.960

  • 31662 measured reflections

  • 9909 independent reflections

  • 6378 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.115

  • S = 1.00

  • 9909 reflections

  • 477 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

C43—Rh1 1.812 (4)
P1—Rh1 2.3449 (9)
P2—Rh1 2.3283 (9)
Cl1—Rh1 2.3822 (9)
C43—Rh1—P2 91.43 (10)
C43—Rh1—P1 90.55 (10)
P2—Rh1—P1 177.46 (3)
C43—Rh1—Cl1 178.12 (10)
P2—Rh1—Cl1 86.69 (3)
P1—Rh1—Cl1 91.33 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.38 3.302 (8) 163
C46—H46A⋯Cl1 0.98 2.81 3.773 (7) 168
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). SAINT. Version 7.23. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We have very recently reported the structure of trans-RhCl(CO)(PEtPh2)2, crystals of which precipitated serendipitously in trace yield from a reaction between PEtPh2 and RhCl(cod)(THP), where cod = 1,5-cyclooctadiene and THP = tris(hydroxymethyl)phosphine, P(CH2OH)3, in an acetone/MeOH solvent mixture under a hydrogen atmosphere (Lorenzini et al., 2008b). Such reaction conditions with a phosphine of general formula PRR'2 (R = or ≠ R') lead to formation of the dihydrido complexes cis,mer-Rh(H)2Cl(PRR'2)3 (when R' = Ph, and R = Me or Cy) (Lorenzini et al., 2008a) or, if the reaction is carried out under Ar, the phosphine–phosphinite derivatives RhCl(PRR'2)[P,P-R'(R)POCH2P(CH2OH)2] and trace amounts of the trans-RhCl(CO)(PRR'2)2 species (Lorenzini et al., 2007b). The THP plays a critical role in formation of the dihydrides and the carbonyl complexes (Lorenzini et al., 2008a); the CO ligand is thought to result from decarbonylation of formaldehyde (Beck et al., 1999), which can be readily formed from transition metal–THP species (Higham et al., 2004; Hoye et al., 1993). A corresponding reaction between the p-tolyl phosphine P(p-tol)3 and RhCl(cod)(THP) has now similarly led to formation of trace amounts of trans-RhCl(CO)[P(p-tol)3]2 that was identified by an X-ray structure as an acetone solvated species. The complex has been synthesized previously in high yield from RhCl3.3H2O (Evans et al., 1990), while the method first reported 50 years ago used [RhCl(CO)2]2 as the precursor (Vallarino, 1957). Our structure is a further example of the 125 or so of the type with a trans-RhCl(CO) moiety associated with two trans phosphorus donor atoms (Cambridge Crystallography Data Base).

Related literature top

For related literature, see: Beck et al. (1999, and references therein); Evans et al. (1990); Higham et al. (2004); Hoye et al. (1993); Lorenzini et al. (2007a,b, 2008a,b); Vallarino (1957).

Experimental top

General. The RhCl(cod)(THP) precursor complex was synthesized by our reported method (Lorenzini et al., 2007a); P(p-tol)3 (a Strem Chemicals product), and the deuterated solvents (Cambridge Isotope Laboratory) were used as received. The reaction between these reagents was performed under Ar or H2 using standard Schlenk techniques. 31P{1H}-NMR spectra were measured in acetone-d6/CD3OD at room temperature (~300 K) on a Bruker AV400 spectrometer, relative to external 85% aq H3PO4.

trans-RhCl(CO)[P(p-tol)3]2.(CH3)2CO. P(p-tol)3 (18.3 µl, 0.059 mmol) in acetone-d6 (0.3 ml) was added to a yellow CD3OD solution (0.3 ml) of RhCl(cod)(THP) (10.2 mg, 0.028 mmol) at room temperature under Ar to give rapid formation of a brown solution. Replacement of the Ar by H2 and subsequent shaking of the vessel resulted in a yellow solution. Over 12 h, a minute quantity of X-ray quality, yellow prism crystals of trans-RhCl(CO)[P(p-tol)3]2.(CH3)2CO deposited from the solution; the 31P{1H} spectrum of the solution revealed a complex mixture of species.

Refinement top

H atoms were placed in calculated positions [C—H = 0.95 Å (aromatic) and 0.98 Å (methyl)] and refined using a riding-model approximation, with Uiso(H) = 1.2eq(C) and 1.5eq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1.  
trans-Carbonylchloridobis(tri-p-tolylphosphine)rhodium(I) acetone solvate top
Crystal data top
[RhCl(C21H21P)2(CO)]·C3H6OZ = 2
Mr = 833.14F(000) = 864
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.784 (2) ÅCell parameters from 5165 reflections
b = 12.859 (3) Åθ = 2.5–25.0°
c = 17.086 (3) ŵ = 0.58 mm1
α = 70.852 (7)°T = 173 K
β = 84.790 (7)°Prism, yellow
γ = 71.012 (6)°0.25 × 0.10 × 0.07 mm
V = 2116.2 (7) Å3
Data collection top
Bruker X8 APEXII
diffractometer
9909 independent reflections
Radiation source: fine-focus sealed tube6378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
area detector scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.683, Tmax = 0.960k = 1616
31662 measured reflectionsl = 1722
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
9909 reflections(Δ/σ)max = 0.008
477 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[RhCl(C21H21P)2(CO)]·C3H6Oγ = 71.012 (6)°
Mr = 833.14V = 2116.2 (7) Å3
Triclinic, P1Z = 2
a = 10.784 (2) ÅMo Kα radiation
b = 12.859 (3) ŵ = 0.58 mm1
c = 17.086 (3) ÅT = 173 K
α = 70.852 (7)°0.25 × 0.10 × 0.07 mm
β = 84.790 (7)°
Data collection top
Bruker X8 APEXII
diffractometer
9909 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6378 reflections with I > 2σ(I)
Tmin = 0.683, Tmax = 0.960Rint = 0.063
31662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
9909 reflectionsΔρmin = 0.44 e Å3
477 parameters
Special details top

Experimental. The molecule crystallizes with one molecule of acetone in the asymmetric unit.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5990 (3)0.2216 (3)0.5635 (2)0.0401 (8)
C20.5919 (4)0.2248 (4)0.4811 (2)0.0593 (11)
H20.65410.24820.44220.071*
C30.4926 (4)0.1932 (4)0.4566 (3)0.0626 (12)
H30.48850.19610.40060.075*
C40.4011 (4)0.1583 (3)0.5109 (3)0.0500 (10)
C50.4086 (4)0.1555 (3)0.5919 (2)0.0497 (9)
H50.34620.13160.63050.060*
C60.5058 (4)0.1871 (3)0.6184 (2)0.0444 (9)
H60.50820.18500.67430.053*
C70.2945 (4)0.1269 (4)0.4820 (3)0.0721 (13)
H7A0.23630.19590.44240.108*
H7B0.24390.09690.52970.108*
H7C0.33390.06730.45520.108*
C80.8679 (3)0.1195 (3)0.6269 (2)0.0376 (8)
C90.9652 (4)0.1031 (3)0.6818 (2)0.0524 (10)
H90.95930.16240.70480.063*
C101.0716 (4)0.0011 (4)0.7039 (2)0.0647 (12)
H101.13760.00740.74080.078*
C111.0815 (4)0.0885 (3)0.6721 (2)0.0580 (11)
C120.9877 (4)0.0710 (3)0.6161 (2)0.0568 (11)
H120.99460.12970.59230.068*
C130.8816 (4)0.0319 (3)0.5932 (2)0.0482 (9)
H130.81820.04170.55400.058*
C141.1942 (5)0.2021 (4)0.6995 (3)0.0964 (19)
H14A1.19010.23890.75930.145*
H14B1.27790.18620.68630.145*
H14C1.18700.25410.67030.145*
C150.7857 (3)0.3500 (3)0.5080 (2)0.0384 (8)
C160.6944 (4)0.4489 (3)0.4564 (2)0.0509 (9)
H160.60320.45850.46240.061*
C170.7368 (4)0.5328 (3)0.3964 (2)0.0555 (11)
H170.67340.59880.36190.067*
C180.8699 (4)0.5233 (3)0.3852 (2)0.0502 (10)
C190.9593 (4)0.4223 (3)0.4345 (2)0.0537 (10)
H191.05050.41120.42700.064*
C200.9183 (4)0.3373 (3)0.4947 (2)0.0453 (9)
H200.98200.26940.52710.054*
C210.9137 (5)0.6199 (3)0.3232 (3)0.0717 (13)
H21A1.00190.61360.33850.107*
H21B0.85250.69520.32340.107*
H21C0.91510.61300.26760.107*
C220.4778 (3)0.4089 (2)0.8594 (2)0.0339 (7)
C230.3779 (4)0.4611 (3)0.7984 (2)0.0450 (9)
H230.39920.49060.74190.054*
C240.2485 (4)0.4700 (3)0.8197 (2)0.0499 (9)
H240.18250.50660.77740.060*
C250.2130 (4)0.4271 (3)0.9009 (3)0.0510 (10)
C260.3112 (4)0.3759 (3)0.9616 (2)0.0513 (10)
H260.28880.34661.01780.062*
C270.4431 (4)0.3664 (3)0.9419 (2)0.0434 (9)
H270.50850.33110.98450.052*
C280.0725 (4)0.4330 (4)0.9218 (3)0.0729 (13)
H28A0.01580.51360.90090.109*
H28B0.06430.40360.98210.109*
H28C0.04590.38550.89610.109*
C290.6443 (3)0.5526 (2)0.80580 (19)0.0338 (7)
C300.5354 (4)0.6404 (3)0.8164 (2)0.0430 (9)
H300.45550.62450.83420.052*
C310.5418 (4)0.7522 (3)0.8012 (2)0.0520 (10)
H310.46550.81170.80750.062*
C320.6576 (4)0.7778 (3)0.7771 (2)0.0489 (10)
C330.7671 (4)0.6893 (3)0.7667 (2)0.0543 (10)
H330.84740.70500.74980.065*
C340.7607 (4)0.5780 (3)0.7807 (2)0.0462 (9)
H340.83640.51890.77300.055*
C350.6639 (5)0.8986 (3)0.7602 (3)0.0728 (14)
H35A0.60540.95210.71330.109*
H35B0.75400.89920.74690.109*
H35C0.63630.92300.80940.109*
C360.7593 (3)0.3203 (3)0.91027 (19)0.0358 (8)
C370.7520 (3)0.3574 (3)0.9795 (2)0.0404 (8)
H370.68270.42370.98330.048*
C380.8462 (4)0.2972 (3)1.0428 (2)0.0495 (9)
H380.83900.32241.08990.059*
C390.9505 (4)0.2012 (3)1.0386 (2)0.0546 (10)
C400.9580 (4)0.1654 (3)0.9697 (2)0.0545 (10)
H401.02870.10010.96580.065*
C410.8637 (3)0.2234 (3)0.9056 (2)0.0445 (9)
H410.87060.19710.85900.053*
C421.0588 (5)0.1410 (4)1.1040 (3)0.0855 (16)
H42A1.08310.05691.11590.128*
H42B1.02810.16051.15470.128*
H42C1.13540.16651.08370.128*
C430.7044 (4)0.4689 (3)0.6425 (2)0.0429 (8)
C440.3191 (5)0.0384 (4)0.8769 (3)0.0736 (13)
C450.3625 (8)0.0618 (5)0.9469 (4)0.163 (3)
H45A0.33990.12560.93910.245*
H45B0.31980.04530.99660.245*
H45C0.45780.08360.95350.245*
C460.3191 (6)0.1494 (4)0.8789 (4)0.122 (2)
H46A0.39960.16440.85400.183*
H46B0.31480.14930.93650.183*
H46C0.24280.21010.84760.183*
O10.7199 (3)0.5543 (2)0.60038 (16)0.0644 (8)
O20.2868 (6)0.0305 (5)0.8141 (3)0.174 (2)
P10.73025 (9)0.25561 (7)0.60066 (5)0.0366 (2)
P20.64329 (8)0.40376 (6)0.82266 (5)0.0322 (2)
Cl10.65594 (10)0.15903 (7)0.80268 (5)0.0504 (2)
Rh10.68398 (3)0.33396 (2)0.710084 (16)0.03563 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.0352 (18)0.042 (2)0.0043 (16)0.0072 (17)0.0173 (16)
C20.058 (3)0.082 (3)0.049 (2)0.023 (2)0.005 (2)0.036 (2)
C30.062 (3)0.083 (3)0.056 (3)0.021 (2)0.010 (2)0.039 (2)
C40.045 (2)0.042 (2)0.064 (3)0.0063 (18)0.015 (2)0.0221 (19)
C50.048 (2)0.0373 (19)0.060 (3)0.0108 (17)0.0059 (19)0.0121 (18)
C60.052 (2)0.0347 (18)0.045 (2)0.0094 (17)0.0073 (18)0.0127 (16)
C70.061 (3)0.071 (3)0.093 (3)0.018 (2)0.026 (3)0.032 (3)
C80.041 (2)0.0357 (18)0.0349 (19)0.0133 (15)0.0020 (16)0.0092 (15)
C90.059 (3)0.050 (2)0.050 (2)0.014 (2)0.009 (2)0.0178 (19)
C100.052 (3)0.074 (3)0.050 (3)0.004 (2)0.014 (2)0.008 (2)
C110.058 (3)0.051 (2)0.042 (2)0.002 (2)0.007 (2)0.0048 (19)
C120.073 (3)0.037 (2)0.051 (2)0.004 (2)0.009 (2)0.0171 (18)
C130.057 (2)0.044 (2)0.044 (2)0.0122 (19)0.0021 (18)0.0185 (17)
C140.092 (4)0.081 (3)0.060 (3)0.030 (3)0.008 (3)0.008 (3)
C150.045 (2)0.0369 (18)0.0330 (19)0.0080 (16)0.0008 (16)0.0153 (15)
C160.047 (2)0.056 (2)0.039 (2)0.0055 (19)0.0022 (18)0.0115 (18)
C170.072 (3)0.042 (2)0.035 (2)0.001 (2)0.004 (2)0.0052 (17)
C180.069 (3)0.039 (2)0.042 (2)0.018 (2)0.002 (2)0.0110 (17)
C190.052 (2)0.047 (2)0.058 (3)0.0141 (19)0.003 (2)0.014 (2)
C200.051 (2)0.0350 (18)0.044 (2)0.0099 (17)0.0031 (18)0.0073 (16)
C210.096 (4)0.054 (3)0.061 (3)0.028 (3)0.004 (3)0.008 (2)
C220.044 (2)0.0234 (15)0.0396 (19)0.0116 (14)0.0024 (16)0.0148 (14)
C230.053 (2)0.046 (2)0.042 (2)0.0219 (18)0.0039 (18)0.0140 (17)
C240.046 (2)0.048 (2)0.059 (3)0.0163 (18)0.0058 (19)0.0172 (19)
C250.051 (2)0.048 (2)0.067 (3)0.0218 (19)0.011 (2)0.032 (2)
C260.061 (3)0.048 (2)0.050 (2)0.024 (2)0.009 (2)0.0179 (19)
C270.058 (2)0.0387 (19)0.039 (2)0.0208 (18)0.0018 (18)0.0134 (16)
C280.061 (3)0.086 (3)0.090 (3)0.037 (3)0.020 (3)0.042 (3)
C290.046 (2)0.0251 (15)0.0323 (18)0.0110 (15)0.0060 (15)0.0097 (13)
C300.049 (2)0.0307 (17)0.052 (2)0.0097 (16)0.0042 (18)0.0186 (16)
C310.063 (3)0.0278 (17)0.064 (3)0.0041 (18)0.014 (2)0.0193 (17)
C320.073 (3)0.0269 (17)0.048 (2)0.0181 (19)0.022 (2)0.0059 (16)
C330.064 (3)0.041 (2)0.064 (3)0.029 (2)0.009 (2)0.0082 (19)
C340.046 (2)0.0339 (18)0.061 (2)0.0130 (17)0.0028 (18)0.0166 (17)
C350.103 (4)0.0286 (19)0.087 (3)0.024 (2)0.035 (3)0.006 (2)
C360.044 (2)0.0261 (16)0.0368 (19)0.0108 (15)0.0026 (15)0.0084 (14)
C370.047 (2)0.0356 (18)0.038 (2)0.0117 (16)0.0026 (17)0.0117 (15)
C380.059 (3)0.054 (2)0.037 (2)0.021 (2)0.0058 (18)0.0114 (18)
C390.054 (3)0.050 (2)0.053 (2)0.017 (2)0.011 (2)0.0023 (19)
C400.052 (2)0.0330 (19)0.069 (3)0.0040 (18)0.006 (2)0.0101 (19)
C410.047 (2)0.0332 (18)0.054 (2)0.0105 (17)0.0046 (18)0.0162 (17)
C420.077 (3)0.093 (4)0.064 (3)0.014 (3)0.030 (3)0.001 (3)
C430.053 (2)0.0378 (19)0.040 (2)0.0105 (17)0.0023 (17)0.0192 (17)
C440.086 (4)0.065 (3)0.079 (3)0.020 (3)0.011 (3)0.035 (3)
C450.255 (10)0.069 (4)0.099 (5)0.003 (5)0.012 (5)0.008 (4)
C460.131 (5)0.068 (4)0.176 (6)0.039 (4)0.006 (5)0.044 (4)
O10.098 (2)0.0425 (15)0.0528 (17)0.0303 (16)0.0102 (16)0.0095 (13)
O20.221 (6)0.186 (5)0.152 (5)0.071 (4)0.059 (4)0.078 (4)
P10.0443 (5)0.0336 (5)0.0346 (5)0.0106 (4)0.0017 (4)0.0153 (4)
P20.0424 (5)0.0236 (4)0.0335 (5)0.0105 (4)0.0028 (4)0.0116 (3)
Cl10.0841 (7)0.0353 (4)0.0416 (5)0.0291 (5)0.0002 (5)0.0145 (4)
Rh10.04978 (18)0.02744 (14)0.03398 (16)0.01380 (12)0.00046 (12)0.01354 (11)
Geometric parameters (Å, º) top
C1—C61.390 (5)C25—C261.389 (5)
C1—C21.403 (5)C25—C281.508 (5)
C1—P11.830 (3)C26—C271.407 (5)
C2—C31.401 (5)C26—H260.95
C2—H20.95C27—H270.95
C3—C41.373 (5)C28—H28A0.98
C3—H30.95C28—H28B0.98
C4—C51.382 (5)C28—H28C0.98
C4—C71.505 (5)C29—C301.386 (4)
C5—C61.397 (5)C29—C341.395 (5)
C5—H50.95C29—P21.843 (3)
C6—H60.95C30—C311.399 (4)
C7—H7A0.98C30—H300.95
C7—H7B0.98C31—C321.387 (5)
C7—H7C0.98C31—H310.95
C8—C131.387 (4)C32—C331.394 (5)
C8—C91.389 (5)C32—C351.506 (4)
C8—P11.840 (3)C33—C341.396 (4)
C9—C101.397 (5)C33—H330.95
C9—H90.95C34—H340.95
C10—C111.399 (6)C35—H35A0.98
C10—H100.95C35—H35B0.98
C11—C121.368 (5)C35—H35C0.98
C11—C141.526 (5)C36—C371.400 (4)
C12—C131.404 (5)C36—C411.401 (4)
C12—H120.95C36—P21.836 (3)
C13—H130.95C37—C381.392 (5)
C14—H14A0.98C37—H370.95
C14—H14B0.98C38—C391.391 (5)
C14—H14C0.98C38—H380.95
C15—C201.391 (5)C39—C401.385 (5)
C15—C161.405 (5)C39—C421.515 (5)
C15—P11.837 (3)C40—C411.401 (5)
C16—C171.391 (5)C40—H400.95
C16—H160.95C41—H410.95
C17—C181.400 (5)C42—H42A0.98
C17—H170.95C42—H42B0.98
C18—C191.393 (5)C42—H42C0.98
C18—C211.523 (5)C43—O11.154 (4)
C19—C201.394 (5)C43—Rh11.812 (4)
C19—H190.95C44—O21.203 (6)
C20—H200.95C44—C451.417 (6)
C21—H21A0.98C44—C461.438 (6)
C21—H21B0.98C45—H45A0.98
C21—H21C0.98C45—H45B0.98
C22—C271.398 (4)C45—H45C0.98
C22—C231.405 (5)C46—H46A0.98
C22—P21.825 (3)C46—H46B0.98
C23—C241.387 (5)C46—H46C0.98
C23—H230.95P1—Rh12.3449 (9)
C24—C251.385 (5)P2—Rh12.3283 (9)
C24—H240.95Cl1—Rh12.3822 (9)
C6—C1—C2118.3 (3)C26—C27—H27120.0
C6—C1—P1119.8 (3)C25—C28—H28A109.5
C2—C1—P1121.9 (3)C25—C28—H28B109.5
C3—C2—C1119.7 (4)H28A—C28—H28B109.5
C3—C2—H2120.2C25—C28—H28C109.5
C1—C2—H2120.2H28A—C28—H28C109.5
C4—C3—C2122.1 (4)H28B—C28—H28C109.5
C4—C3—H3119.0C30—C29—C34118.4 (3)
C2—C3—H3119.0C30—C29—P2123.4 (3)
C3—C4—C5117.9 (3)C34—C29—P2118.1 (2)
C3—C4—C7120.6 (4)C29—C30—C31120.7 (3)
C5—C4—C7121.5 (4)C29—C30—H30119.7
C4—C5—C6121.5 (4)C31—C30—H30119.7
C4—C5—H5119.2C32—C31—C30121.2 (3)
C6—C5—H5119.2C32—C31—H31119.4
C1—C6—C5120.5 (3)C30—C31—H31119.4
C1—C6—H6119.7C31—C32—C33118.0 (3)
C5—C6—H6119.7C31—C32—C35121.1 (4)
C4—C7—H7A109.5C33—C32—C35120.9 (4)
C4—C7—H7B109.5C32—C33—C34121.0 (4)
H7A—C7—H7B109.5C32—C33—H33119.5
C4—C7—H7C109.5C34—C33—H33119.5
H7A—C7—H7C109.5C29—C34—C33120.6 (3)
H7B—C7—H7C109.5C29—C34—H34119.7
C13—C8—C9117.6 (3)C33—C34—H34119.7
C13—C8—P1123.2 (3)C32—C35—H35A109.5
C9—C8—P1119.2 (3)C32—C35—H35B109.5
C8—C9—C10121.4 (4)H35A—C35—H35B109.5
C8—C9—H9119.3C32—C35—H35C109.5
C10—C9—H9119.3H35A—C35—H35C109.5
C9—C10—C11120.4 (4)H35B—C35—H35C109.5
C9—C10—H10119.8C37—C36—C41118.8 (3)
C11—C10—H10119.8C37—C36—P2121.0 (2)
C12—C11—C10118.1 (4)C41—C36—P2120.0 (3)
C12—C11—C14121.6 (4)C38—C37—C36120.1 (3)
C10—C11—C14120.4 (4)C38—C37—H37119.9
C11—C12—C13121.5 (4)C36—C37—H37119.9
C11—C12—H12119.2C39—C38—C37121.5 (3)
C13—C12—H12119.2C39—C38—H38119.2
C8—C13—C12120.9 (3)C37—C38—H38119.2
C8—C13—H13119.6C40—C39—C38118.2 (3)
C12—C13—H13119.6C40—C39—C42119.9 (4)
C11—C14—H14A109.5C38—C39—C42121.8 (4)
C11—C14—H14B109.5C39—C40—C41121.5 (3)
H14A—C14—H14B109.5C39—C40—H40119.2
C11—C14—H14C109.5C41—C40—H40119.2
H14A—C14—H14C109.5C36—C41—C40119.8 (3)
H14B—C14—H14C109.5C36—C41—H41120.1
C20—C15—C16117.9 (3)C40—C41—H41120.1
C20—C15—P1121.3 (3)C39—C42—H42A109.5
C16—C15—P1120.0 (3)C39—C42—H42B109.5
C17—C16—C15120.2 (4)H42A—C42—H42B109.5
C17—C16—H16119.9C39—C42—H42C109.5
C15—C16—H16119.9H42A—C42—H42C109.5
C16—C17—C18122.2 (3)H42B—C42—H42C109.5
C16—C17—H17118.9O1—C43—Rh1178.5 (3)
C18—C17—H17118.9O2—C44—C45120.1 (5)
C19—C18—C17116.7 (3)O2—C44—C46119.4 (6)
C19—C18—C21121.9 (4)C45—C44—C46120.5 (5)
C17—C18—C21121.3 (4)C44—C45—H45A109.5
C18—C19—C20121.7 (4)C44—C45—H45B109.5
C18—C19—H19119.2H45A—C45—H45B109.5
C20—C19—H19119.2C44—C45—H45C109.5
C15—C20—C19121.2 (3)H45A—C45—H45C109.5
C15—C20—H20119.4H45B—C45—H45C109.5
C19—C20—H20119.4C44—C46—H46A109.5
C18—C21—H21A109.5C44—C46—H46B109.5
C18—C21—H21B109.5H46A—C46—H46B109.5
H21A—C21—H21B109.5C44—C46—H46C109.5
C18—C21—H21C109.5H46A—C46—H46C109.5
H21A—C21—H21C109.5H46B—C46—H46C109.5
H21B—C21—H21C109.5C1—P1—C15105.08 (16)
C27—C22—C23118.2 (3)C1—P1—C8104.96 (15)
C27—C22—P2125.8 (3)C15—P1—C8103.74 (15)
C23—C22—P2115.9 (3)C1—P1—Rh1117.85 (12)
C24—C23—C22120.6 (3)C15—P1—Rh1112.37 (10)
C24—C23—H23119.7C8—P1—Rh1111.61 (11)
C22—C23—H23119.7C22—P2—C36108.70 (15)
C25—C24—C23121.8 (4)C22—P2—C29102.88 (14)
C25—C24—H24119.1C36—P2—C29101.69 (14)
C23—C24—H24119.1C22—P2—Rh1109.37 (10)
C24—C25—C26117.9 (4)C36—P2—Rh1115.03 (11)
C24—C25—C28120.6 (4)C29—P2—Rh1118.15 (11)
C26—C25—C28121.5 (4)C43—Rh1—P291.43 (10)
C25—C26—C27121.6 (4)C43—Rh1—P190.55 (10)
C25—C26—H26119.2P2—Rh1—P1177.46 (3)
C27—C26—H26119.2C43—Rh1—Cl1178.12 (10)
C22—C27—C26119.9 (3)P2—Rh1—Cl186.69 (3)
C22—C27—H27120.0P1—Rh1—Cl191.33 (3)
C6—C1—C2—C30.2 (6)C37—C38—C39—C42175.2 (4)
P1—C1—C2—C3177.3 (3)C38—C39—C40—C410.1 (6)
C1—C2—C3—C40.3 (6)C42—C39—C40—C41176.1 (4)
C2—C3—C4—C50.4 (6)C37—C36—C41—C400.2 (5)
C2—C3—C4—C7179.0 (4)P2—C36—C41—C40174.9 (3)
C3—C4—C5—C60.1 (5)C39—C40—C41—C360.4 (6)
C7—C4—C5—C6178.6 (3)C6—C1—P1—C15157.5 (3)
C2—C1—C6—C50.6 (5)C2—C1—P1—C1525.0 (3)
P1—C1—C6—C5176.9 (2)C6—C1—P1—C893.4 (3)
C4—C5—C6—C10.5 (5)C2—C1—P1—C884.0 (3)
C13—C8—C9—C101.4 (6)C6—C1—P1—Rh131.5 (3)
P1—C8—C9—C10179.8 (3)C2—C1—P1—Rh1151.1 (3)
C8—C9—C10—C111.2 (6)C20—C15—P1—C1138.6 (3)
C9—C10—C11—C123.0 (6)C16—C15—P1—C152.1 (3)
C9—C10—C11—C14177.1 (4)C20—C15—P1—C828.7 (3)
C10—C11—C12—C132.3 (6)C16—C15—P1—C8162.0 (3)
C14—C11—C12—C13177.7 (4)C20—C15—P1—Rh192.0 (3)
C9—C8—C13—C122.1 (5)C16—C15—P1—Rh177.3 (3)
P1—C8—C13—C12179.2 (3)C13—C8—P1—C123.0 (3)
C11—C12—C13—C80.2 (6)C9—C8—P1—C1158.4 (3)
C20—C15—C16—C172.6 (5)C13—C8—P1—C1587.1 (3)
P1—C15—C16—C17167.0 (3)C9—C8—P1—C1591.6 (3)
C15—C16—C17—C180.4 (6)C13—C8—P1—Rh1151.7 (3)
C16—C17—C18—C193.0 (5)C9—C8—P1—Rh129.6 (3)
C16—C17—C18—C21175.8 (3)C27—C22—P2—C365.7 (3)
C17—C18—C19—C202.7 (5)C23—C22—P2—C36174.6 (2)
C21—C18—C19—C20176.1 (3)C27—C22—P2—C29101.5 (3)
C16—C15—C20—C192.9 (5)C23—C22—P2—C2978.1 (3)
P1—C15—C20—C19166.6 (3)C27—C22—P2—Rh1132.1 (2)
C18—C19—C20—C150.2 (5)C23—C22—P2—Rh148.3 (2)
C27—C22—C23—C240.0 (5)C37—C36—P2—C2261.6 (3)
P2—C22—C23—C24179.7 (2)C41—C36—P2—C22123.7 (3)
C22—C23—C24—C250.8 (5)C37—C36—P2—C2946.4 (3)
C23—C24—C25—C261.1 (5)C41—C36—P2—C29128.2 (3)
C23—C24—C25—C28177.2 (3)C37—C36—P2—Rh1175.4 (2)
C24—C25—C26—C270.7 (5)C41—C36—P2—Rh10.8 (3)
C28—C25—C26—C27177.6 (3)C30—C29—P2—C223.3 (3)
C23—C22—C27—C260.5 (5)C34—C29—P2—C22177.0 (3)
P2—C22—C27—C26179.9 (2)C30—C29—P2—C36115.8 (3)
C25—C26—C27—C220.1 (5)C34—C29—P2—C3664.5 (3)
C34—C29—C30—C310.8 (5)C30—C29—P2—Rh1117.3 (3)
P2—C29—C30—C31178.9 (3)C34—C29—P2—Rh162.4 (3)
C29—C30—C31—C321.6 (6)C22—P2—Rh1—C43117.67 (16)
C30—C31—C32—C331.4 (6)C36—P2—Rh1—C43119.70 (16)
C30—C31—C32—C35179.5 (3)C29—P2—Rh1—C430.54 (17)
C31—C32—C33—C340.5 (6)C22—P2—Rh1—Cl162.38 (11)
C35—C32—C33—C34178.6 (4)C36—P2—Rh1—Cl160.25 (12)
C30—C29—C34—C330.1 (5)C29—P2—Rh1—Cl1179.51 (12)
P2—C29—C34—C33179.8 (3)C1—P1—Rh1—C43114.47 (17)
C32—C33—C34—C290.2 (6)C15—P1—Rh1—C437.91 (16)
C41—C36—C37—C381.0 (5)C8—P1—Rh1—C43123.98 (16)
P2—C36—C37—C38175.7 (3)C1—P1—Rh1—Cl165.64 (13)
C36—C37—C38—C391.3 (5)C15—P1—Rh1—Cl1171.98 (12)
C37—C38—C39—C400.7 (6)C8—P1—Rh1—Cl155.92 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.952.383.302 (8)163
C46—H46A···Cl10.982.813.773 (7)168
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[RhCl(C21H21P)2(CO)]·C3H6O
Mr833.14
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.784 (2), 12.859 (3), 17.086 (3)
α, β, γ (°)70.852 (7), 84.790 (7), 71.012 (6)
V3)2116.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.25 × 0.10 × 0.07
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.683, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
31662, 9909, 6378
Rint0.063
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.115, 1.00
No. of reflections9909
No. of parameters477
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C43—Rh11.812 (4)P2—Rh12.3283 (9)
P1—Rh12.3449 (9)Cl1—Rh12.3822 (9)
C43—Rh1—P291.43 (10)C43—Rh1—Cl1178.12 (10)
C43—Rh1—P190.55 (10)P2—Rh1—Cl186.69 (3)
P2—Rh1—P1177.46 (3)P1—Rh1—Cl191.33 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.952.383.302 (8)163
C46—H46A···Cl10.982.813.773 (7)168
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support via a Discovery Grant.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311–5317.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT. Version 7.23. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, D., Osborn, J. A. & Wilkinson, G. (1990). Inorg. Synth. 28, 79–80.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202–4208.  CSD CrossRef Google Scholar
First citationHoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269–274.  CrossRef Web of Science Google Scholar
First citationLorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224–3226.  CSD CrossRef Google Scholar
First citationLorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem. 46, 8998–9002.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLorenzini, F., Patrick, B. O. & James, B. R. (2008a). Inorg. Chim. Acta, doi: 10.1016/j.ica.2007.10.044.  Google Scholar
First citationLorenzini, F., Patrick, B. O. & James, B. R. (2008b). Acta Cryst. E64, m179–m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVallarino, L. (1957). J. Chem. Soc. pp. 2287–2292.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m464-m465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds