organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o576-o577

4,4′,6,6′-Tetra-tert-butyl-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenol acetone solvate

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 23 January 2008; accepted 6 February 2008; online 13 February 2008)

In the Schiff base mol­ecule of the title compound, C36H48N2O2·C3H6O, the central benzene ring makes dihedral angles of 46.64 (10) and 49.34 (10)° with the two outer benzene rings, and the two outer benzene rings form an angle of 39.13 (8)°. There are two intra­molecular O—H⋯N hydrogen bonds involving the two hydr­oxy groups, which generate S(6) ring motifs. In the crystal structure, the Schiff base mol­ecules are linked into a chain along the a axis by C—H⋯π inter­actions. The acetone solvent mol­ecules are attached to the chain via C—H⋯O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Eng1. 34, 1555-1573.]). For biological activities of Schiff base compounds, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Eltayeb & Ahmed (2005a[Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51-59.],b[Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For related structures, see: Eltayeb, Teoh, Chantrapromma et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2024-m2025.]); Eltayeb, Teoh, Teh et al. (2007a[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o695-o696.],b[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o766-o767.]).

[Scheme 1]

Experimental

Crystal data
  • C36H48N2O2·C3H6O

  • Mr = 598.84

  • Triclinic, [P \overline 1]

  • a = 10.0008 (2) Å

  • b = 12.0020 (3) Å

  • c = 17.0366 (4) Å

  • α = 82.068 (1)°

  • β = 86.320 (1)°

  • γ = 65.764 (1)°

  • V = 1846.76 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 (2) K

  • 0.59 × 0.55 × 0.43 mm

Data collection
  • Bruker SMART APEX2 CCD area-detecto diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.972

  • 26090 measured reflections

  • 8384 independent reflections

  • 5874 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.183

  • S = 1.04

  • 8384 reflections

  • 419 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the C1–C6 and C15–C20 ring centroids, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.89 (2) 1.76 (3) 2.5809 (19) 153 (3)
O2—H1O2⋯N2 0.87 (3) 1.78 (3) 2.5956 (19) 155 (3)
C7—H7A⋯O3 0.93 2.58 3.460 (6) 158
C30—H30B⋯O2 0.96 2.36 2.994 (3) 123
C31—H31A⋯O2 0.96 2.34 2.989 (3) 124
C34—H34C⋯O1 0.96 2.32 2.968 (3) 124
C35—H35A⋯O1 0.96 2.35 2.996 (3) 124
C24—H24BCg2i 0.96 2.97 3.877 (3) 158
C26—H26ACg1ii 0.96 2.89 3.798 (2) 157
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff base compounds have received much attention because of their potential applications. Some of these compounds exhibit various pharmacological activities, such as anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b). Recently, we have reported the crystal structures of 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(5-methylphenol) (Eltayeb et al., 2007a) and 6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol (Eltayeb et al., 2007b). In this paper, we report the crystal structure of the title compound, obtained by the reaction of o-phenylenediamine and 3,5-di-tert-butylsalicylaldehyde.

In the molecular structure of the title compound, the central benzene ring (C8–13) makes dihedral angles of 46.64 (10)° and 49.34 (10)°, respectively, with the two outer benzene rings, C1—C6 and C15—C20. The dihedral angle between the two outer benzene rings is 39.13 (8)°. The C8–N1–C7–C6 and C13–N2–C14–C15 torsion angles are 178.16 (15)° and -178.34 (16)°, respectively. Bond lengths and angles in the title compound are in normal ranges (Allen et al., 1987) and are comparable to those in related structures (Eltayeb et al., 2007; Eltayeb et al., 2007a,b).

The two intramolecular O—H···O hydrogen bonds, O1—H1O1···N1 and O2—H1O2···N2, generate S(6) ring motifs (Bernstein et al., 1995). In addition, intramolecular C—H···O interactions (Table 1) are observed.

In the crystal structure, the acetone molecule is linked to the Schiff base molecule via a C—H···O hydrogen bond. The crystal structure is further stabilized by C—H···π interactions involving the C1–C6 (centroid Cg1) and C15–C20 (centroid Cg2) rings, which link the molecules into a chain along the a axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995). For biological activities of Schiff base compounds, see: Dao et al. (2000); Eltayeb & Ahmed (2005a,b); Karthikeyan et al. (2006); Sriram et al. (2006). For related structures, see: Eltayeb, Teoh, Chantrapromma et al. (2007); Eltayeb, Teoh, Teh et al. (2007a,b).

Experimental top

The title compound was synthesized by adding 3,5-di-tert-butylsalicylaldehyde (0.936 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (20 ml). The mixture was refluxed with stirring for 30 min. The resultant yellow solution was filtered. The yellow precipitate obtained after a few days, was dissolved in acetone (20 ml). Orange single crystals suitable for X-ray diffraction were formed after 6 d of slow evaporation of the acetone at room temperature.

Refinement top

Hydroxyl H atoms were located in a difference map and isotropically refined. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, showing a C—H···π bonded (dashed lines) chain along the a axis. For clarity, the solvent molecules and H atoms not involved in the interactions have been omitted.
4,4',6,6'-Tetra-tert-butyl-2,2'-[1,2- phenylenebis(nitrilomethylidyne)]diphenol acetone solvate top
Crystal data top
C36H48N2O2·C3H6OZ = 2
Mr = 598.84F(000) = 652
Triclinic, P1Dx = 1.077 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0008 (2) ÅCell parameters from 8384 reflections
b = 12.0020 (3) Åθ = 1.9–27.5°
c = 17.0366 (4) ŵ = 0.07 mm1
α = 82.068 (1)°T = 296 K
β = 86.320 (1)°Block, orange
γ = 65.764 (1)°0.59 × 0.55 × 0.43 mm
V = 1846.76 (7) Å3
Data collection top
Bruker SMART APEX2 CCD area-detecto
diffractometer
8384 independent reflections
Radiation source: fine-focus sealed tube5874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.962, Tmax = 0.972l = 2222
26090 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.085P)2 + 0.5109P]
where P = (Fo2 + 2Fc2)/3
8384 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C36H48N2O2·C3H6Oγ = 65.764 (1)°
Mr = 598.84V = 1846.76 (7) Å3
Triclinic, P1Z = 2
a = 10.0008 (2) ÅMo Kα radiation
b = 12.0020 (3) ŵ = 0.07 mm1
c = 17.0366 (4) ÅT = 296 K
α = 82.068 (1)°0.59 × 0.55 × 0.43 mm
β = 86.320 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detecto
diffractometer
8384 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5874 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.972Rint = 0.022
26090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
8384 reflectionsΔρmin = 0.28 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24853 (14)0.02581 (13)0.23910 (8)0.0551 (3)
O20.02994 (14)0.37492 (14)0.24879 (8)0.0560 (4)
N10.25681 (16)0.14200 (13)0.10087 (8)0.0460 (3)
N20.01847 (16)0.32660 (14)0.10401 (8)0.0459 (3)
C10.38900 (17)0.00930 (15)0.24923 (10)0.0407 (4)
C20.45915 (18)0.04982 (14)0.32187 (10)0.0413 (4)
C30.60129 (18)0.06050 (15)0.32878 (10)0.0449 (4)
H3A0.64890.09870.37650.054*
C40.67862 (18)0.01843 (15)0.26978 (11)0.0451 (4)
C50.60684 (19)0.03771 (16)0.19953 (11)0.0460 (4)
H5A0.65500.06660.15860.055*
C60.46270 (18)0.05235 (15)0.18822 (10)0.0421 (4)
C70.3908 (2)0.11843 (16)0.11444 (10)0.0449 (4)
H7A0.44410.14480.07530.054*
C80.19331 (19)0.21018 (16)0.02816 (9)0.0447 (4)
C90.2644 (2)0.1850 (2)0.04413 (11)0.0614 (5)
H9A0.35690.12110.04550.074*
C100.1993 (3)0.2537 (2)0.11419 (11)0.0704 (6)
H10A0.24800.23630.16230.084*
C110.0627 (3)0.3476 (2)0.11230 (11)0.0668 (6)
H11A0.01960.39520.15920.080*
C120.0113 (2)0.37196 (19)0.04127 (11)0.0575 (5)
H12A0.10440.43540.04060.069*
C130.05201 (19)0.30244 (16)0.02944 (9)0.0438 (4)
C140.1540 (2)0.34565 (17)0.11173 (10)0.0489 (4)
H14A0.20260.34100.06830.059*
C150.23510 (19)0.37409 (16)0.18511 (10)0.0449 (4)
C160.38016 (19)0.38473 (17)0.18917 (11)0.0489 (4)
H16A0.42130.37420.14480.059*
C170.46321 (18)0.41034 (15)0.25708 (11)0.0445 (4)
C180.39582 (18)0.42637 (15)0.32176 (10)0.0439 (4)
H18A0.45120.44490.36790.053*
C190.25311 (18)0.41677 (15)0.32213 (10)0.0417 (4)
C200.17137 (18)0.38860 (16)0.25182 (10)0.0424 (4)
C210.8335 (2)0.03120 (18)0.28575 (13)0.0549 (5)
C220.9056 (3)0.0030 (4)0.20973 (19)0.1070 (11)
H22A0.91070.04990.17110.160*
H22B1.00280.00680.22120.160*
H22C0.84850.08700.18920.160*
C230.9286 (3)0.1632 (3)0.3171 (3)0.1184 (13)
H23A0.89560.18250.36930.178*
H23B1.02870.17320.31940.178*
H23C0.92180.21740.28260.178*
C240.8236 (3)0.0569 (3)0.3431 (2)0.0993 (10)
H24A0.78170.03620.39230.149*
H24B0.76280.13940.32120.149*
H24C0.91990.05130.35240.149*
C250.62039 (19)0.41811 (17)0.26502 (12)0.0504 (4)
C260.6241 (3)0.3137 (2)0.32638 (16)0.0759 (7)
H26A0.55790.23610.31040.114*
H26B0.72180.31690.33040.114*
H26C0.59500.32260.37700.114*
C270.6760 (2)0.4069 (2)0.18631 (15)0.0714 (6)
H27A0.67730.47370.14770.107*
H27B0.77330.41000.19350.107*
H27C0.61220.33010.16830.107*
C280.7245 (2)0.5417 (2)0.29181 (15)0.0668 (6)
H28A0.72420.60760.25290.100*
H28B0.69250.55020.34170.100*
H28C0.82200.54470.29750.100*
C290.1868 (2)0.43580 (17)0.39531 (10)0.0487 (4)
C300.1413 (3)0.5437 (2)0.37445 (14)0.0736 (6)
H30A0.22530.61670.35640.110*
H30B0.06790.52510.33330.110*
H30C0.10220.55710.42060.110*
C310.0546 (3)0.3177 (2)0.42414 (13)0.0756 (7)
H31A0.01790.29710.38270.113*
H31B0.08560.25160.43810.113*
H31C0.01330.33040.46970.113*
C320.2966 (2)0.4672 (2)0.46406 (11)0.0639 (5)
H32A0.38090.54100.44770.096*
H32B0.25160.47970.50820.096*
H32C0.32630.40070.47940.096*
C330.3806 (2)0.09823 (17)0.38899 (10)0.0485 (4)
C340.2432 (2)0.0077 (2)0.41472 (13)0.0718 (6)
H34A0.27020.06860.43160.108*
H34B0.19600.02330.45780.108*
H34C0.17700.04410.37090.108*
C350.3409 (3)0.1970 (2)0.36056 (14)0.0717 (6)
H35A0.27950.16200.31480.108*
H35B0.28960.22640.40210.108*
H35C0.42900.26430.34700.108*
C360.4771 (2)0.15914 (19)0.46241 (11)0.0597 (5)
H36A0.50210.09950.48280.090*
H36B0.56510.22580.44810.090*
H36C0.42450.19020.50230.090*
O30.6258 (5)0.2364 (5)0.0147 (2)0.227 (2)
C370.8191 (10)0.1323 (9)0.0542 (7)0.345 (8)
H37A0.87950.15610.02450.517*
H37B0.84760.13540.10900.517*
H37C0.83090.05010.03420.517*
C380.6661 (8)0.2165 (6)0.0462 (2)0.176 (3)
C390.5935 (11)0.2473 (7)0.1217 (3)0.266 (5)
H39A0.52200.33100.12620.399*
H39B0.54560.19330.12540.399*
H39C0.66460.23810.16370.399*
H1O10.221 (3)0.072 (2)0.1925 (15)0.083 (8)*
H1O20.001 (3)0.353 (2)0.2023 (16)0.084 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0384 (7)0.0755 (9)0.0528 (7)0.0286 (6)0.0115 (6)0.0104 (6)
O20.0366 (7)0.0876 (10)0.0494 (7)0.0283 (7)0.0041 (6)0.0191 (7)
N10.0396 (8)0.0530 (8)0.0396 (7)0.0134 (7)0.0015 (6)0.0038 (6)
N20.0390 (8)0.0555 (8)0.0398 (7)0.0151 (7)0.0017 (6)0.0090 (6)
C10.0317 (8)0.0428 (8)0.0479 (9)0.0149 (7)0.0043 (7)0.0050 (7)
C20.0369 (9)0.0401 (8)0.0471 (9)0.0157 (7)0.0050 (7)0.0041 (7)
C30.0379 (9)0.0432 (9)0.0523 (9)0.0144 (7)0.0097 (8)0.0040 (7)
C40.0312 (8)0.0437 (9)0.0605 (10)0.0134 (7)0.0016 (8)0.0124 (7)
C50.0356 (9)0.0499 (9)0.0530 (10)0.0180 (8)0.0053 (7)0.0088 (7)
C60.0359 (9)0.0441 (8)0.0444 (8)0.0136 (7)0.0004 (7)0.0073 (7)
C70.0420 (9)0.0495 (9)0.0412 (8)0.0169 (8)0.0051 (7)0.0068 (7)
C80.0452 (10)0.0494 (9)0.0367 (8)0.0163 (8)0.0004 (7)0.0055 (7)
C90.0559 (12)0.0681 (12)0.0441 (10)0.0087 (10)0.0054 (9)0.0112 (9)
C100.0746 (15)0.0860 (15)0.0364 (9)0.0185 (13)0.0076 (9)0.0103 (9)
C110.0787 (15)0.0719 (13)0.0367 (9)0.0194 (12)0.0073 (9)0.0030 (8)
C120.0537 (11)0.0595 (11)0.0466 (10)0.0104 (9)0.0061 (9)0.0029 (8)
C130.0446 (10)0.0488 (9)0.0372 (8)0.0175 (8)0.0008 (7)0.0074 (7)
C140.0427 (10)0.0597 (10)0.0431 (9)0.0176 (9)0.0041 (8)0.0109 (8)
C150.0356 (9)0.0530 (9)0.0445 (9)0.0155 (8)0.0001 (7)0.0089 (7)
C160.0385 (9)0.0598 (10)0.0487 (9)0.0181 (8)0.0047 (8)0.0119 (8)
C170.0327 (9)0.0433 (8)0.0558 (10)0.0133 (7)0.0003 (7)0.0076 (7)
C180.0375 (9)0.0458 (9)0.0466 (9)0.0151 (7)0.0046 (7)0.0079 (7)
C190.0392 (9)0.0434 (8)0.0429 (8)0.0171 (7)0.0012 (7)0.0063 (7)
C200.0336 (8)0.0486 (9)0.0458 (9)0.0170 (7)0.0008 (7)0.0068 (7)
C210.0337 (9)0.0586 (11)0.0756 (13)0.0206 (8)0.0056 (9)0.0100 (9)
C220.0550 (15)0.169 (3)0.113 (2)0.0639 (19)0.0065 (15)0.014 (2)
C230.0403 (13)0.0770 (17)0.225 (4)0.0162 (12)0.0399 (18)0.016 (2)
C240.0628 (16)0.123 (2)0.133 (2)0.0449 (16)0.0094 (16)0.056 (2)
C250.0330 (9)0.0524 (10)0.0653 (11)0.0167 (8)0.0002 (8)0.0076 (8)
C260.0548 (13)0.0703 (14)0.1036 (18)0.0326 (11)0.0001 (12)0.0087 (13)
C270.0423 (11)0.0876 (16)0.0907 (16)0.0283 (11)0.0076 (11)0.0222 (13)
C280.0402 (11)0.0654 (12)0.0904 (15)0.0158 (10)0.0093 (10)0.0183 (11)
C290.0464 (10)0.0596 (10)0.0438 (9)0.0237 (9)0.0002 (8)0.0122 (8)
C300.0842 (17)0.0917 (16)0.0721 (14)0.0584 (14)0.0134 (12)0.0312 (12)
C310.0637 (14)0.0875 (16)0.0606 (12)0.0127 (12)0.0173 (11)0.0103 (11)
C320.0688 (14)0.0813 (14)0.0479 (10)0.0347 (12)0.0078 (10)0.0191 (10)
C330.0442 (10)0.0535 (10)0.0484 (9)0.0227 (8)0.0074 (8)0.0037 (7)
C340.0514 (12)0.0857 (15)0.0601 (12)0.0141 (11)0.0040 (10)0.0031 (11)
C350.0855 (16)0.0786 (14)0.0700 (13)0.0571 (13)0.0198 (12)0.0145 (11)
C360.0620 (13)0.0645 (12)0.0500 (10)0.0255 (10)0.0116 (9)0.0062 (9)
O30.243 (4)0.409 (7)0.144 (3)0.231 (5)0.094 (3)0.137 (3)
C370.305 (11)0.372 (13)0.507 (18)0.242 (10)0.246 (12)0.320 (13)
C380.300 (7)0.273 (6)0.091 (3)0.247 (6)0.087 (4)0.083 (3)
C390.493 (15)0.306 (9)0.124 (4)0.295 (11)0.035 (6)0.019 (5)
Geometric parameters (Å, º) top
O1—C11.3548 (19)C23—H23C0.96
O1—H1O10.89 (3)C24—H24A0.96
O2—C201.354 (2)C24—H24B0.96
O2—H1O20.87 (3)C24—H24C0.96
N1—C71.280 (2)C25—C271.527 (3)
N1—C81.415 (2)C25—C261.528 (3)
N2—C141.280 (2)C25—C281.533 (3)
N2—C131.419 (2)C26—H26A0.96
C1—C61.399 (2)C26—H26B0.96
C1—C21.410 (2)C26—H26C0.96
C2—C31.385 (2)C27—H27A0.96
C2—C331.529 (2)C27—H27B0.96
C3—C41.394 (3)C27—H27C0.96
C3—H3A0.93C28—H28A0.96
C4—C51.376 (2)C28—H28B0.96
C4—C211.531 (2)C28—H28C0.96
C5—C61.402 (2)C29—C321.529 (3)
C5—H5A0.93C29—C301.532 (3)
C6—C71.449 (2)C29—C311.533 (3)
C7—H7A0.93C30—H30A0.96
C8—C91.388 (2)C30—H30B0.96
C8—C131.393 (2)C30—H30C0.96
C9—C101.384 (3)C31—H31A0.96
C9—H9A0.93C31—H31B0.96
C10—C111.371 (3)C31—H31C0.96
C10—H10A0.93C32—H32A0.96
C11—C121.379 (3)C32—H32B0.96
C11—H11A0.93C32—H32C0.96
C12—C131.391 (2)C33—C341.529 (3)
C12—H12A0.93C33—C361.534 (2)
C14—C151.448 (2)C33—C351.538 (3)
C14—H14A0.93C34—H34A0.96
C15—C161.401 (2)C34—H34B0.96
C15—C201.402 (2)C34—H34C0.96
C16—C171.374 (2)C35—H35A0.96
C16—H16A0.93C35—H35B0.96
C17—C181.402 (2)C35—H35C0.96
C17—C251.534 (2)C36—H36A0.96
C18—C191.384 (2)C36—H36B0.96
C18—H18A0.93C36—H36C0.96
C19—C201.406 (2)O3—C381.111 (4)
C19—C291.535 (2)C37—C381.456 (10)
C21—C241.507 (3)C37—H37A0.96
C21—C231.515 (3)C37—H37B0.96
C21—C221.530 (4)C37—H37C0.96
C22—H22A0.96C38—C391.444 (8)
C22—H22B0.96C39—H39A0.96
C22—H22C0.96C39—H39B0.96
C23—H23A0.96C39—H39C0.96
C23—H23B0.96
C1—O1—H1O1105.8 (16)C27—C25—C26108.66 (19)
C20—O2—H1O2104.6 (17)C27—C25—C28107.99 (17)
C7—N1—C8119.31 (15)C26—C25—C28109.09 (18)
C14—N2—C13119.35 (15)C27—C25—C17111.42 (16)
O1—C1—C6119.97 (14)C26—C25—C17109.29 (15)
O1—C1—C2119.56 (15)C28—C25—C17110.34 (16)
C6—C1—C2120.47 (15)C25—C26—H26A109.5
C3—C2—C1116.38 (15)C25—C26—H26B109.5
C3—C2—C33122.46 (14)H26A—C26—H26B109.5
C1—C2—C33121.16 (15)C25—C26—H26C109.5
C2—C3—C4125.10 (15)H26A—C26—H26C109.5
C2—C3—H3A117.5H26B—C26—H26C109.5
C4—C3—H3A117.5C25—C27—H27A109.5
C5—C4—C3116.75 (16)C25—C27—H27B109.5
C5—C4—C21123.03 (17)H27A—C27—H27B109.5
C3—C4—C21120.18 (16)C25—C27—H27C109.5
C4—C5—C6121.45 (17)H27A—C27—H27C109.5
C4—C5—H5A119.3H27B—C27—H27C109.5
C6—C5—H5A119.3C25—C28—H28A109.5
C1—C6—C5119.85 (15)C25—C28—H28B109.5
C1—C6—C7121.48 (15)H28A—C28—H28B109.5
C5—C6—C7118.57 (16)C25—C28—H28C109.5
N1—C7—C6122.76 (16)H28A—C28—H28C109.5
N1—C7—H7A118.6H28B—C28—H28C109.5
C6—C7—H7A118.6C32—C29—C30107.16 (16)
C9—C8—C13119.21 (16)C32—C29—C31107.54 (16)
C9—C8—N1122.34 (16)C30—C29—C31110.67 (19)
C13—C8—N1118.40 (14)C32—C29—C19112.08 (16)
C10—C9—C8120.87 (18)C30—C29—C19109.44 (16)
C10—C9—H9A119.6C31—C29—C19109.92 (16)
C8—C9—H9A119.6C29—C30—H30A109.5
C11—C10—C9119.65 (18)C29—C30—H30B109.5
C11—C10—H10A120.2H30A—C30—H30B109.5
C9—C10—H10A120.2C29—C30—H30C109.5
C10—C11—C12120.33 (18)H30A—C30—H30C109.5
C10—C11—H11A119.8H30B—C30—H30C109.5
C12—C11—H11A119.8C29—C31—H31A109.5
C11—C12—C13120.58 (18)C29—C31—H31B109.5
C11—C12—H12A119.7H31A—C31—H31B109.5
C13—C12—H12A119.7C29—C31—H31C109.5
C12—C13—C8119.26 (16)H31A—C31—H31C109.5
C12—C13—N2122.41 (16)H31B—C31—H31C109.5
C8—C13—N2118.22 (14)C29—C32—H32A109.5
N2—C14—C15122.85 (16)C29—C32—H32B109.5
N2—C14—H14A118.6H32A—C32—H32B109.5
C15—C14—H14A118.6C29—C32—H32C109.5
C16—C15—C20119.76 (15)H32A—C32—H32C109.5
C16—C15—C14118.42 (16)H32B—C32—H32C109.5
C20—C15—C14121.81 (16)C2—C33—C34110.08 (15)
C17—C16—C15121.63 (16)C2—C33—C36112.41 (15)
C17—C16—H16A119.2C34—C33—C36107.34 (16)
C15—C16—H16A119.2C2—C33—C35109.12 (16)
C16—C17—C18116.59 (16)C34—C33—C35110.84 (18)
C16—C17—C25123.30 (16)C36—C33—C35107.01 (16)
C18—C17—C25120.08 (15)C33—C34—H34A109.5
C19—C18—C17124.94 (16)C33—C34—H34B109.5
C19—C18—H18A117.5H34A—C34—H34B109.5
C17—C18—H18A117.5C33—C34—H34C109.5
C18—C19—C20116.57 (15)H34A—C34—H34C109.5
C18—C19—C29121.98 (15)H34B—C34—H34C109.5
C20—C19—C29121.45 (15)C33—C35—H35A109.5
O2—C20—C15119.90 (15)C33—C35—H35B109.5
O2—C20—C19119.60 (15)H35A—C35—H35B109.5
C15—C20—C19120.49 (16)C33—C35—H35C109.5
C24—C21—C23111.8 (2)H35A—C35—H35C109.5
C24—C21—C22107.3 (2)H35B—C35—H35C109.5
C23—C21—C22107.7 (2)C33—C36—H36A109.5
C24—C21—C4108.80 (17)C33—C36—H36B109.5
C23—C21—C4110.02 (17)H36A—C36—H36B109.5
C22—C21—C4111.11 (18)C33—C36—H36C109.5
C21—C22—H22A109.5H36A—C36—H36C109.5
C21—C22—H22B109.5H36B—C36—H36C109.5
H22A—C22—H22B109.5C38—C37—H37A109.5
C21—C22—H22C109.5C38—C37—H37B109.5
H22A—C22—H22C109.5H37A—C37—H37B109.5
H22B—C22—H22C109.5C38—C37—H37C109.5
C21—C23—H23A109.5H37A—C37—H37C109.5
C21—C23—H23B109.5H37B—C37—H37C109.5
H23A—C23—H23B109.5O3—C38—C39132.8 (9)
C21—C23—H23C109.5O3—C38—C37116.6 (8)
H23A—C23—H23C109.5C39—C38—C37110.2 (6)
H23B—C23—H23C109.5C38—C39—H39A109.5
C21—C24—H24A109.5C38—C39—H39B109.5
C21—C24—H24B109.5H39A—C39—H39B109.5
H24A—C24—H24B109.5C38—C39—H39C109.5
C21—C24—H24C109.5H39A—C39—H39C109.5
H24A—C24—H24C109.5H39B—C39—H39C109.5
H24B—C24—H24C109.5
O1—C1—C2—C3178.29 (15)C15—C16—C17—C180.6 (3)
C6—C1—C2—C30.8 (2)C15—C16—C17—C25177.69 (16)
O1—C1—C2—C331.3 (2)C16—C17—C18—C190.9 (3)
C6—C1—C2—C33179.58 (15)C25—C17—C18—C19177.48 (15)
C1—C2—C3—C40.5 (2)C17—C18—C19—C200.1 (3)
C33—C2—C3—C4179.91 (16)C17—C18—C19—C29179.91 (16)
C2—C3—C4—C50.1 (3)C16—C15—C20—O2178.13 (16)
C2—C3—C4—C21177.60 (16)C14—C15—C20—O20.6 (3)
C3—C4—C5—C60.4 (2)C16—C15—C20—C191.6 (3)
C21—C4—C5—C6177.27 (16)C14—C15—C20—C19179.70 (16)
O1—C1—C6—C5178.51 (15)C18—C19—C20—O2178.41 (15)
C2—C1—C6—C50.6 (2)C29—C19—C20—O21.6 (2)
O1—C1—C6—C72.0 (2)C18—C19—C20—C151.3 (2)
C2—C1—C6—C7177.09 (15)C29—C19—C20—C15178.68 (16)
C4—C5—C6—C10.0 (3)C5—C4—C21—C24107.0 (2)
C4—C5—C6—C7176.58 (16)C3—C4—C21—C2470.5 (2)
C8—N1—C7—C6178.16 (15)C5—C4—C21—C23130.1 (2)
C1—C6—C7—N10.5 (3)C3—C4—C21—C2352.3 (3)
C5—C6—C7—N1176.03 (16)C5—C4—C21—C2210.9 (3)
C7—N1—C8—C945.8 (3)C3—C4—C21—C22171.5 (2)
C7—N1—C8—C13136.81 (18)C16—C17—C25—C275.8 (2)
C13—C8—C9—C102.9 (3)C18—C17—C25—C27176.03 (17)
N1—C8—C9—C10179.8 (2)C16—C17—C25—C26114.3 (2)
C8—C9—C10—C110.2 (4)C18—C17—C25—C2663.9 (2)
C9—C10—C11—C121.5 (4)C16—C17—C25—C28125.7 (2)
C10—C11—C12—C130.6 (4)C18—C17—C25—C2856.1 (2)
C11—C12—C13—C82.0 (3)C18—C19—C29—C320.8 (2)
C11—C12—C13—N2178.2 (2)C20—C19—C29—C32179.21 (16)
C9—C8—C13—C123.7 (3)C18—C19—C29—C30119.52 (19)
N1—C8—C13—C12178.86 (17)C20—C19—C29—C3060.5 (2)
C9—C8—C13—N2180.00 (18)C18—C19—C29—C31118.74 (19)
N1—C8—C13—N22.6 (3)C20—C19—C29—C3161.3 (2)
C14—N2—C13—C1245.9 (3)C3—C2—C33—C34119.17 (19)
C14—N2—C13—C8137.91 (18)C1—C2—C33—C3460.4 (2)
C13—N2—C14—C15178.34 (16)C3—C2—C33—C360.4 (2)
N2—C14—C15—C16175.52 (17)C1—C2—C33—C36179.98 (16)
N2—C14—C15—C203.2 (3)C3—C2—C33—C35118.98 (18)
C20—C15—C16—C170.6 (3)C1—C2—C33—C3561.4 (2)
C14—C15—C16—C17179.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.89 (2)1.76 (3)2.5809 (19)153 (3)
O2—H1O2···N20.87 (3)1.78 (3)2.5956 (19)155 (3)
C7—H7A···O30.932.583.460 (6)158
C30—H30B···O20.962.362.994 (3)123
C31—H31A···O20.962.342.989 (3)124
C34—H34C···O10.962.322.968 (3)124
C35—H35A···O10.962.352.996 (3)124
C24—H24B···Cg2i0.962.973.877 (3)158
C26—H26A···Cg1ii0.962.893.798 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC36H48N2O2·C3H6O
Mr598.84
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.0008 (2), 12.0020 (3), 17.0366 (4)
α, β, γ (°)82.068 (1), 86.320 (1), 65.764 (1)
V3)1846.76 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.59 × 0.55 × 0.43
Data collection
DiffractometerBruker SMART APEX2 CCD area-detecto
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
26090, 8384, 5874
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.183, 1.04
No. of reflections8384
No. of parameters419
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.89 (2)1.76 (3)2.5809 (19)153 (3)
O2—H1O2···N20.87 (3)1.78 (3)2.5956 (19)155 (3)
C7—H7A···O30.932.583.460 (6)158
C30—H30B···O20.962.362.994 (3)123
C31—H31A···O20.962.342.989 (3)124
C34—H34C···O10.962.322.968 (3)124
C35—H35A···O10.962.352.996 (3)124
C24—H24B···Cg2i0.962.973.877 (3)158
C26—H26A···Cg1ii0.962.893.798 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Footnotes

On study leave from: International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Additional correspondence author. E-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation, Malaysia (MOSTI), and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Eng1. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51–59.  Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2024–m2025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o695–o696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o766–o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o576-o577
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds