organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R*,4R*,5S*)-4-(4-Methyl­phen­yl)-2,3-di­phenyl-7-[(R*)-1-phenyl­ethyl]-1-oxa-2,7-di­aza­spiro­[4.5]decan-10-one oxime

aDepartment of Physics, The Madura College, Madurai 625 011, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 31 January 2008; accepted 9 February 2008; online 15 February 2008)

In the title compound, C34H35N3O2, the polysubstituted piperidine ring adopts a chair conformation and the isoxazolidine ring is in an envelope form. The mol­ecules are linked into a chain along the b axis by O—H⋯N, C—H⋯O and C—H⋯N inter­actions. The chains are cross-linked via weak C—H⋯π inter­actions.

Related literature

For related literature, see: Ali et al. (1988[Ali, Sk. A., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911-5920.]); Annuziata et al. (1987[Annuziata, R., Chinquini, M., Cozzi, F. & Raimondi, L. (1987). Tetrahedron, 43, 4051-4056.]); Colombi et al. (1978[Colombi, S., Vecchio, G., Gottarelli, G., Samori, B., Lanfredi, A. M. M. & Tiripicchio, A. (1978). Tetrahedron, 34, 2967-2976.]); Gothelf & Jorgensen (2000[Gothelf, K. V. & Jorgensen, K. A. (2000). Chem. Commun. pp. 1449-1458.]); Goti et al. (1997[Goti, A., Fedi, V., Nanneli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577-579.]); Hossain et al. (1993[Hossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). Tetrahedron, 49, 10133-10156.]); Kumar et al. (2003[Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun. 33, 1545-1555.]).

[Scheme 1]

Experimental

Crystal data
  • C34H35N3O2

  • Mr = 517.65

  • Orthorhombic, P 21 21 21

  • a = 10.448 (7) Å

  • b = 10.588 (9) Å

  • c = 26.490 (16) Å

  • V = 2930 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.18 × 0.16 × 0.11 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.986, Tmax = 0.991

  • 3068 measured reflections

  • 2933 independent reflections

  • 1037 reflections with I > 2σ(I)

  • Rint = 0.049

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.119

  • S = 0.95

  • 2933 reflections

  • 355 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.98 2.791 (6) 170
C3—H3B⋯N2ii 0.97 2.61 3.353 (8) 133
C96—H96⋯O1ii 0.93 2.60 3.456 (9) 154
C94—H94⋯Cg1iii 0.93 2.80 3.721 (11) 170
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-dipolar cycloaddition of nitrones with olefinic dipolarophiles proceeds through a concerted mechanism yielding highly substituted isoxazolidines with generation of as many as three new contiguous stereogenic centers in a single step (Gothelf & Jorgensen, 2000). Isoxazolidines are potential precursors for biologically important compounds such as amino sugars, alkaloids (Goti et al., 1997; Ali et al., 1988), β-lactams (Ali et al., 1988), and amino acids (Annuziata et al., 1987), and exhibit antibacterial and antifungal activities (Kumar et al., 2003). Among the dipoles, nitrones have been extensively used as they readily undergo both inter- and intra-molecular 1,3-dipolar cycloaddition with olefins. 1,3-dipolar cycloaddition of exocyclic olefins with nitrones result in highly substituted spiro-isoxazolidines (Hossain et al., 1993) and they have also been transformed into complex heterocycles (Colombi et al., 1978).

The molecular structure of the title compound is shown in Fig.1. The isoxazolidine ring has an envelope conformation, as indicated by the puckering parameters Q = 0.492 (6) Å and ϕ = 34.1 (7)°. The piperidine ring adopts a chair conformation. The C31—C36, C81—C86 and C71—C76 phenyl rings form dihedral angles of 37.5 (3)°, 77.5 (3)° and 71.8 (2)°, respectively, with the O2/C5/C7/C8 plane. The C31—C36 and C71—C76 phenyl rings are oriented at angles of 74.1 (3)° and 70.9 (3)°, respectively, with respect to the C81—C86 phenyl ring. The C2—N1—C9—C91 and C6—N1—C9—C10 torsion angles are 175.9 (6) and 178.4 (5)°, respectively.

Intermolecular O—H···N and weak C—H···O and C—H···N interactions form a linear chain running parallel to the b axis (Table 1). The chains are cross-linked via weak C—H···π interactions involving the C31—C36 phenyl ring (centroid Cg1).

Related literature top

For related literature, see: Ali et al. (1988); Annuziata et al. (1987); Colombi et al. (1978); Gothelf & Jorgensen (2000); Goti et al. (1997); Hossain et al. (1993); Kumar et al. (2003).

Experimental top

4-(4-Methylphenyl)-2,3-diphenyl-7-[(R)-1-phenylethyl]-1-oxa-2,7-diazaspiro[4.5] decan-10-one (0.05 g, 0.01 mmol), hydroxylammonium chloride (0.010 g, 0.015 mmol) and sodium acetate (0.012 g, 0.015 mmol) in ethanol (3 ml) was refluxed for 30 min. After completion of the reaction, as evident from TLC the excess solvent was evaporated in vacuo and the residue was subjected to flash column chromatography on silica gel using petroleum ether-ethyl acetate (10:2) as eluent. The product was recrystallized from ethanol (yield 72%, m.p 418 K)

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, O—H = 0.82 Å and Uiso = 1.2Ueq(C) for CH2 and CH groups, and 1.5Ueq for CH3 and OH groups. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and Friedel pairs were merged.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(3R*,4R*,5S*)-4-(4-Methylphenyl)-2,3-diphenyl-7- [(R*)-1-phenylethyl]-1-oxa-2,7-diazaspiro[4.5]decan-10-one oxime top
Crystal data top
C34H35N3O2F(000) = 1104
Mr = 517.65Dx = 1.173 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.448 (7) Åθ = 2–25°
b = 10.588 (9) ŵ = 0.07 mm1
c = 26.490 (16) ÅT = 293 K
V = 2930 (4) Å3Block, colourless
Z = 40.18 × 0.16 × 0.11 mm
Data collection top
Nonius MACH-3
diffractometer
1037 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.986, Tmax = 0.991l = 131
3068 measured reflections2 standard reflections every 60 min
2933 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
2933 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C34H35N3O2V = 2930 (4) Å3
Mr = 517.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.448 (7) ŵ = 0.07 mm1
b = 10.588 (9) ÅT = 293 K
c = 26.490 (16) Å0.18 × 0.16 × 0.11 mm
Data collection top
Nonius MACH-3
diffractometer
1037 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.049
Tmin = 0.986, Tmax = 0.9912 standard reflections every 60 min
3068 measured reflections intensity decay: none
2933 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.96Δρmax = 0.15 e Å3
2933 reflectionsΔρmin = 0.17 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1491 (7)0.2999 (7)0.2896 (2)0.057 (2)
H2A0.15020.35890.31760.068*
H2B0.17780.21850.30200.068*
C30.0135 (7)0.2879 (6)0.2695 (2)0.061 (2)
H3A0.04210.25570.29590.073*
H3B0.01780.37040.25940.073*
C40.0111 (6)0.2011 (7)0.2257 (2)0.0428 (19)
C50.1068 (6)0.2330 (6)0.1843 (2)0.0440 (19)
C60.2378 (6)0.2497 (7)0.2084 (2)0.0495 (19)
H6A0.26630.16910.22180.059*
H6B0.29850.27570.18270.059*
C70.1025 (6)0.1445 (6)0.1374 (2)0.0453 (19)
H70.03220.08490.14300.054*
C80.0593 (6)0.2344 (6)0.0951 (2)0.0459 (19)
H80.13480.27570.08060.055*
C90.3678 (7)0.3610 (7)0.2705 (3)0.059 (2)
H90.39490.28040.28520.070*
C100.3704 (8)0.4613 (7)0.3123 (2)0.092 (3)
H10A0.34000.54020.29900.138*
H10B0.45640.47140.32430.138*
H10C0.31630.43500.33960.138*
C310.0448 (7)0.4453 (7)0.0987 (3)0.049 (2)
C320.1389 (8)0.4467 (8)0.0614 (3)0.069 (2)
H320.17660.37120.05150.083*
C330.1768 (8)0.5572 (10)0.0391 (3)0.081 (3)
H330.23950.55540.01420.098*
C340.1238 (10)0.6699 (8)0.0530 (3)0.078 (3)
H340.15070.74510.03830.094*
C350.0303 (9)0.6693 (8)0.0890 (3)0.084 (3)
H350.00810.74520.09800.101*
C360.0098 (8)0.5574 (8)0.1127 (3)0.065 (2)
H360.07260.55950.13760.078*
C710.2166 (7)0.0680 (7)0.1229 (2)0.047 (2)
C720.3230 (7)0.1135 (7)0.0978 (3)0.057 (2)
H720.33070.19980.09210.068*
C730.4189 (8)0.0327 (7)0.0807 (3)0.065 (2)
H730.48840.06620.06330.078*
C740.4133 (9)0.0953 (8)0.0889 (3)0.065 (2)
C750.3100 (9)0.1418 (8)0.1145 (3)0.081 (3)
H750.30360.22810.12070.098*
C760.2152 (8)0.0616 (8)0.1312 (3)0.067 (2)
H760.14670.09600.14890.081*
C770.5171 (7)0.1818 (8)0.0674 (3)0.093 (3)
H77A0.53200.16080.03270.139*
H77B0.48970.26810.06990.139*
H77C0.59480.17070.08630.139*
C810.0138 (8)0.1710 (7)0.0537 (3)0.057 (2)
C820.0338 (8)0.1661 (7)0.0054 (3)0.079 (3)
H820.11120.20500.00220.094*
C830.0344 (13)0.1023 (11)0.0326 (4)0.116 (5)
H830.00230.09920.06540.139*
C840.1453 (13)0.0462 (13)0.0216 (6)0.136 (6)
H840.18770.00160.04680.163*
C850.1984 (11)0.0517 (11)0.0251 (5)0.120 (4)
H850.27800.01610.03160.144*
C860.1287 (10)0.1135 (8)0.0636 (3)0.088 (3)
H860.16130.11510.09620.105*
C910.4635 (7)0.3974 (8)0.2304 (3)0.056 (2)
C920.5805 (9)0.3409 (10)0.2280 (4)0.105 (4)
H920.59800.27310.24920.126*
C930.6745 (11)0.3822 (11)0.1947 (5)0.125 (5)
H930.75410.34300.19380.150*
C940.6480 (11)0.4818 (11)0.1631 (4)0.107 (4)
H940.71070.51170.14120.128*
C950.5312 (9)0.5363 (8)0.1637 (3)0.081 (3)
H950.51270.60160.14150.097*
C960.4391 (7)0.4953 (8)0.1974 (3)0.067 (2)
H960.35940.53430.19780.081*
N10.2373 (5)0.3445 (5)0.2497 (2)0.0447 (15)
N20.0569 (5)0.1010 (5)0.2211 (2)0.0442 (15)
N30.0164 (5)0.3297 (5)0.12360 (19)0.0462 (15)
O10.1378 (5)0.0870 (4)0.26317 (17)0.0568 (14)
H10.17260.01770.26210.085*
O20.0736 (4)0.3573 (4)0.16451 (15)0.0469 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.077 (6)0.051 (5)0.042 (4)0.012 (5)0.010 (5)0.003 (4)
C30.074 (6)0.051 (5)0.057 (5)0.007 (5)0.021 (5)0.007 (4)
C40.041 (5)0.046 (4)0.041 (4)0.004 (4)0.013 (4)0.001 (4)
C50.049 (5)0.042 (5)0.041 (4)0.001 (4)0.002 (4)0.001 (4)
C60.058 (5)0.049 (4)0.042 (4)0.000 (4)0.002 (4)0.004 (4)
C70.058 (5)0.038 (4)0.040 (4)0.008 (4)0.007 (4)0.003 (4)
C80.042 (5)0.053 (5)0.043 (4)0.000 (4)0.007 (4)0.011 (4)
C90.056 (6)0.066 (6)0.053 (5)0.005 (5)0.013 (5)0.009 (5)
C100.106 (7)0.120 (7)0.050 (5)0.019 (6)0.019 (5)0.026 (6)
C310.050 (5)0.049 (5)0.047 (5)0.000 (5)0.012 (4)0.011 (5)
C320.055 (6)0.073 (7)0.080 (6)0.004 (5)0.003 (5)0.002 (6)
C330.085 (7)0.093 (7)0.066 (6)0.027 (7)0.008 (5)0.014 (7)
C340.116 (9)0.058 (7)0.061 (6)0.011 (6)0.012 (6)0.001 (5)
C350.114 (8)0.071 (7)0.068 (6)0.005 (6)0.020 (6)0.006 (5)
C360.087 (7)0.053 (5)0.057 (5)0.004 (6)0.012 (5)0.011 (5)
C710.064 (6)0.031 (5)0.047 (5)0.004 (5)0.011 (4)0.003 (4)
C720.061 (5)0.051 (5)0.058 (5)0.005 (5)0.008 (5)0.006 (5)
C730.063 (6)0.068 (6)0.065 (5)0.010 (5)0.015 (5)0.014 (5)
C740.081 (7)0.064 (6)0.050 (5)0.031 (6)0.002 (5)0.006 (5)
C750.107 (8)0.049 (5)0.087 (7)0.016 (6)0.019 (6)0.002 (5)
C760.078 (6)0.065 (6)0.059 (6)0.004 (6)0.012 (5)0.005 (5)
C770.100 (7)0.090 (7)0.088 (6)0.042 (6)0.008 (6)0.017 (5)
C810.057 (6)0.061 (5)0.052 (5)0.012 (5)0.002 (5)0.011 (5)
C820.086 (6)0.089 (6)0.060 (5)0.029 (6)0.011 (5)0.021 (5)
C830.174 (13)0.117 (11)0.056 (6)0.065 (10)0.037 (8)0.044 (7)
C840.132 (14)0.090 (10)0.187 (15)0.019 (10)0.070 (13)0.049 (11)
C850.089 (9)0.085 (8)0.186 (13)0.013 (7)0.012 (10)0.017 (10)
C860.094 (8)0.076 (7)0.093 (8)0.010 (6)0.033 (7)0.028 (6)
C910.037 (5)0.066 (6)0.064 (5)0.013 (5)0.011 (4)0.025 (5)
C920.062 (7)0.110 (8)0.144 (10)0.024 (7)0.005 (7)0.021 (8)
C930.056 (7)0.138 (12)0.181 (14)0.028 (9)0.000 (8)0.036 (10)
C940.064 (8)0.135 (11)0.122 (10)0.025 (8)0.048 (7)0.063 (8)
C950.083 (7)0.090 (7)0.070 (5)0.012 (7)0.021 (6)0.016 (5)
C960.048 (5)0.073 (6)0.082 (6)0.001 (5)0.017 (5)0.003 (5)
N10.044 (4)0.043 (3)0.047 (3)0.001 (3)0.004 (3)0.004 (3)
N20.044 (4)0.042 (3)0.046 (4)0.000 (3)0.011 (3)0.002 (3)
N30.052 (4)0.042 (4)0.044 (3)0.003 (3)0.000 (3)0.005 (3)
O10.062 (4)0.053 (4)0.056 (3)0.015 (3)0.024 (3)0.001 (3)
O20.052 (3)0.047 (3)0.042 (3)0.001 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
C2—N11.480 (7)C71—C721.383 (8)
C2—C31.518 (8)C71—C761.390 (8)
C2—H2A0.97C72—C731.393 (9)
C2—H2B0.97C72—H720.93
C3—C41.482 (8)C73—C741.374 (9)
C3—H3A0.97C73—H730.93
C3—H3B0.97C74—C751.367 (10)
C4—N21.282 (7)C74—C771.529 (9)
C4—C51.520 (8)C75—C761.377 (10)
C5—O21.460 (7)C75—H750.93
C5—C61.521 (8)C76—H760.93
C5—C71.557 (8)C77—H77A0.96
C6—N11.485 (7)C77—H77B0.96
C6—H6A0.97C77—H77C0.96
C6—H6B0.97C81—C861.371 (10)
C7—C711.491 (8)C81—C821.374 (8)
C7—C81.537 (8)C82—C831.406 (11)
C7—H70.98C82—H820.93
C8—N31.487 (7)C83—C841.335 (14)
C8—C811.496 (9)C83—H830.93
C8—H80.98C84—C851.358 (15)
C9—N11.481 (7)C84—H840.93
C9—C911.508 (9)C85—C861.412 (12)
C9—C101.534 (8)C85—H850.93
C9—H90.98C86—H860.93
C10—H10A0.96C91—C921.362 (10)
C10—H10B0.96C91—C961.379 (9)
C10—H10C0.96C92—C931.391 (13)
C31—C361.368 (8)C92—H920.93
C31—C321.393 (9)C93—C941.374 (13)
C31—N31.422 (8)C93—H930.93
C32—C331.369 (10)C94—C951.350 (11)
C32—H320.93C94—H940.93
C33—C341.366 (10)C95—C961.382 (9)
C33—H330.93C95—H950.93
C34—C351.365 (10)C96—H960.93
C34—H340.93N2—O11.406 (6)
C35—C361.405 (10)N3—O21.464 (6)
C35—H350.93O1—H10.82
C36—H360.93
N1—C2—C3111.0 (5)C72—C71—C76115.4 (7)
N1—C2—H2A109.4C72—C71—C7125.2 (6)
C3—C2—H2A109.4C76—C71—C7119.2 (7)
N1—C2—H2B109.4C71—C72—C73121.4 (7)
C3—C2—H2B109.4C71—C72—H72119.3
H2A—C2—H2B108.0C73—C72—H72119.3
C4—C3—C2110.0 (6)C74—C73—C72121.6 (8)
C4—C3—H3A109.7C74—C73—H73119.2
C2—C3—H3A109.7C72—C73—H73119.2
C4—C3—H3B109.7C75—C74—C73117.9 (8)
C2—C3—H3B109.7C75—C74—C77121.9 (8)
H3A—C3—H3B108.2C73—C74—C77120.1 (9)
N2—C4—C3126.6 (6)C74—C75—C76120.3 (8)
N2—C4—C5118.7 (6)C74—C75—H75119.8
C3—C4—C5114.6 (6)C76—C75—H75119.8
O2—C5—C4107.6 (5)C75—C76—C71123.4 (8)
O2—C5—C6105.1 (5)C75—C76—H76118.3
C4—C5—C6108.4 (6)C71—C76—H76118.3
O2—C5—C7104.4 (5)C74—C77—H77A109.5
C4—C5—C7115.0 (5)C74—C77—H77B109.5
C6—C5—C7115.5 (6)H77A—C77—H77B109.5
N1—C6—C5112.6 (5)C74—C77—H77C109.5
N1—C6—H6A109.1H77A—C77—H77C109.5
C5—C6—H6A109.1H77B—C77—H77C109.5
N1—C6—H6B109.1C86—C81—C82118.5 (8)
C5—C6—H6B109.1C86—C81—C8120.5 (7)
H6A—C6—H6B107.8C82—C81—C8121.0 (8)
C71—C7—C8112.6 (5)C81—C82—C83120.1 (9)
C71—C7—C5120.6 (6)C81—C82—H82119.9
C8—C7—C5102.6 (5)C83—C82—H82119.9
C71—C7—H7106.7C84—C83—C82119.8 (12)
C8—C7—H7106.7C84—C83—H83120.1
C5—C7—H7106.7C82—C83—H83120.1
N3—C8—C81113.9 (6)C83—C84—C85122.4 (15)
N3—C8—C7101.9 (5)C83—C84—H84118.8
C81—C8—C7114.0 (5)C85—C84—H84118.8
N3—C8—H8108.9C84—C85—C86117.8 (13)
C81—C8—H8108.9C84—C85—H85121.1
C7—C8—H8108.9C86—C85—H85121.1
N1—C9—C91112.2 (6)C81—C86—C85121.3 (10)
N1—C9—C10111.5 (6)C81—C86—H86119.3
C91—C9—C10108.6 (6)C85—C86—H86119.3
N1—C9—H9108.1C92—C91—C96117.8 (9)
C91—C9—H9108.1C92—C91—C9121.1 (9)
C10—C9—H9108.1C96—C91—C9121.0 (7)
C9—C10—H10A109.5C91—C92—C93121.7 (11)
C9—C10—H10B109.5C91—C92—H92119.1
H10A—C10—H10B109.5C93—C92—H92119.1
C9—C10—H10C109.5C94—C93—C92119.0 (12)
H10A—C10—H10C109.5C94—C93—H93120.5
H10B—C10—H10C109.5C92—C93—H93120.5
C36—C31—C32118.5 (7)C95—C94—C93120.1 (12)
C36—C31—N3122.3 (7)C95—C94—H94119.9
C32—C31—N3119.1 (7)C93—C94—H94119.9
C33—C32—C31121.3 (8)C94—C95—C96120.3 (9)
C33—C32—H32119.4C94—C95—H95119.9
C31—C32—H32119.4C96—C95—H95119.9
C34—C33—C32120.9 (8)C91—C96—C95121.0 (8)
C34—C33—H33119.5C91—C96—H96119.5
C32—C33—H33119.5C95—C96—H96119.5
C35—C34—C33118.3 (9)C2—N1—C9110.2 (5)
C35—C34—H34120.9C2—N1—C6108.2 (5)
C33—C34—H34120.9C9—N1—C6110.5 (5)
C34—C35—C36122.0 (9)C4—N2—O1110.3 (5)
C34—C35—H35119.0C31—N3—O2107.8 (5)
C36—C35—H35119.0C31—N3—C8117.4 (5)
C31—C36—C35119.1 (7)O2—N3—C899.8 (5)
C31—C36—H36120.5N2—O1—H1109.5
C35—C36—H36120.5C5—O2—N3103.8 (4)
N1—C2—C3—C457.3 (8)N3—C8—C81—C82128.0 (7)
C2—C3—C4—N2123.3 (8)C7—C8—C81—C82115.7 (8)
C2—C3—C4—C552.3 (7)C86—C81—C82—C830.5 (12)
N2—C4—C5—O2121.4 (6)C8—C81—C82—C83177.8 (7)
C3—C4—C5—O262.5 (7)C81—C82—C83—C840.2 (16)
N2—C4—C5—C6125.4 (6)C82—C83—C84—C852 (2)
C3—C4—C5—C650.6 (8)C83—C84—C85—C864 (2)
N2—C4—C5—C75.6 (9)C82—C81—C86—C850.9 (13)
C3—C4—C5—C7178.4 (5)C8—C81—C86—C85179.2 (8)
O2—C5—C6—N160.0 (6)C84—C85—C86—C812.9 (16)
C4—C5—C6—N154.9 (7)N1—C9—C91—C92135.1 (7)
C7—C5—C6—N1174.4 (5)C10—C9—C91—C92101.2 (9)
O2—C5—C7—C71123.6 (6)N1—C9—C91—C9649.8 (9)
C4—C5—C7—C71118.7 (7)C10—C9—C91—C9673.9 (8)
C6—C5—C7—C718.8 (9)C96—C91—C92—C932.0 (13)
O2—C5—C7—C82.5 (7)C9—C91—C92—C93173.3 (9)
C4—C5—C7—C8115.2 (6)C91—C92—C93—C940.6 (17)
C6—C5—C7—C8117.3 (6)C92—C93—C94—C951.6 (17)
C71—C7—C8—N3159.2 (5)C93—C94—C95—C962.3 (15)
C5—C7—C8—N328.1 (6)C92—C91—C96—C951.2 (11)
C71—C7—C8—C8177.7 (7)C9—C91—C96—C95174.0 (7)
C5—C7—C8—C81151.2 (6)C94—C95—C96—C910.9 (12)
C36—C31—C32—C330.2 (11)C3—C2—N1—C9177.5 (6)
N3—C31—C32—C33174.9 (7)C3—C2—N1—C661.6 (7)
C31—C32—C33—C340.3 (13)C91—C9—N1—C2175.9 (6)
C32—C33—C34—C351.2 (13)C10—C9—N1—C262.0 (7)
C33—C34—C35—C361.7 (13)C91—C9—N1—C656.3 (7)
C32—C31—C36—C350.3 (11)C10—C9—N1—C6178.4 (5)
N3—C31—C36—C35175.1 (7)C5—C6—N1—C261.5 (7)
C34—C35—C36—C311.2 (13)C5—C6—N1—C9177.8 (6)
C8—C7—C71—C7242.9 (9)C3—C4—N2—O13.8 (9)
C5—C7—C71—C7278.4 (9)C5—C4—N2—O1179.3 (5)
C8—C7—C71—C76131.6 (7)C36—C31—N3—O21.4 (8)
C5—C7—C71—C76107.0 (8)C32—C31—N3—O2173.4 (6)
C76—C71—C72—C732.1 (11)C36—C31—N3—C8110.1 (7)
C7—C71—C72—C73172.6 (7)C32—C31—N3—C875.0 (8)
C71—C72—C73—C741.2 (12)C81—C8—N3—C3172.3 (8)
C72—C73—C74—C750.1 (13)C7—C8—N3—C31164.5 (6)
C72—C73—C74—C77177.1 (6)C81—C8—N3—O2171.7 (5)
C73—C74—C75—C760.1 (13)C7—C8—N3—O248.5 (5)
C77—C74—C75—C76176.8 (7)C4—C5—O2—N389.7 (5)
C74—C75—C76—C710.9 (13)C6—C5—O2—N3154.9 (4)
C72—C71—C76—C751.9 (12)C7—C5—O2—N333.0 (6)
C7—C71—C76—C75173.1 (7)C31—N3—O2—C5174.5 (5)
N3—C8—C81—C8653.8 (9)C8—N3—O2—C551.4 (5)
C7—C8—C81—C8662.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.982.791 (6)170
C3—H3B···N2ii0.972.613.353 (8)133
C96—H96···O1ii0.932.603.456 (9)154
C94—H94···Cg1iii0.932.803.721 (11)170
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC34H35N3O2
Mr517.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.448 (7), 10.588 (9), 26.490 (16)
V3)2930 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.18 × 0.16 × 0.11
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3068, 2933, 1037
Rint0.049
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.119, 0.96
No. of reflections2933
No. of parameters355
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.982.791 (6)170
C3—H3B···N2ii0.972.613.353 (8)133
C96—H96···O1ii0.932.603.456 (9)154
C94—H94···Cg1iii0.932.803.721 (11)170
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

RSK thanks CSIR, New Delhi, for a Major Research Project.

References

First citationAli, Sk. A., Khan, J. H. & Wazeer, M. I. M. (1988). Tetrahedron, 44, 5911–5920.  CrossRef CAS Web of Science Google Scholar
First citationAnnuziata, R., Chinquini, M., Cozzi, F. & Raimondi, L. (1987). Tetrahedron, 43, 4051–4056.  CrossRef Web of Science Google Scholar
First citationColombi, S., Vecchio, G., Gottarelli, G., Samori, B., Lanfredi, A. M. M. & Tiripicchio, A. (1978). Tetrahedron, 34, 2967–2976.  CSD CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGothelf, K. V. & Jorgensen, K. A. (2000). Chem. Commun. pp. 1449–1458.  Web of Science CrossRef Google Scholar
First citationGoti, A., Fedi, V., Nanneli, L., De Sarlo, F. & Brandi, A. (1997). Synlett, pp. 577–579.  CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). Tetrahedron, 49, 10133–10156.  CrossRef CAS Web of Science Google Scholar
First citationKumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Synth. Commun. 33, 1545–1555.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds