organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-tert-Butyl-5-(4-chloro­phen­yl)furan-2-carbohydrazide

aDepartment of Applied Chemistry, College of Science, China Agricultural University, Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, Beijing 100094, People's Republic of China
*Correspondence e-mail: lyun@cau.edu.cn

(Received 26 December 2007; accepted 31 January 2008; online 6 February 2008)

In the title mol­ecule, C15H17ClN2O2, the furan and benzene rings form a dihedral angle of 15.35 (8)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains extended in the [010] direction.

Related literature

For general background, see: Wing (1988[Wing, K. D. (1988). Science, 241, 467-469.]); Wing et al. (1988[Wing, K. D., Slawecki, R. A. & Carlson, G. R. (1988). Science, 241, 470-472.]); Dhadialla et al. (1998[Dhadialla, T. S., Carlson, G. R. & Le, D. P. (1998). Annu. Rev. Entomol. 43, 545-569.]); Heller et al. (1992[Heller, J. J., Mattioda, H., Klein, E. & Sagenmuller, A. (1992). Brighton Crop. Prot. Conf. Pests. Dis. 1, 59-66.]); Mao et al. (2004[Mao, C. H., Wang, Q. M., Huang, R. Q., Bi, F. C., Chen, L., Liu, Y. X. & Shang, J. (2004). J. Agric. Food Chem. 52, 6737-6741.]). For details of some monoacyl­hydrazines and diacyl­hydrazines containing furan, see: Yang et al. (2002[Yang, X. L., Qian, J. H., Chen, F. H. & Wang, D. Q. (2002). CN Patent No. 1370405.]); Li et al. (2006[Li, X. C., Yang, X. L., Kai, Z. P. & Ling, Y. (2006). Huaxue Tongbao, 69, 668-673.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17ClN2O2

  • Mr = 292.76

  • Orthorhombic, P 21 21 21

  • a = 9.3770 (7) Å

  • b = 9.7861 (7) Å

  • c = 16.0119 (12) Å

  • V = 1469.32 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 113 (2) K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.921, Tmax = 0.949

  • 13814 measured reflections

  • 3496 independent reflections

  • 2754 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.056

  • S = 0.96

  • 3496 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1490 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.882 (15) 2.026 (16) 2.8744 (15) 160.9 (14)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

As one of molting hormone analogs, symmetrical N'-tert-butyl-N,N'-dibenzoylhydrazine (RH-5849) was first found to be a nonsteroidal ecdysone agonist in 1988 (Wing, 1988; Wing et al., 1988). Afterward, several diacylhydrazine compounds were commercially developed as insect growth regulators (IGRs) which were widely used in agriculture (Dhadialla et al., 1998; Heller et al., 1992; Mao et al., 2004). Recently, we synthesized a series of di- or mono- acylhydrazines containing furan for further study on the structure-activity relationship between monoacylhydrazines and diacylhydrazines. It was found that they both had good insecticidal activities (Yang et al., 2002; Li et al., 2006). In order to study the structural character and conformation of the monoacylhydrazine containing furan, the crystal structure of the title compound, (I), has been determined.

In (I) (Fig. 1), the benzene (C1—C6) and furan (O1/C7—C10) rings form a dihedral angle of 15.35 (8)°. The carbonyl group attached to the furan ring is almost coplanar with it. In the crystal, the intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains extended in direction [010].

Related literature top

For general background, see: Wing (1988); Wing et al. (1988); Dhadialla et al. (1998); Heller et al. (1992); Mao et al. (2004). For details of some monoacylhydrazines and diacylhydrazines containing furan, see: Yang et al. (2002); Li et al. (2006).

Experimental top

The title compound, (I), was synthesized by the reaction of 5-(4-chlorophenyl)furan-2-carbonyl chloride (0.96 g, 4 mmol) with tert-butylhydrazine hydrochloride (1.99 g, 16 mmol) using sodium hydroxide (10%, 8.0 g, 20 mmol) as the acid-binding agent. The mixture was stirred at room temperature for 5 h and filtered to obtain a yellow solution. Then the organic phase was separated and dried with anhydrous magnesium sulfate overnight. After removal of the solvent, the residue was purified by vacuum column chromatography on silica gel with petroleum ether and ethyl acetate as the eluent (V petroleum ether: V ethyl acetate = 3:1) and then recrystallized from hexane–ethyl acetate (Vhexane: Vethyl acetate= 1:1) to give colourless crystals suitable for X-ray diffraction (Li et al., 2006).

Refinement top

Atoms H1A and H2A were located on a difference map and isotropically refined. The rest H atoms were positioned geometrically (C—H = 0.95–0.98 Å), and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
N'-tert-Butyl-5-(4-chlorophenyl)furan-2-carbohydrazide top
Crystal data top
C15H17ClN2O2Dx = 1.323 Mg m3
Mr = 292.76Mo Kα radiation, λ = 0.71070 Å
Orthorhombic, P212121Cell parameters from 3053 reflections
a = 9.3770 (7) Åθ = 2.5–25.0°
b = 9.7861 (7) ŵ = 0.26 mm1
c = 16.0119 (12) ÅT = 113 K
V = 1469.32 (19) Å3Prism, colourless
Z = 40.32 × 0.24 × 0.20 mm
F(000) = 616
Data collection top
Rigaku Saturn
diffractometer
3496 independent reflections
Radiation source: rotating anode2754 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.921, Tmax = 0.949l = 2121
13814 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0232P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
3496 reflectionsΔρmax = 0.22 e Å3
192 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1490 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Crystal data top
C15H17ClN2O2V = 1469.32 (19) Å3
Mr = 292.76Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3770 (7) ŵ = 0.26 mm1
b = 9.7861 (7) ÅT = 113 K
c = 16.0119 (12) Å0.32 × 0.24 × 0.20 mm
Data collection top
Rigaku Saturn
diffractometer
3496 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2754 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.949Rint = 0.039
13814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056Δρmax = 0.22 e Å3
S = 0.96Δρmin = 0.21 e Å3
3496 reflectionsAbsolute structure: Flack (1983), 1490 Friedel pairs
192 parametersAbsolute structure parameter: 0.00 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.32887 (4)0.17773 (4)1.09957 (2)0.02303 (9)
O11.13067 (10)0.70996 (9)0.86903 (6)0.0151 (2)
O20.98638 (10)0.97666 (9)0.74249 (6)0.0174 (2)
N10.91782 (13)0.75551 (12)0.76336 (7)0.0151 (3)
N20.80263 (13)0.76074 (12)0.70613 (7)0.0146 (3)
C11.30520 (15)0.33360 (15)1.04901 (8)0.0159 (3)
C21.17767 (16)0.35872 (14)1.00795 (8)0.0168 (3)
H21.10400.29211.00780.020*
C31.15907 (16)0.48241 (13)0.96720 (8)0.0159 (3)
H31.07200.50020.93890.019*
C41.26701 (15)0.58168 (15)0.96708 (9)0.0149 (3)
C51.39448 (15)0.55382 (14)1.00941 (8)0.0176 (3)
H51.46850.62011.01000.021*
C61.41381 (15)0.43007 (14)1.05056 (9)0.0175 (3)
H61.50030.41171.07940.021*
C71.24400 (15)0.71056 (14)0.92346 (8)0.0153 (3)
C81.30641 (15)0.83596 (15)0.92271 (8)0.0175 (3)
H81.38680.86350.95470.021*
C91.22900 (14)0.91848 (15)0.86505 (9)0.0165 (3)
H91.24721.01130.85150.020*
C101.12421 (14)0.83819 (14)0.83345 (8)0.0137 (3)
C111.00485 (15)0.86322 (14)0.77523 (8)0.0138 (3)
C120.66234 (15)0.78352 (14)0.74892 (9)0.0163 (3)
C130.65461 (17)0.92221 (15)0.79274 (9)0.0240 (4)
H13A0.72830.92700.83600.036*
H13B0.56040.93330.81840.036*
H13C0.67010.99520.75180.036*
C140.55159 (16)0.77717 (16)0.67895 (10)0.0241 (4)
H14A0.57130.84910.63800.036*
H14B0.45610.79060.70250.036*
H14C0.55630.68770.65160.036*
C150.63850 (16)0.66767 (15)0.81165 (9)0.0230 (3)
H15A0.65010.57950.78340.035*
H15B0.54190.67420.83470.035*
H15C0.70830.67510.85700.035*
H2A0.8186 (15)0.8364 (13)0.6731 (8)0.012 (4)*
H1A0.9484 (16)0.6722 (16)0.7743 (9)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02355 (19)0.02007 (19)0.0255 (2)0.00437 (17)0.00042 (17)0.00723 (17)
O10.0162 (5)0.0122 (5)0.0169 (5)0.0000 (4)0.0040 (4)0.0010 (4)
O20.0205 (5)0.0104 (5)0.0214 (5)0.0001 (4)0.0019 (5)0.0019 (4)
N10.0154 (6)0.0107 (7)0.0192 (7)0.0012 (5)0.0047 (5)0.0004 (5)
N20.0145 (7)0.0146 (7)0.0146 (6)0.0003 (5)0.0032 (5)0.0022 (5)
C10.0218 (8)0.0154 (7)0.0105 (7)0.0048 (7)0.0022 (6)0.0016 (6)
C20.0168 (7)0.0180 (8)0.0157 (7)0.0019 (6)0.0012 (7)0.0011 (6)
C30.0146 (7)0.0187 (8)0.0144 (7)0.0016 (6)0.0031 (6)0.0010 (6)
C40.0157 (7)0.0162 (8)0.0128 (7)0.0021 (6)0.0004 (6)0.0034 (6)
C50.0180 (8)0.0172 (8)0.0177 (8)0.0014 (6)0.0022 (6)0.0043 (6)
C60.0157 (8)0.0225 (8)0.0144 (8)0.0045 (7)0.0029 (6)0.0021 (6)
C70.0125 (7)0.0185 (8)0.0150 (8)0.0015 (6)0.0024 (6)0.0025 (6)
C80.0137 (7)0.0185 (7)0.0202 (8)0.0026 (6)0.0021 (6)0.0018 (6)
C90.0169 (7)0.0129 (7)0.0196 (8)0.0008 (6)0.0022 (6)0.0011 (6)
C100.0157 (7)0.0106 (7)0.0149 (7)0.0023 (6)0.0015 (6)0.0004 (6)
C110.0139 (7)0.0139 (8)0.0137 (7)0.0019 (6)0.0041 (6)0.0023 (6)
C120.0134 (7)0.0168 (7)0.0187 (8)0.0007 (6)0.0017 (7)0.0000 (6)
C130.0207 (9)0.0222 (8)0.0292 (9)0.0024 (7)0.0007 (7)0.0052 (7)
C140.0209 (8)0.0245 (9)0.0270 (9)0.0008 (7)0.0075 (7)0.0012 (7)
C150.0224 (8)0.0230 (8)0.0237 (8)0.0003 (8)0.0005 (7)0.0029 (7)
Geometric parameters (Å, º) top
Cl1—C11.7411 (14)C6—H60.9500
O1—C71.3744 (15)C7—C81.360 (2)
O1—C101.3795 (16)C8—C91.4252 (19)
O2—C111.2398 (15)C8—H80.9500
N1—C111.3465 (17)C9—C101.3561 (18)
N1—N21.4174 (16)C9—H90.9500
N1—H1A0.882 (15)C10—C111.4771 (19)
N2—C121.4999 (18)C12—C141.5289 (19)
N2—H2A0.922 (13)C12—C131.5296 (18)
C1—C21.3866 (19)C12—C151.5311 (18)
C1—C61.3889 (19)C13—H13A0.9800
C2—C31.3861 (17)C13—H13B0.9800
C2—H20.9500C13—H13C0.9800
C3—C41.4029 (19)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.4009 (18)C14—H14C0.9800
C4—C71.4578 (19)C15—H15A0.9800
C5—C61.3906 (19)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C7—O1—C10106.97 (10)C10—C9—H9126.8
C11—N1—N2121.66 (12)C8—C9—H9126.8
C11—N1—H1A119.9 (10)C9—C10—O1109.95 (12)
N2—N1—H1A114.2 (10)C9—C10—C11133.51 (13)
N1—N2—C12112.24 (10)O1—C10—C11116.41 (12)
N1—N2—H2A106.0 (9)O2—C11—N1123.82 (13)
C12—N2—H2A106.6 (9)O2—C11—C10121.41 (13)
C2—C1—C6121.36 (13)N1—C11—C10114.74 (12)
C2—C1—Cl1119.06 (11)N2—C12—C14104.77 (11)
C6—C1—Cl1119.58 (11)N2—C12—C13112.52 (12)
C3—C2—C1119.11 (13)C14—C12—C13109.88 (12)
C3—C2—H2120.4N2—C12—C15108.52 (11)
C1—C2—H2120.4C14—C12—C15110.58 (12)
C2—C3—C4120.97 (14)C13—C12—C15110.44 (12)
C2—C3—H3119.5C12—C13—H13A109.5
C4—C3—H3119.5C12—C13—H13B109.5
C5—C4—C3118.69 (13)H13A—C13—H13B109.5
C5—C4—C7121.77 (13)C12—C13—H13C109.5
C3—C4—C7119.54 (13)H13A—C13—H13C109.5
C6—C5—C4120.66 (13)H13B—C13—H13C109.5
C6—C5—H5119.7C12—C14—H14A109.5
C4—C5—H5119.7C12—C14—H14B109.5
C1—C6—C5119.20 (13)H14A—C14—H14B109.5
C1—C6—H6120.4C12—C14—H14C109.5
C5—C6—H6120.4H14A—C14—H14C109.5
C8—C7—O1109.33 (12)H14B—C14—H14C109.5
C8—C7—C4136.18 (13)C12—C15—H15A109.5
O1—C7—C4114.49 (12)C12—C15—H15B109.5
C7—C8—C9107.33 (13)H15A—C15—H15B109.5
C7—C8—H8126.3C12—C15—H15C109.5
C9—C8—H8126.3H15A—C15—H15C109.5
C10—C9—C8106.41 (13)H15B—C15—H15C109.5
C11—N1—N2—C12101.13 (14)O1—C7—C8—C90.05 (16)
C6—C1—C2—C30.5 (2)C4—C7—C8—C9179.46 (15)
Cl1—C1—C2—C3179.57 (10)C7—C8—C9—C100.42 (16)
C1—C2—C3—C40.0 (2)C8—C9—C10—O10.73 (16)
C2—C3—C4—C50.3 (2)C8—C9—C10—C11176.25 (14)
C2—C3—C4—C7179.88 (13)C7—O1—C10—C90.77 (15)
C3—C4—C5—C60.2 (2)C7—O1—C10—C11177.14 (11)
C7—C4—C5—C6180.00 (13)N2—N1—C11—O25.2 (2)
C2—C1—C6—C50.6 (2)N2—N1—C11—C10176.72 (11)
Cl1—C1—C6—C5179.45 (10)C9—C10—C11—O21.9 (2)
C4—C5—C6—C10.3 (2)O1—C10—C11—O2177.18 (12)
C10—O1—C7—C80.49 (14)C9—C10—C11—N1176.21 (15)
C10—O1—C7—C4179.95 (11)O1—C10—C11—N10.92 (17)
C5—C4—C7—C815.6 (3)N1—N2—C12—C14176.55 (11)
C3—C4—C7—C8164.26 (16)N1—N2—C12—C1364.11 (15)
C5—C4—C7—O1165.04 (12)N1—N2—C12—C1558.41 (14)
C3—C4—C7—O115.13 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882 (15)2.026 (16)2.8744 (15)160.9 (14)
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H17ClN2O2
Mr292.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)9.3770 (7), 9.7861 (7), 16.0119 (12)
V3)1469.32 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.921, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
13814, 3496, 2754
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.056, 0.96
No. of reflections3496
No. of parameters192
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureFlack (1983), 1490 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882 (15)2.026 (16)2.8744 (15)160.9 (14)
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Basic Research Programme of China (grant No. 2003CB114405), the National Natural Science Foundation of China (grant No. 20672138) and the National High Technology Research and Development Programme of China (grant No. 2006AA10A201). The authors also thank the State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China.

References

First citationDhadialla, T. S., Carlson, G. R. & Le, D. P. (1998). Annu. Rev. Entomol. 43, 545–569.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeller, J. J., Mattioda, H., Klein, E. & Sagenmuller, A. (1992). Brighton Crop. Prot. Conf. Pests. Dis. 1, 59–66.  Google Scholar
First citationLi, X. C., Yang, X. L., Kai, Z. P. & Ling, Y. (2006). Huaxue Tongbao, 69, 668–673.  CAS Google Scholar
First citationMao, C. H., Wang, Q. M., Huang, R. Q., Bi, F. C., Chen, L., Liu, Y. X. & Shang, J. (2004). J. Agric. Food Chem. 52, 6737–6741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWing, K. D. (1988). Science, 241, 467–469.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWing, K. D., Slawecki, R. A. & Carlson, G. R. (1988). Science, 241, 470–472.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYang, X. L., Qian, J. H., Chen, F. H. & Wang, D. Q. (2002). CN Patent No. 1370405.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds