organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-tert-Butyl-1,3-di­thian-2-yl)-5-chloro-2-phenyl-1,3-oxazole

aDepartment of Applied Chemistry, China Agriculture University, 100094 Beijing, People's Republic of China
*Correspondence e-mail: shangzho@cau.edu.cn

(Received 7 January 2008; accepted 25 January 2008; online 6 February 2008)

In the title mol­ecule, C17H20ClNOS2, the phenyl and oxazole rings are nearly coplanar with an average deviation of 0.022 Å from the mean plane (M). The 1,3-dithiane ring adopts a chair conformation and is twisted in such a way that the C—CBu fragment lies in M (deviations are 0.031 and 0.010 Å, respectively, for the two C atoms).

Related literature

For details of the pharmacological properties of the GABA [GABA = γ-aminobutyric acid] receptor, see: Wacher et al. (1992[Wacher, V. J., Toia, R. F. & Casida, J. E. (1992). J. Agric. Food. Chem. 40, 497-505.]). For the related structural series of the GABA receptor, see: Jeffrey (2003[Jeffrey, R. B. (2003). Arch. Insect Biochem. Physiol. 54, 145-156.]); Naratashi et al. (2007[Naratashi, T., Zhao, X., Ikeda, T., Nagata, K. & Yeh, J. Z. (2007). Hum. Exp. Toxicol. 26, 361-366.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20ClNOS2

  • Mr = 353.91

  • Monoclinic, P 21 /c

  • a = 7.4543 (15) Å

  • b = 26.222 (5) Å

  • c = 9.4772 (19) Å

  • β = 104.59 (3)°

  • V = 1792.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 (2) K

  • 0.34 × 0.31 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.863, Tmax = 0.924

  • 5683 measured reflections

  • 3135 independent reflections

  • 2788 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 1.10

  • 3135 reflections

  • 199 parameters

  • 59 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in Siemens SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

γ-Aminobutyric acid (GABA) receptor of insect exists in their nerve cell and intramuscular cell, and a combinative site of many insecticide and active compounds (Wacher et al., 1992). A large number of related structural series (e.g., trioxabicyclooctanes, thiazines, arylpyrimidines, oxathianes, and dithianes) was synthesized and assayed on GABA receptor to discover novel insecticides (Jeffrey, 2003). Until now, only synthetic compound Fipronil is broadly used to control certain species of insects that have become resistant to most insecticides (Naratashi et al., 2007). In order to further optimize 1,3-dithiane derivative, the title compound, (I), was synthesized. Herewith we present its crystal structure.

In the title molecule, the phenyl and oxazole rings are nearly coplanar with the average deviation of 0.022 Å from the mean plane (M). The 1,3-dithiane ring adopts a chair conformation being twisted in such a way, that two-atomic fragment C12—C14 actually lie in M with deviations of 0.031 and 0.010 Å, respectively. The crystal structure exhibits no classical hydrogen bonds.

Related literature top

For details of the pharmacological properties of the GABA receptor, see: Wacher et al. (1992). For the related structural series of the GABA receptor, see: Jeffrey (2003); Naratashi et al. (2007). [Title molecule is a GABA receptor?]

Experimental top

Compound (I) was prepared by the 4 h reaction of 0.8 g (3.85 mmol) of 5-chloro-2-phenyloxazole-4-carbaldehyde and 0.8 g (4.88 mmol) of 2-tert-butylpropane-1,3-dithiol in the presence of two drops formic acid used as a catalyst at room temperature with stirring. The resulting mixture was dissolved in chloroform (60 ml), washed with aqueous 10% NaOH (3×20 ml) and H2O (3×20 ml), and then dried with anhydrous sodium sulfate. After concentration, the residue was purified by re-crystallization in a mixed solvent of ethyl acetate and petroleum ether. Single crystals suitable for X-ray data collection were obtained by re-crystallization of the crude product from a mixed solvent ethyl acetate and petroleum ether (v/v, 1/20) as a light yellow crystalline solid (60%), m.p. 453 K.

Refinement top

The H atoms were positioned with idealized geometry (C—H 0.93–0.98 Å), and refined using a riding model with Uiso(H)=1.2 or 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in Siemens SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atomic labels and 30% probability displacement ellipsoids for non-H atoms.
4-(5-tert-Butyl-1,3-dithian-2-yl)-5-chloro-2-phenyl-1,3-oxazole ? top
Crystal data top
C17H20ClNOS2F(000) = 744
Mr = 353.91Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4543 (15) ÅCell parameters from 13320 reflections
b = 26.222 (5) Åθ = 2.2–27.5°
c = 9.4772 (19) ŵ = 0.45 mm1
β = 104.59 (3)°T = 296 K
V = 1792.7 (6) Å3Plate, colourless
Z = 40.34 × 0.31 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3135 independent reflections
Radiation source: rotating anode2788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.863, Tmax = 0.924k = 3031
5683 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.55P]
where P = (Fo2 + 2Fc2)/3
3135 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.37 e Å3
59 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H20ClNOS2V = 1792.7 (6) Å3
Mr = 353.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4543 (15) ŵ = 0.45 mm1
b = 26.222 (5) ÅT = 296 K
c = 9.4772 (19) Å0.34 × 0.31 × 0.18 mm
β = 104.59 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3135 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2788 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.924Rint = 0.023
5683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05059 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.10Δρmax = 0.37 e Å3
3135 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21531 (9)0.68715 (2)0.75838 (9)0.0672 (2)
S20.56576 (9)0.74615 (2)0.89160 (8)0.0656 (2)
Cl10.74022 (11)0.62257 (3)0.61190 (8)0.0840 (3)
O10.7196 (2)0.57469 (6)0.84876 (18)0.0576 (4)
N10.5427 (3)0.62247 (7)0.9549 (2)0.0541 (5)
C10.6072 (4)0.54919 (11)1.1975 (3)0.0732 (7)
H1B0.53530.57761.20420.088*
C20.6441 (5)0.51328 (13)1.3080 (4)0.0923 (10)
H2A0.59660.51741.38910.111*
C30.7516 (6)0.47136 (13)1.2970 (4)0.0978 (11)
H3A0.77890.44761.37230.117*
C40.8183 (5)0.46438 (12)1.1775 (4)0.0869 (9)
H4A0.88810.43551.17030.104*
C50.7828 (4)0.49976 (10)1.0678 (3)0.0685 (7)
H5A0.82930.49500.98650.082*
C60.6776 (3)0.54266 (9)1.0775 (3)0.0557 (6)
C70.6401 (3)0.58120 (9)0.9633 (3)0.0530 (5)
C80.6628 (3)0.61672 (10)0.7651 (3)0.0567 (6)
C90.5551 (3)0.64573 (9)0.8256 (2)0.0523 (5)
C100.4602 (3)0.69455 (9)0.7721 (3)0.0523 (5)
H10A0.47670.70140.67440.063*
C110.1332 (4)0.75009 (9)0.6948 (3)0.0619 (6)
H11A0.15850.75580.60060.074*
H11B0.00020.75110.68100.074*
C120.2190 (3)0.79347 (9)0.7963 (2)0.0490 (5)
H12A0.21330.78350.89480.059*
C130.4239 (3)0.79820 (9)0.7989 (3)0.0598 (6)
H13A0.47110.83000.84650.072*
H13B0.43540.79990.69930.072*
C140.1074 (4)0.84396 (9)0.7598 (3)0.0573 (6)
C150.0878 (4)0.83563 (13)0.7799 (4)0.0839 (9)
H15A0.15820.86650.75680.126*
H15B0.07990.82630.87930.126*
H15C0.14780.80880.71630.126*
C160.0952 (4)0.86200 (12)0.6043 (3)0.0718 (8)
H16A0.02480.89300.58610.108*
H16B0.03530.83630.53650.108*
H16C0.21770.86800.59270.108*
C170.2000 (5)0.88590 (11)0.8662 (4)0.0872 (9)
H17A0.13090.91700.84330.131*
H17B0.32440.89120.85800.131*
H17C0.20260.87580.96410.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0550 (4)0.0493 (4)0.0934 (5)0.0030 (3)0.0113 (3)0.0006 (3)
S20.0556 (4)0.0521 (4)0.0797 (5)0.0014 (3)0.0003 (3)0.0031 (3)
Cl10.0849 (5)0.1090 (6)0.0667 (4)0.0281 (4)0.0352 (4)0.0140 (4)
O10.0560 (9)0.0558 (10)0.0616 (9)0.0092 (7)0.0160 (8)0.0001 (8)
N10.0581 (11)0.0478 (11)0.0585 (11)0.0033 (9)0.0184 (9)0.0039 (9)
C10.089 (2)0.0544 (15)0.0798 (18)0.0037 (14)0.0279 (15)0.0077 (13)
C20.127 (3)0.077 (2)0.078 (2)0.0156 (19)0.0358 (19)0.0161 (16)
C30.120 (3)0.066 (2)0.095 (2)0.0088 (19)0.004 (2)0.0311 (18)
C40.089 (2)0.0623 (18)0.103 (2)0.0064 (16)0.0135 (18)0.0195 (17)
C50.0613 (15)0.0566 (15)0.0855 (18)0.0035 (12)0.0146 (13)0.0100 (13)
C60.0536 (13)0.0455 (12)0.0659 (14)0.0071 (10)0.0112 (11)0.0033 (11)
C70.0498 (12)0.0492 (13)0.0595 (13)0.0037 (10)0.0128 (10)0.0019 (10)
C80.0568 (14)0.0595 (15)0.0539 (13)0.0065 (11)0.0144 (11)0.0032 (11)
C90.0535 (13)0.0508 (13)0.0535 (12)0.0025 (10)0.0152 (10)0.0020 (10)
C100.0563 (13)0.0508 (13)0.0518 (12)0.0038 (10)0.0174 (10)0.0038 (10)
C110.0567 (14)0.0566 (15)0.0679 (16)0.0077 (11)0.0074 (12)0.0025 (12)
C120.0570 (13)0.0518 (12)0.0415 (11)0.0058 (10)0.0185 (9)0.0037 (9)
C130.0595 (14)0.0468 (13)0.0719 (16)0.0006 (11)0.0145 (12)0.0041 (12)
C140.0698 (15)0.0535 (14)0.0535 (13)0.0113 (11)0.0246 (11)0.0070 (10)
C150.0820 (19)0.082 (2)0.103 (2)0.0264 (16)0.0518 (18)0.0230 (18)
C160.0836 (19)0.0727 (18)0.0630 (15)0.0201 (15)0.0259 (14)0.0213 (13)
C170.119 (3)0.0591 (17)0.0819 (19)0.0193 (17)0.0230 (18)0.0095 (14)
Geometric parameters (Å, º) top
S1—C101.808 (3)C9—C101.489 (3)
S1—C111.810 (3)C10—H10A0.9800
S2—C101.812 (2)C11—C121.523 (3)
S2—C131.813 (3)C11—H11A0.9700
Cl1—C81.699 (3)C11—H11B0.9700
O1—C81.362 (3)C12—C131.526 (3)
O1—C71.372 (3)C12—C141.556 (3)
N1—C71.294 (3)C12—H12A0.9800
N1—C91.393 (3)C13—H13A0.9700
C1—C61.378 (4)C13—H13B0.9700
C1—C21.383 (4)C14—C161.528 (3)
C1—H1B0.9300C14—C151.530 (4)
C2—C31.380 (5)C14—C171.534 (4)
C2—H2A0.9300C15—H15A0.9600
C3—C41.359 (5)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.369 (4)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.387 (4)C16—H16C0.9600
C5—H5A0.9300C17—H17A0.9600
C6—C71.455 (3)C17—H17B0.9600
C8—C91.335 (3)C17—H17C0.9600
C10—S1—C11100.18 (12)C12—C11—H11B108.6
C10—S2—C1398.67 (12)S1—C11—H11B108.6
C8—O1—C7103.14 (18)H11A—C11—H11B107.6
C7—N1—C9105.1 (2)C11—C12—C13109.28 (19)
C6—C1—C2119.7 (3)C11—C12—C14112.3 (2)
C6—C1—H1B120.1C13—C12—C14114.3 (2)
C2—C1—H1B120.1C11—C12—H12A106.9
C3—C2—C1119.6 (3)C13—C12—H12A106.9
C3—C2—H2A120.2C14—C12—H12A106.9
C1—C2—H2A120.2C12—C13—S2113.93 (17)
C4—C3—C2120.8 (3)C12—C13—H13A108.8
C4—C3—H3A119.6S2—C13—H13A108.8
C2—C3—H3A119.6C12—C13—H13B108.8
C3—C4—C5120.0 (3)S2—C13—H13B108.8
C3—C4—H4A120.0H13A—C13—H13B107.7
C5—C4—H4A120.0C16—C14—C15109.7 (2)
C4—C5—C6120.2 (3)C16—C14—C17108.7 (2)
C4—C5—H5A119.9C15—C14—C17107.7 (2)
C6—C5—H5A119.9C16—C14—C12112.15 (19)
C1—C6—C5119.6 (3)C15—C14—C12108.8 (2)
C1—C6—C7119.0 (2)C17—C14—C12109.7 (2)
C5—C6—C7121.3 (2)C14—C15—H15A109.5
N1—C7—O1113.7 (2)C14—C15—H15B109.5
N1—C7—C6128.8 (2)H15A—C15—H15B109.5
O1—C7—C6117.5 (2)C14—C15—H15C109.5
C9—C8—O1110.1 (2)H15A—C15—H15C109.5
C9—C8—Cl1133.3 (2)H15B—C15—H15C109.5
O1—C8—Cl1116.62 (18)C14—C16—H16A109.5
C8—C9—N1108.0 (2)C14—C16—H16B109.5
C8—C9—C10129.0 (2)H16A—C16—H16B109.5
N1—C9—C10123.0 (2)C14—C16—H16C109.5
C9—C10—S1108.47 (16)H16A—C16—H16C109.5
C9—C10—S2109.57 (17)H16B—C16—H16C109.5
S1—C10—S2113.36 (13)C14—C17—H17A109.5
C9—C10—H10A108.4C14—C17—H17B109.5
S1—C10—H10A108.4H17A—C17—H17B109.5
S2—C10—H10A108.4C14—C17—H17C109.5
C12—C11—S1114.70 (17)H17A—C17—H17C109.5
C12—C11—H11A108.6H17B—C17—H17C109.5
S1—C11—H11A108.6
C6—C1—C2—C30.3 (5)C7—N1—C9—C80.8 (3)
C1—C2—C3—C41.5 (6)C7—N1—C9—C10179.2 (2)
C2—C3—C4—C51.6 (6)C8—C9—C10—S1124.2 (3)
C3—C4—C5—C60.5 (5)N1—C9—C10—S155.9 (3)
C2—C1—C6—C50.8 (4)C8—C9—C10—S2111.6 (3)
C2—C1—C6—C7179.0 (3)N1—C9—C10—S268.4 (3)
C4—C5—C6—C10.7 (4)C11—S1—C10—C9179.42 (16)
C4—C5—C6—C7179.1 (3)C11—S1—C10—S257.48 (16)
C9—N1—C7—O10.4 (3)C13—S2—C10—C9179.80 (17)
C9—N1—C7—C6178.9 (2)C13—S2—C10—S158.88 (15)
C8—O1—C7—N10.2 (3)C10—S1—C11—C1259.4 (2)
C8—O1—C7—C6178.5 (2)S1—C11—C12—C1367.9 (2)
C1—C6—C7—N11.5 (4)S1—C11—C12—C14164.19 (16)
C5—C6—C7—N1178.6 (2)C11—C12—C13—S270.4 (2)
C1—C6—C7—O1177.0 (2)C14—C12—C13—S2162.84 (16)
C5—C6—C7—O12.9 (3)C10—S2—C13—C1263.2 (2)
C7—O1—C8—C90.7 (3)C11—C12—C14—C1659.6 (3)
C7—O1—C8—Cl1178.63 (17)C13—C12—C14—C1665.6 (3)
O1—C8—C9—N11.0 (3)C11—C12—C14—C1562.0 (3)
Cl1—C8—C9—N1178.2 (2)C13—C12—C14—C15172.8 (2)
O1—C8—C9—C10179.1 (2)C11—C12—C14—C17179.6 (2)
Cl1—C8—C9—C101.8 (4)C13—C12—C14—C1755.2 (3)

Experimental details

Crystal data
Chemical formulaC17H20ClNOS2
Mr353.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4543 (15), 26.222 (5), 9.4772 (19)
β (°) 104.59 (3)
V3)1792.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.34 × 0.31 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.863, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
5683, 3135, 2788
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 1.10
No. of reflections3135
No. of parameters199
No. of restraints59
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in Siemens SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20572129), the National Basic Research Program of China (grant No. 2003CB114405) and the National Key Project of Scientific and Technical Supporting Programs funded by the Ministry of Science and Technology of China (grant No. 2006BAE01AE01-11).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJeffrey, R. B. (2003). Arch. Insect Biochem. Physiol. 54, 145–156.  Web of Science PubMed Google Scholar
First citationNaratashi, T., Zhao, X., Ikeda, T., Nagata, K. & Yeh, J. Z. (2007). Hum. Exp. Toxicol. 26, 361–366.  Web of Science PubMed Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWacher, V. J., Toia, R. F. & Casida, J. E. (1992). J. Agric. Food. Chem. 40, 497–505.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds