organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Hy­droxy­benzyl­­idene­amino)benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 21 January 2008; accepted 25 February 2008; online 29 February 2008)

In the title mol­ecule, C14H10N2O, an intra­molecular O—H⋯N hydrogen bond contributes to the essential coplanarity of the two benzene rings, which form a dihedral angle of 6.04 (18)°.

Related literature

For related crystal structures, see: Kosar et al. (2005[Ko˛sar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör (2005). Acta Cryst. E61, o2106-o2108.]); Cheng et al. (2005[Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137-o1138.], 2006[Cheng, K., Zhu, H. L., Li, Z. B. & Yan, Z. (2006). Acta Cryst. E62, o2417-o2418.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.24

  • Orthorhombic, P c a 21

  • a = 26.397 (5) Å

  • b = 3.9211 (8) Å

  • c = 10.773 (2) Å

  • V = 1115.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.22 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.812, Tmax = 1.000 (expected range = 0.809–0.996)

  • 9995 measured reflections

  • 1339 independent reflections

  • 901 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.121

  • S = 1.05

  • 1339 reflections

  • 160 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.82 (2) 1.89 (4) 2.623 (4) 149 (7)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have attracted great attention for many years. These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, photochromism and thermochromism. Here, we report the crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths are within normal ranges. The C7=N1 bond length of 1.277 (4)Å is a typical double bond, similar to the corresponding bond lengths in 4-methoxy-2-[(4-nitrophenyl)iminomethyl]phenol (Kosar et al., 2005). The molecule is almost planar and displays a trans configuration with respect to the C7=N1 double bond. The dihedral angle between the benzene rings is 6.04 (18)°. Strong intramolecular O—H···N hydrogen-bond interaction (Talbe I), similar to the reported earlier (Cheng et al., 2005, 2006), is observed in the molecule.

Related literature top

For related crystal structures, see: Kosar et al. (2005); Cheng et al. (2005, 2006).

Experimental top

3-Aminobenzonitrile and salicylaldehyde were available commercially and were used without further purification. 3-Aminobenzonitrile (1.18 g, 10 mmol) and salicylaldehyde (1.22 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 4 h, then cooled to room temperature overnight and large amounts of a yellow precipitate were formed. Yellow crystals were obtained by recrystallization from ethyl alcohol (yield: 82%). For the X-ray diffraction analysis, suitable single crystals were obtained after one week by slow evaporation from an ethyl alcohol solution.

Refinement top

C-bound H atoms were geometrically positioned (C—H 0.93 Å) and refined as riding with Uiso(H)= 1.2Ueq(C). Atom H1B was located on a difference map and refined isotropically with bon restraint O1—H1B = 0.82 (2) Å. In the absence of significant anomalous scatterers, 1124 Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering and displacement ellipsoids drawn at the 30% probability level.
3-(2-Hydroxybenzylideneamino)benzonitrile top
Crystal data top
C14H10N2OF(000) = 464
Mr = 222.24Dx = 1.324 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 8294 reflections
a = 26.397 (5) Åθ = 3.0–27.6°
b = 3.9211 (8) ŵ = 0.09 mm1
c = 10.773 (2) ÅT = 293 K
V = 1115.1 (4) Å3Stick, yellow
Z = 40.22 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
1339 independent reflections
Radiation source: fine-focus sealed tube901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 3434
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 55
Tmin = 0.812, Tmax = 1.00l = 1313
9995 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
1339 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H10N2OV = 1115.1 (4) Å3
Mr = 222.24Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 26.397 (5) ŵ = 0.09 mm1
b = 3.9211 (8) ÅT = 293 K
c = 10.773 (2) Å0.22 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
1339 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
901 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 1.00Rint = 0.116
9995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
1339 reflectionsΔρmin = 0.16 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.45687 (11)0.2218 (7)0.2697 (3)0.0473 (8)
C10.54425 (12)0.2407 (8)0.3273 (3)0.0427 (8)
C90.37076 (12)0.2616 (9)0.2071 (3)0.0457 (9)
H9A0.38230.37180.13600.055*
C60.57995 (14)0.1614 (9)0.4188 (3)0.0559 (10)
H6A0.56940.06020.49240.067*
C80.40534 (12)0.1480 (8)0.2952 (3)0.0451 (8)
C70.49124 (12)0.1608 (8)0.3501 (3)0.0460 (9)
H7A0.48210.06240.42540.055*
C30.61133 (14)0.4649 (10)0.2017 (3)0.0570 (11)
H3A0.62230.57150.12940.068*
C20.56072 (13)0.3894 (9)0.2167 (3)0.0468 (9)
C120.33597 (14)0.0682 (10)0.4162 (4)0.0601 (10)
H12A0.32450.18000.48690.072*
C100.31905 (13)0.2118 (9)0.2243 (3)0.0510 (10)
C110.30193 (13)0.0476 (9)0.3297 (3)0.0572 (11)
H11A0.26740.01570.34210.069*
C140.28378 (13)0.3427 (10)0.1343 (4)0.0585 (10)
O10.52789 (11)0.4688 (8)0.1250 (3)0.0683 (8)
C50.63050 (14)0.2312 (10)0.4013 (4)0.0629 (11)
H5A0.65400.17560.46220.076*
C40.64585 (14)0.3839 (10)0.2928 (4)0.0632 (11)
H4A0.68000.43310.28080.076*
C130.38733 (13)0.0193 (10)0.3986 (3)0.0542 (10)
H13A0.41010.10060.45750.065*
N20.25591 (14)0.4542 (10)0.0648 (4)0.0896 (13)
H1B0.4999 (10)0.396 (12)0.145 (7)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0426 (18)0.0517 (18)0.0474 (16)0.0006 (13)0.0038 (14)0.0007 (13)
C10.038 (2)0.0449 (17)0.045 (2)0.0021 (14)0.0015 (17)0.0035 (16)
C90.042 (2)0.048 (2)0.046 (2)0.0029 (16)0.0022 (17)0.0027 (17)
C60.053 (2)0.058 (2)0.057 (2)0.0006 (18)0.005 (2)0.0031 (19)
C80.0392 (19)0.0456 (19)0.051 (2)0.0018 (15)0.0032 (17)0.0088 (17)
C70.052 (2)0.0445 (19)0.042 (2)0.0000 (16)0.0045 (17)0.0015 (17)
C30.054 (3)0.061 (3)0.056 (2)0.0065 (18)0.0091 (19)0.0002 (19)
C20.047 (2)0.051 (2)0.042 (2)0.0009 (16)0.0012 (16)0.0012 (18)
C120.056 (2)0.065 (3)0.060 (2)0.0083 (19)0.006 (2)0.006 (2)
C100.042 (2)0.054 (2)0.057 (2)0.0035 (17)0.0024 (19)0.0148 (19)
C110.0399 (19)0.061 (2)0.071 (3)0.0074 (17)0.0068 (19)0.013 (2)
C140.044 (2)0.065 (3)0.067 (2)0.0038 (18)0.006 (2)0.011 (2)
O10.0590 (17)0.092 (2)0.0540 (15)0.0015 (16)0.0059 (17)0.0190 (16)
C50.049 (2)0.070 (3)0.070 (3)0.007 (2)0.011 (2)0.002 (2)
C40.047 (2)0.064 (2)0.079 (3)0.0066 (19)0.004 (2)0.008 (2)
C130.047 (2)0.060 (2)0.056 (2)0.0005 (17)0.0015 (18)0.007 (2)
N20.066 (2)0.097 (3)0.105 (3)0.012 (2)0.032 (2)0.004 (2)
Geometric parameters (Å, º) top
N1—C71.277 (4)C3—H3A0.9300
N1—C81.418 (4)C2—O11.351 (4)
C1—C21.396 (4)C12—C111.372 (5)
C1—C61.398 (5)C12—C131.382 (5)
C1—C71.455 (4)C12—H12A0.9300
C9—C81.390 (4)C10—C111.381 (5)
C9—C101.391 (4)C10—C141.439 (5)
C9—H9A0.9300C11—H11A0.9300
C6—C51.375 (5)C14—N21.137 (5)
C6—H6A0.9300O1—H1B0.82 (2)
C8—C131.377 (5)C5—C41.374 (5)
C7—H7A0.9300C5—H5A0.9300
C3—C41.376 (5)C4—H4A0.9300
C3—C21.378 (4)C13—H13A0.9300
C7—N1—C8120.8 (3)C3—C2—C1119.5 (3)
C2—C1—C6119.0 (3)C11—C12—C13120.2 (3)
C2—C1—C7122.2 (3)C11—C12—H12A119.9
C6—C1—C7118.8 (3)C13—C12—H12A119.9
C8—C9—C10120.5 (3)C11—C10—C9119.8 (3)
C8—C9—H9A119.7C11—C10—C14120.6 (3)
C10—C9—H9A119.7C9—C10—C14119.6 (4)
C5—C6—C1120.9 (4)C12—C11—C10119.9 (3)
C5—C6—H6A119.6C12—C11—H11A120.1
C1—C6—H6A119.6C10—C11—H11A120.1
C13—C8—C9118.6 (3)N2—C14—C10178.2 (5)
C13—C8—N1125.8 (3)C2—O1—H1B108 (5)
C9—C8—N1115.6 (3)C4—C5—C6119.3 (4)
N1—C7—C1121.9 (3)C4—C5—H5A120.4
N1—C7—H7A119.0C6—C5—H5A120.4
C1—C7—H7A119.0C3—C4—C5120.8 (3)
C4—C3—C2120.5 (4)C3—C4—H4A119.6
C4—C3—H3A119.7C5—C4—H4A119.6
C2—C3—H3A119.7C12—C13—C8121.0 (3)
O1—C2—C3119.1 (3)C12—C13—H13A119.5
O1—C2—C1121.4 (3)C8—C13—H13A119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.82 (2)1.89 (4)2.623 (4)149 (7)

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.24
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)26.397 (5), 3.9211 (8), 10.773 (2)
V3)1115.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.812, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9995, 1339, 901
Rint0.116
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.121, 1.05
No. of reflections1339
No. of parameters160
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.82 (2)1.89 (4)2.623 (4)149 (7)
 

Acknowledgements

HJX acknowledges a Start-up Grant from Southeast University, People's Republic of China.

References

First citationCheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCheng, K., Zhu, H. L., Li, Z. B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKo˛sar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör (2005). Acta Cryst. E61, o2106–o2108.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds