organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo­benzo­yl)-2-phenyl­pyrrolidine-2-carboxamide

aMolecular Structure Research Center, National Academy of Sciences RA, Azatutyan Ave. 26, 375014 Yerevan, Republic of Armenia, and bInstitute of Fine Organic Chemistry, National Academy of Sciences RA, Azatutyan Ave. 26, 375014 Yerevan, Republic of Armenia
*Correspondence e-mail: rafael@msrc.am

(Received 31 January 2008; accepted 6 February 2008; online 13 February 2008)

In the title compound, C18H17BrN2O2, which is a potential ­human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitor, the pyrrolidine ring exhibits an envelope conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds [N⋯O = 2.861 (3) Å] link the mol­ecules into centrosymmetric dimers.

Related literature

For related crystal structures, see: Karapetyan et al. (2002[Karapetyan, H., Tamazyan, R., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, o399-o401.]); Tamazyan et al. (2002[Tamazyan, R., Karapetyan, H., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, o386-o388.], 2007[Tamazyan, R., Ayvazyan, A., Martirosyan, A., Martirosyan, V. & Schinazi, R. (2007). Acta Cryst. E63, o3967.]). For details of the synthesis, see: Martirosyan et al. (2000[Martirosyan, A. O., Gasparyan, S. P., Oganesyan, V. E., Mndzhoyan, Sh. L., Alexanyan, M. L., Nikishchenko, M. N. & Babayan, G. Sh. (2000). Chem. Heterocycl. Compd, 36, 416-419.], 2004[Martirosyan, A. O., Hovhannesyan, V. E., Gasparyan, S. P., Karapetyan, H. A., Panosyan, G. A. & Martirosyan, V. O. (2004). Chem. Heterocycl. Compd, 40, 1007-1008.]). For potential pharmacological applications, see: De Clercq (1996[De Clercq, E. (1996). Rev. Med. Virol. 6, 97-117.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17BrN2O2

  • Mr = 373.25

  • Monoclinic, P 21 /c

  • a = 9.5707 (19) Å

  • b = 13.738 (3) Å

  • c = 13.302 (3) Å

  • β = 96.99 (2)°

  • V = 1736.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 260 (2) K

  • 0.14 mm (radius)

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: for a sphere (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.612, Tmax = 0.617

  • 8356 measured reflections

  • 4180 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections frequency: 180 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.02

  • 4180 reflections

  • 216 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7b⋯O16 0.83 (2) 1.95 (3) 2.726 (3) 155 (3)
N7—H7a⋯O8i 0.86 (3) 2.00 (3) 2.861 (3) 176 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: DATACOL in CAD-4 (Enraf–Nonius, 1988[Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: LS in CAD-4; data reduction: HELENA (Spek, 1997[Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), belongs to a family of non-nucleoside reverse transcriptase inhibitors (NNRTIs), which exhibit potential HIV-1 RT inhibition properties (De Clercq, 1996).

In (I) (Fig. 1), all bond lengths and angles are in good agreement with those observed in the related compounds (Karapetyan et al., 2002; Tamazyan et al., 2002, 2007). Both H atoms of amide group, H7b and H7a, respectively, are involved in intra- and intermolecular N—H···O hydrogen bonds (Table 1). The latter one links the molecules into centrosymmetric dimers (Fig. 2).

Related literature top

For related crystal structures, see: Karapetyan et al. (2002); Tamazyan et al. (2002, 2007). For details of the synthesis, see Martirosyan et al. (2000, 2004). For potential pharmacological applications, see De Clercq (1996).

Experimental top

The title compound was synthesized by cycloalkylation of N1-(3-chloropropyl)-N1-cyano(phenyl)methyl-4-bromobenzamide in phase transfer catalyses condition to 1-(4-bromobenzoyl)-2-phenyl-2-pyrrolidinecarbonitrile and then by hydrolizes with concentric sulfuric acid (Martirosyan et al., 2000, 2004). The compound as synthesized is a racemic mixture of optical isomers (R and S) of 1-(4-bromobenzoyl)-2-phenyl-2-pyrrolidinecarboxamide molecule. The crystals were grown from methanol solution. The suitable sample with spherical shape of the size ~0.28 mm was prepared and selected for X-ray diffraction experiment.

Refinement top

All H atoms were located on a difference map. Atoms H7a and H7b were refined isotropically. C-bound H atoms were placed in idealized positions (C—H 0.93–0.97 Å) and refined as riding, with Uiso = 1.2 Ueq(C).

Computing details top

Data collection: DATACOL in CAD-4 (Enraf–Nonius, 1988); cell refinement: LS in CAD-4 (Enraf–Nonius, 1988); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and displacement ellipsoids at the 50% probability level. H atoms omitted for clarity.
[Figure 2] Fig. 2. Hydrogen-bonded (dashed lines) dimer in the crystal structure of (I) [symmetry code: (i) -x, 1 - y, 1 - z]. Only H atoms participating in hydrogen-bonding are shown.
1-(4-Bromobenzoyl)-2-phenylpyrrolidine-2-carboxamide top
Crystal data top
C18H17BrN2O2F(000) = 760
Mr = 373.25Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.5707 (19) Åθ = 13–16°
b = 13.738 (3) ŵ = 2.38 mm1
c = 13.302 (3) ÅT = 260 K
β = 96.99 (2)°Spherical, colourless
V = 1736.0 (6) Å30.28 × 0.28 × 0.28 × 0.14 (radius) mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2941 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
θ/2θ scansh = 1212
Absorption correction: for a sphere
(SHELXTL; Sheldrick, 2008)
k = 018
Tmin = 0.612, Tmax = 0.617l = 1717
8356 measured reflections3 standard reflections every 180 min
4180 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.2016P]
where P = (Fo2 + 2Fc2)/3
4180 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.87 e Å3
10 restraintsΔρmin = 0.89 e Å3
Crystal data top
C18H17BrN2O2V = 1736.0 (6) Å3
Mr = 373.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5707 (19) ŵ = 2.38 mm1
b = 13.738 (3) ÅT = 260 K
c = 13.302 (3) Å0.28 × 0.28 × 0.28 × 0.14 (radius) mm
β = 96.99 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2941 reflections with I > 2σ(I)
Absorption correction: for a sphere
(SHELXTL; Sheldrick, 2008)
Rint = 0.050
Tmin = 0.612, Tmax = 0.6173 standard reflections every 180 min
8356 measured reflections intensity decay: none
4180 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04610 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.87 e Å3
4180 reflectionsΔρmin = 0.89 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68968 (4)1.01480 (3)0.85408 (3)0.07187 (17)
C10.0555 (2)0.71666 (16)0.64026 (16)0.0217 (4)
N20.08435 (19)0.75423 (14)0.68588 (13)0.0230 (4)
C30.1138 (3)0.7265 (2)0.79443 (18)0.0372 (6)
H3A0.11120.78310.83790.045*
H3B0.20510.69550.80840.045*
C40.0033 (3)0.65609 (19)0.80987 (18)0.0330 (5)
H4A0.02570.65810.87900.040*
H4B0.02150.59000.79350.040*
C50.1249 (3)0.69388 (18)0.73599 (17)0.0277 (5)
H5A0.16560.75200.76200.033*
H5B0.19770.64490.72240.033*
C60.0375 (2)0.62094 (16)0.58089 (16)0.0225 (5)
N70.0475 (3)0.62518 (17)0.50977 (16)0.0310 (5)
H7A0.060 (3)0.572 (2)0.477 (2)0.026 (7)*
H7B0.089 (3)0.677 (2)0.502 (2)0.038 (8)*
O80.1011 (2)0.54709 (12)0.60012 (14)0.0357 (4)
C90.1430 (2)0.78995 (16)0.57304 (17)0.0245 (5)
C100.1242 (3)0.88979 (18)0.5831 (2)0.0333 (5)
H100.05150.91390.62910.040*
C110.2120 (3)0.9539 (2)0.5257 (2)0.0448 (7)
H110.19751.02060.53280.054*
C120.3217 (3)0.9190 (2)0.4578 (2)0.0484 (8)
H120.38110.96210.41930.058*
C130.3422 (3)0.8208 (2)0.4475 (2)0.0454 (7)
H130.41600.79730.40210.055*
C140.2534 (3)0.75578 (19)0.50447 (19)0.0341 (6)
H140.26800.68910.49660.041*
C150.1780 (2)0.79997 (16)0.63414 (17)0.0244 (5)
O160.16487 (18)0.80521 (12)0.54045 (12)0.0298 (4)
C170.3019 (2)0.84793 (17)0.69371 (18)0.0264 (5)
C180.4350 (3)0.8311 (2)0.6659 (2)0.0356 (6)
H180.44630.78670.61480.043*
C190.5505 (3)0.8797 (2)0.7137 (2)0.0441 (7)
H190.63970.86790.69550.053*
C200.5317 (3)0.9461 (2)0.7890 (2)0.0412 (7)
C210.4003 (3)0.9652 (2)0.8166 (2)0.0410 (6)
H210.38921.01100.86660.049*
C220.2853 (3)0.91537 (19)0.7691 (2)0.0337 (6)
H220.19620.92710.78770.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0470 (2)0.0818 (3)0.0793 (3)0.02922 (18)0.02262 (18)0.0072 (2)
C10.0249 (10)0.0220 (11)0.0184 (10)0.0011 (8)0.0038 (8)0.0017 (8)
N20.0263 (9)0.0274 (10)0.0154 (9)0.0030 (8)0.0033 (7)0.0008 (7)
C30.0455 (15)0.0498 (16)0.0152 (11)0.0080 (12)0.0002 (10)0.0018 (11)
C40.0441 (14)0.0370 (14)0.0188 (11)0.0031 (11)0.0070 (10)0.0039 (10)
C50.0329 (12)0.0292 (12)0.0229 (11)0.0000 (10)0.0108 (9)0.0012 (9)
C60.0273 (11)0.0230 (11)0.0170 (10)0.0020 (9)0.0014 (8)0.0005 (8)
N70.0464 (13)0.0213 (11)0.0280 (11)0.0039 (10)0.0159 (9)0.0048 (9)
O80.0492 (11)0.0245 (9)0.0365 (10)0.0080 (8)0.0176 (8)0.0047 (7)
C90.0266 (11)0.0263 (11)0.0216 (11)0.0033 (9)0.0070 (9)0.0019 (9)
C100.0359 (13)0.0281 (13)0.0367 (14)0.0033 (10)0.0076 (11)0.0004 (11)
C110.0519 (17)0.0289 (13)0.0556 (19)0.0102 (12)0.0146 (15)0.0123 (13)
C120.0484 (17)0.0498 (18)0.0472 (17)0.0196 (14)0.0065 (14)0.0200 (14)
C130.0398 (15)0.0563 (19)0.0375 (16)0.0111 (13)0.0064 (12)0.0058 (13)
C140.0359 (13)0.0332 (13)0.0324 (13)0.0040 (11)0.0011 (11)0.0017 (11)
C150.0282 (11)0.0221 (11)0.0237 (11)0.0022 (9)0.0063 (9)0.0015 (9)
O160.0383 (9)0.0314 (9)0.0208 (8)0.0058 (7)0.0078 (7)0.0010 (7)
C170.0257 (11)0.0270 (11)0.0267 (11)0.0000 (9)0.0042 (9)0.0001 (10)
C180.0310 (13)0.0372 (14)0.0398 (15)0.0024 (11)0.0095 (11)0.0016 (11)
C190.0244 (12)0.0528 (17)0.0552 (18)0.0022 (11)0.0060 (12)0.0068 (15)
C200.0299 (13)0.0445 (15)0.0453 (16)0.0118 (11)0.0107 (11)0.0070 (13)
C210.0430 (15)0.0394 (15)0.0392 (15)0.0072 (12)0.0001 (12)0.0086 (12)
C220.0287 (12)0.0357 (13)0.0374 (14)0.0013 (10)0.0064 (10)0.0093 (11)
Geometric parameters (Å, º) top
Br1—C201.899 (3)C10—C111.382 (4)
C1—N21.493 (3)C10—H100.9300
C1—C91.527 (3)C11—C121.385 (5)
C1—C51.538 (3)C11—H110.9300
C1—C61.554 (3)C12—C131.368 (5)
N2—C151.350 (3)C12—H120.9300
N2—C31.487 (3)C13—C141.392 (4)
C3—C41.513 (4)C13—H130.9300
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—O161.239 (3)
C4—C51.520 (3)C15—C171.496 (3)
C4—H4A0.9700C17—C181.388 (3)
C4—H4B0.9700C17—C221.389 (3)
C5—H5A0.9700C18—C191.378 (4)
C5—H5B0.9700C18—H180.9300
C6—O81.226 (3)C19—C201.383 (4)
C6—N71.321 (3)C19—H190.9300
N7—H7A0.86 (3)C20—C211.378 (4)
N7—H7B0.83 (3)C21—C221.383 (4)
C9—C101.388 (3)C21—H210.9300
C9—C141.391 (3)C22—H220.9300
N2—C1—C9114.23 (18)C11—C10—C9121.0 (3)
N2—C1—C5100.93 (17)C11—C10—H10119.5
C9—C1—C5110.99 (18)C9—C10—H10119.5
N2—C1—C6110.43 (17)C10—C11—C12120.1 (3)
C9—C1—C6110.32 (17)C10—C11—H11120.0
C5—C1—C6109.54 (18)C12—C11—H11120.0
C15—N2—C3123.7 (2)C13—C12—C11119.6 (3)
C15—N2—C1124.89 (18)C13—C12—H12120.2
C3—N2—C1111.14 (18)C11—C12—H12120.2
N2—C3—C4103.87 (19)C12—C13—C14120.6 (3)
N2—C3—H3A111.0C12—C13—H13119.7
C4—C3—H3A111.0C14—C13—H13119.7
N2—C3—H3B111.0C9—C14—C13120.3 (3)
C4—C3—H3B111.0C9—C14—H14119.8
H3A—C3—H3B109.0C13—C14—H14119.8
C3—C4—C5102.4 (2)O16—C15—N2123.2 (2)
C3—C4—H4A111.3O16—C15—C17118.9 (2)
C5—C4—H4A111.3N2—C15—C17117.9 (2)
C3—C4—H4B111.3C18—C17—C22119.5 (2)
C5—C4—H4B111.3C18—C17—C15118.6 (2)
H4A—C4—H4B109.2C22—C17—C15121.5 (2)
C4—C5—C1103.39 (19)C19—C18—C17120.5 (3)
C4—C5—H5A111.1C19—C18—H18119.8
C1—C5—H5A111.1C17—C18—H18119.8
C4—C5—H5B111.1C18—C19—C20119.1 (3)
C1—C5—H5B111.1C18—C19—H19120.5
H5A—C5—H5B109.1C20—C19—H19120.5
O8—C6—N7123.4 (2)C21—C20—C19121.5 (2)
O8—C6—C1120.3 (2)C21—C20—Br1119.0 (2)
N7—C6—C1116.3 (2)C19—C20—Br1119.5 (2)
C6—N7—H7A117.1 (18)C20—C21—C22119.0 (3)
C6—N7—H7B119 (2)C20—C21—H21120.5
H7A—N7—H7B124 (3)C22—C21—H21120.5
C10—C9—C14118.4 (2)C21—C22—C17120.4 (2)
C10—C9—C1122.7 (2)C21—C22—H22119.8
C14—C9—C1118.7 (2)C17—C22—H22119.8
C9—C1—N2—C1549.1 (3)C1—C9—C10—C11175.3 (2)
C5—C1—N2—C15168.3 (2)C9—C10—C11—C120.7 (4)
C6—C1—N2—C1575.9 (3)C10—C11—C12—C130.2 (5)
C9—C1—N2—C3136.3 (2)C11—C12—C13—C140.3 (5)
C5—C1—N2—C317.2 (2)C10—C9—C14—C130.1 (4)
C6—C1—N2—C398.6 (2)C1—C9—C14—C13175.0 (2)
C15—N2—C3—C4165.7 (2)C12—C13—C14—C90.3 (4)
C1—N2—C3—C49.0 (3)C3—N2—C15—O16164.8 (2)
N2—C3—C4—C531.7 (3)C1—N2—C15—O169.1 (3)
C3—C4—C5—C143.1 (2)C3—N2—C15—C1716.3 (3)
N2—C1—C5—C436.6 (2)C1—N2—C15—C17169.74 (19)
C9—C1—C5—C4158.09 (19)O16—C15—C17—C1848.8 (3)
C6—C1—C5—C479.8 (2)N2—C15—C17—C18132.3 (2)
N2—C1—C6—O8125.4 (2)O16—C15—C17—C22125.0 (3)
C9—C1—C6—O8107.4 (2)N2—C15—C17—C2253.9 (3)
C5—C1—C6—O815.1 (3)C22—C17—C18—C191.0 (4)
N2—C1—C6—N755.3 (3)C15—C17—C18—C19174.9 (2)
C9—C1—C6—N771.9 (3)C17—C18—C19—C200.6 (4)
C5—C1—C6—N7165.6 (2)C18—C19—C20—C210.5 (4)
N2—C1—C9—C1023.9 (3)C18—C19—C20—Br1179.2 (2)
C5—C1—C9—C1089.4 (3)C19—C20—C21—C221.2 (4)
C6—C1—C9—C10149.0 (2)Br1—C20—C21—C22179.9 (2)
N2—C1—C9—C14161.4 (2)C20—C21—C22—C170.8 (4)
C5—C1—C9—C1485.3 (3)C18—C17—C22—C210.3 (4)
C6—C1—C9—C1436.3 (3)C15—C17—C22—C21174.0 (2)
C14—C9—C10—C110.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7b···O160.83 (2)1.95 (3)2.726 (3)155 (3)
N7—H7a···O8i0.86 (3)2.00 (3)2.861 (3)176 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H17BrN2O2
Mr373.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)260
a, b, c (Å)9.5707 (19), 13.738 (3), 13.302 (3)
β (°) 96.99 (2)
V3)1736.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.28 × 0.28 × 0.28 × 0.14 (radius)
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.612, 0.617
No. of measured, independent and
observed [I > 2σ(I)] reflections
8356, 4180, 2941
Rint0.050
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.02
No. of reflections4180
No. of parameters216
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.89

Computer programs: DATACOL in CAD-4 (Enraf–Nonius, 1988), LS in CAD-4 (Enraf–Nonius, 1988), HELENA (Spek, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEPII (Johnson, 1976), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7b···O160.83 (2)1.95 (3)2.726 (3)155 (3)
N7—H7a···O8i0.86 (3)2.00 (3)2.861 (3)176 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Armenian Science and Education Foundation (ANSEF) (grant No. PS-chemorg-907).

References

First citationDe Clercq, E. (1996). Rev. Med. Virol. 6, 97–117.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEnraf–Nonius (1988). CAD-4 Manual. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKarapetyan, H., Tamazyan, R., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, o399–o401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartirosyan, A. O., Gasparyan, S. P., Oganesyan, V. E., Mndzhoyan, Sh. L., Alexanyan, M. L., Nikishchenko, M. N. & Babayan, G. Sh. (2000). Chem. Heterocycl. Compd, 36, 416–419.  CrossRef CAS Google Scholar
First citationMartirosyan, A. O., Hovhannesyan, V. E., Gasparyan, S. P., Karapetyan, H. A., Panosyan, G. A. & Martirosyan, V. O. (2004). Chem. Heterocycl. Compd, 40, 1007–1008.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationTamazyan, R., Ayvazyan, A., Martirosyan, A., Martirosyan, V. & Schinazi, R. (2007). Acta Cryst. E63, o3967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTamazyan, R., Karapetyan, H., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, o386–o388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds