organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{(E)-4-[(E)-(Do­decyl­imino)meth­yl]benzyl­­idene}dodecan-1-imine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 16 November 2007; accepted 14 January 2008; online 6 February 2008)

The title compound, C32H56N2, was synthesized by the reaction of terephthalaldehyde and dodecan-1-amine. The imines adopt trans conformations, with the two halves of the mol­ecule related to each other by a centre of symmetry.

Related literature

For related literature, see: Sharaby (2007[Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271-1278.]); Nishikawa et al. (1992[Nishikawa, A., Koyama, T., Asano, H. & Narahara, T. (1992). US Patent No. 5166283.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C32H56N2

  • Mr = 468.80

  • Triclinic, [P \overline 1]

  • a = 4.7370 (9) Å

  • b = 5.5190 (11) Å

  • c = 30.315 (6) Å

  • α = 91.18 (3)°

  • β = 93.44 (3)°

  • γ = 101.75 (3)°

  • V = 774.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.953, Tmax = 0.964

  • 3409 measured reflections

  • 3020 independent reflections

  • 1271 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.171

  • S = 1.06

  • 3020 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Selected bond lengths (Å)

N1—C13 1.252 (3)
N1—C12 1.454 (2)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff compounds and their derivatives containing long carbon chains are of great interest because of their surface active properties. They can be used as starting materials for producing polymers (Nishikawa, et al., 1992). Certain imines coordinated to metals have also received a great deal of attention recently, due to their antibacterial and antifungal activities (Sharaby, 2007).

We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1. The N—C double bonds and the benzene ring lie in the same plane. The double bonds conjugate with the benzene ring. The molecule is centrosymmetric. The bond lengths and angles are within normal ranges (Allen et al., 1987).

Related literature top

For related literature, see: Sharaby (2007); Nishikawa et al. (1992). For bond-length data, see: Allen et al. (1987).

Experimental top

Terephthalaldehyde (5 mmol) and dodecan-1-amine (10 mmol) were dissolved in toluene (50 ml). The reaction mixture was allowed to reflux for 5 h, then left to cool to room temperature, filtered, and the solid was recrystallized from ethanol to give pure compound (I) (m.p. 333 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom labelling scheme and ellipsoids at the 50% probability level.
N-{(E)-4-[(E)-(Dodecylimino)methyl]benzylidene}dodecan-\1-imine ? top
Crystal data top
C32H56N2Z = 1
Mr = 468.80F(000) = 262
Triclinic, P1Dx = 1.006 Mg m3
Hall symbol: -P 1Melting point = 332–333 K
a = 4.7370 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.5190 (11) ÅCell parameters from 25 reflections
c = 30.315 (6) Åθ = 9–13°
α = 91.18 (3)°µ = 0.06 mm1
β = 93.44 (3)°T = 298 K
γ = 101.75 (3)°Block, colorless
V = 774.1 (3) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1271 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 26.0°, θmin = 1.4°
ω/2θ scansh = 55
Absorption correction: ψ scan
(North et al., 1968)
k = 66
Tmin = 0.953, Tmax = 0.964l = 037
3409 measured reflections3 standard reflections every 200 reflections
3020 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
3020 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C32H56N2γ = 101.75 (3)°
Mr = 468.80V = 774.1 (3) Å3
Triclinic, P1Z = 1
a = 4.7370 (9) ÅMo Kα radiation
b = 5.5190 (11) ŵ = 0.06 mm1
c = 30.315 (6) ÅT = 298 K
α = 91.18 (3)°0.30 × 0.20 × 0.10 mm
β = 93.44 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1271 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.953, Tmax = 0.9643 standard reflections every 200 reflections
3409 measured reflections intensity decay: none
3020 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.06Δρmax = 0.11 e Å3
3020 reflectionsΔρmin = 0.12 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2538 (4)0.7333 (4)0.10048 (7)0.0778 (7)
C10.7923 (7)1.2784 (5)0.45915 (9)0.1139 (11)
H1A0.69481.36060.47990.171*
H1B0.89341.39770.44000.171*
H1C0.92781.19850.47490.171*
C20.5752 (6)1.0886 (5)0.43217 (9)0.0957 (9)
H2A0.47020.97340.45210.115*
H2B0.43721.17180.41710.115*
C30.6950 (5)0.9444 (4)0.39859 (8)0.0776 (7)
H3A0.83300.86120.41360.093*
H3B0.80021.05960.37860.093*
C40.4773 (5)0.7540 (4)0.37145 (8)0.0748 (7)
H4A0.37270.63820.39140.090*
H4B0.33890.83700.35650.090*
C50.6000 (5)0.6097 (4)0.33745 (7)0.0698 (7)
H5A0.73670.52480.35240.084*
H5B0.70600.72520.31760.084*
C60.3788 (5)0.4215 (4)0.31028 (7)0.0683 (7)
H6A0.24500.50680.29470.082*
H6B0.26950.30840.33010.082*
C70.5035 (5)0.2726 (4)0.27696 (7)0.0672 (7)
H7A0.61540.38610.25740.081*
H7B0.63510.18550.29260.081*
C80.2832 (5)0.0869 (4)0.24921 (7)0.0665 (7)
H8A0.15360.17420.23310.080*
H8B0.16910.02510.26870.080*
C90.4102 (5)0.0638 (4)0.21653 (7)0.0680 (7)
H9A0.53570.15440.23270.082*
H9B0.52890.04870.19760.082*
C100.1910 (5)0.2461 (4)0.18760 (7)0.0706 (7)
H10A0.06430.35280.20640.085*
H10B0.07340.15530.16980.085*
C110.3247 (5)0.4049 (4)0.15738 (7)0.0679 (7)
H11A0.46050.29780.14000.081*
H11B0.43280.50290.17530.081*
C120.1100 (5)0.5762 (5)0.12654 (8)0.0814 (8)
H12A0.03270.67880.14350.098*
H12B0.01050.47970.10690.098*
C130.2374 (5)0.7155 (4)0.05935 (9)0.0691 (7)
H13A0.13360.60410.04720.083*
C140.3736 (5)0.8616 (4)0.02936 (8)0.0599 (6)
C150.5322 (5)1.0284 (4)0.04476 (8)0.0662 (7)
H15A0.55761.04790.07500.079*
C160.3458 (5)0.8331 (4)0.01595 (9)0.0705 (7)
H16A0.24300.71840.02700.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0771 (14)0.0880 (15)0.0692 (14)0.0179 (12)0.0158 (12)0.0196 (12)
C10.129 (3)0.098 (2)0.105 (2)0.007 (2)0.003 (2)0.0417 (18)
C20.098 (2)0.0910 (19)0.092 (2)0.0058 (17)0.0204 (17)0.0272 (17)
C30.0739 (17)0.0762 (16)0.0810 (18)0.0124 (14)0.0088 (14)0.0160 (14)
C40.0687 (16)0.0754 (16)0.0798 (18)0.0121 (14)0.0158 (14)0.0155 (14)
C50.0625 (15)0.0703 (15)0.0782 (17)0.0153 (13)0.0171 (13)0.0122 (13)
C60.0582 (14)0.0693 (15)0.0765 (17)0.0104 (13)0.0124 (13)0.0116 (13)
C70.0611 (15)0.0663 (14)0.0754 (16)0.0136 (13)0.0157 (13)0.0104 (12)
C80.0625 (15)0.0688 (14)0.0696 (16)0.0153 (13)0.0137 (13)0.0091 (12)
C90.0643 (15)0.0718 (15)0.0713 (16)0.0190 (13)0.0196 (13)0.0097 (13)
C100.0614 (15)0.0778 (16)0.0726 (17)0.0137 (14)0.0135 (13)0.0134 (13)
C110.0690 (16)0.0721 (15)0.0657 (16)0.0187 (13)0.0189 (13)0.0079 (12)
C120.0737 (17)0.0956 (18)0.0769 (18)0.0210 (16)0.0184 (15)0.0256 (15)
C130.0552 (15)0.0678 (15)0.0824 (19)0.0085 (13)0.0094 (14)0.0150 (14)
C140.0494 (14)0.0552 (14)0.0723 (17)0.0034 (12)0.0120 (13)0.0098 (12)
C150.0690 (16)0.0692 (15)0.0596 (15)0.0108 (14)0.0099 (13)0.0034 (13)
C160.0670 (17)0.0724 (16)0.0747 (19)0.0195 (14)0.0098 (14)0.0049 (14)
Geometric parameters (Å, º) top
N1—C131.252 (3)C7—H7B0.9700
N1—C121.454 (2)C8—C91.509 (2)
C1—C21.500 (3)C8—H8A0.9700
C1—H1A0.9600C8—H8B0.9700
C1—H1B0.9600C9—C101.513 (3)
C1—H1C0.9600C9—H9A0.9700
C2—C31.487 (3)C9—H9B0.9700
C2—H2A0.9700C10—C111.507 (2)
C2—H2B0.9700C10—H10A0.9700
C3—C41.505 (3)C10—H10B0.9700
C3—H3A0.9700C11—C121.503 (3)
C3—H3B0.9700C11—H11A0.9700
C4—C51.504 (2)C11—H11B0.9700
C4—H4A0.9700C12—H12A0.9700
C4—H4B0.9700C12—H12B0.9700
C5—C61.508 (3)C13—C141.464 (3)
C5—H5A0.9700C13—H13A0.9300
C5—H5B0.9700C14—C151.374 (3)
C6—C71.510 (2)C14—C161.387 (3)
C6—H6A0.9700C15—C16i1.376 (3)
C6—H6B0.9700C15—H15A0.9300
C7—C81.507 (3)C16—C15i1.376 (3)
C7—H7A0.9700C16—H16A0.9300
C13—N1—C12117.7 (2)C7—C8—C9114.44 (18)
C2—C1—H1A109.5C7—C8—H8A108.7
C2—C1—H1B109.5C9—C8—H8A108.7
H1A—C1—H1B109.5C7—C8—H8B108.7
C2—C1—H1C109.5C9—C8—H8B108.7
H1A—C1—H1C109.5H8A—C8—H8B107.6
H1B—C1—H1C109.5C8—C9—C10114.96 (18)
C3—C2—C1115.7 (2)C8—C9—H9A108.5
C3—C2—H2A108.4C10—C9—H9A108.5
C1—C2—H2A108.4C8—C9—H9B108.5
C3—C2—H2B108.4C10—C9—H9B108.5
C1—C2—H2B108.4H9A—C9—H9B107.5
H2A—C2—H2B107.4C11—C10—C9113.62 (18)
C2—C3—C4115.7 (2)C11—C10—H10A108.8
C2—C3—H3A108.3C9—C10—H10A108.8
C4—C3—H3A108.3C11—C10—H10B108.8
C2—C3—H3B108.3C9—C10—H10B108.8
C4—C3—H3B108.3H10A—C10—H10B107.7
H3A—C3—H3B107.4C12—C11—C10114.14 (18)
C5—C4—C3115.43 (18)C12—C11—H11A108.7
C5—C4—H4A108.4C10—C11—H11A108.7
C3—C4—H4A108.4C12—C11—H11B108.7
C5—C4—H4B108.4C10—C11—H11B108.7
C3—C4—H4B108.4H11A—C11—H11B107.6
H4A—C4—H4B107.5N1—C12—C11110.77 (19)
C4—C5—C6114.74 (17)N1—C12—H12A109.5
C4—C5—H5A108.6C11—C12—H12A109.5
C6—C5—H5A108.6N1—C12—H12B109.5
C4—C5—H5B108.6C11—C12—H12B109.5
C6—C5—H5B108.6H12A—C12—H12B108.1
H5A—C5—H5B107.6N1—C13—C14123.2 (3)
C5—C6—C7114.56 (17)N1—C13—H13A118.4
C5—C6—H6A108.6C14—C13—H13A118.4
C7—C6—H6A108.6C15—C14—C16118.0 (2)
C5—C6—H6B108.6C15—C14—C13121.8 (2)
C7—C6—H6B108.6C16—C14—C13120.2 (2)
H6A—C6—H6B107.6C14—C15—C16i120.9 (2)
C8—C7—C6114.84 (18)C14—C15—H15A119.6
C8—C7—H7A108.6C16i—C15—H15A119.6
C6—C7—H7A108.6C15i—C16—C14121.1 (2)
C8—C7—H7B108.6C15i—C16—H16A119.5
C6—C7—H7B108.6C14—C16—H16A119.5
H7A—C7—H7B107.5
C1—C2—C3—C4179.9 (2)C13—N1—C12—C11118.5 (3)
C2—C3—C4—C5179.8 (2)C10—C11—C12—N1176.5 (2)
C3—C4—C5—C6179.4 (2)C12—N1—C13—C14179.61 (18)
C4—C5—C6—C7178.6 (2)N1—C13—C14—C150.5 (3)
C5—C6—C7—C8179.1 (2)N1—C13—C14—C16179.8 (2)
C6—C7—C8—C9179.04 (19)C16—C14—C15—C16i1.5 (3)
C7—C8—C9—C10178.4 (2)C13—C14—C15—C16i178.85 (19)
C8—C9—C10—C11176.34 (19)C15—C14—C16—C15i1.5 (3)
C9—C10—C11—C12176.5 (2)C13—C14—C16—C15i178.85 (19)
Symmetry code: (i) x+1, y2, z.

Experimental details

Crystal data
Chemical formulaC32H56N2
Mr468.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.7370 (9), 5.5190 (11), 30.315 (6)
α, β, γ (°)91.18 (3), 93.44 (3), 101.75 (3)
V3)774.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.953, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
3409, 3020, 1271
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.171, 1.06
No. of reflections3020
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—C131.252 (3)N1—C121.454 (2)
 

Acknowledgements

The authors thank Professor Hua-Qin Wang, Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNishikawa, A., Koyama, T., Asano, H. & Narahara, T. (1992). US Patent No. 5166283.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271–1278.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds