organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o621-o622

1,3-Bis(3-phenyl­prop­yl)-1H-benz­imidazole-2(3H)-tellurone

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 16 January 2008; accepted 20 February 2008; online 22 February 2008)

The title compound, C25H26N2Te, was synthesized from bis­[1,3-bis­(3-phenyl­prop­yl)benzimidazolidin-2-yl­idene] and Te in a toluene solution. The molecule possesses a twofold rotation axis passing through the Te atom and the center of the benzimidazole ring system. The benzimidazole ring system makes an angle of 67.9 (4)° with the phenyl rings.

Related literature

For related literature, see: Akkurt et al. (2004a[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004a). Acta Cryst. E60, o1263-o1265.],b[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004b). Acta Cryst. E60, o219-o221.], 2005[Akkurt, M., Yıldırım, S. O., Orhan, E., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2804-o2805.]); Aydın et al. (1999[Aydın, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295-296.]); Chakravorty et al. (1985[Chakravorty, R., Irgolic, K. J. & Meyers, E. A. (1985). Acta Cryst. C41, 1545-1547.]); Karaca et al. (2005[Karaca, S., Akkurt, M., Yılmaz, U., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2128-o2130.]); Lappert (1988[Lappert, M. F. (1988). J. Organomet. Chem. 358, 185-214.]); Lappert et al. (1980[Lappert, M. F., Martin, T. R. & McLaughlin, G. M. (1980). J. Chem. Soc. Chem. Commun. pp. 635-637.]); Roeterdink et al. (1983[Roeterdink, F., Scheeren, J. W. & Laarhoven, W. H. (1983). Tetrahedron Lett. 24, 2307-2310.]); Türktekin et al. (2004[Türktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o817-o819.]); İngeç et al. (1999[İngeç, Ş. K., Soylu, H., Küçükbay, H., Ercan, F. & Akkurt, M. (1999). Anal. Sci. 15, 927-928.]); Närhi et al. (2004[Närhi, S. M., Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2004). Acta Cryst. E60, o798-o800.]); Sadekov et al. (1998[Sadekov, I. D., Maksimenko, A. A. & Nivorozkhin, V. L. (1998). Russ. Chem. Rev. 67, 193-208.]); Singh et al. (2006[Singh, G., Singh, A. K., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Polyhedron, 25, 3481-3487.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2Te

  • Mr = 482.08

  • Tetragonal, P 41 21 2

  • a = 10.6004 (2) Å

  • c = 20.4365 (6) Å

  • V = 2296.42 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 296 K

  • 0.54 × 0.48 × 0.39 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.539, Tmax = 0.630

  • 28301 measured reflections

  • 2264 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.09

  • 2264 reflections

  • 99 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 889 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Selected bond lengths (Å)

Te1—C1 2.058 (4)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Electron-rich olefins are powerful reducing agents (Lappert, 1988). It is known that the ultimate oxidation products of electron-rich olefins with air are ureas; sulfur and selenium react similarly to form the corresponding analogues (Roeterdink et al., 1983; Lappert et al., 1980). The conversion of an electron-rich olefin into a tellurourea has a parallel in these known olefin reactions (Lappert et al., 1980). There are extensive studies of cyclic ureas containing imidazolidine groups, including their X-ray crystal structures. However, there is no example of an X-ray crystal structure study for the cyclic tellurourea containing a benzimidazole group. The objective of this study was to elucidate the first crystal structure of such a cyclic tellurourea and compare the results to the corresponding analogues contain sulfur (İngeç et al., 1999) and selenium (Aydın et al., 1999; Akkurt et al., 2004a).

The molecular structure of the title compound (I) is shown in Fig. 1. The molecule has a twofold screw axis through the midpoints of the C2—C2a and C4—C4a bonds and containing the atoms Te1 and C1 of the benzimidazole ring. The Te—C single bond length generally varies between 2.120 and 2.170 Å depending on the electron releasing effect of the ligand bonding to Te atom (Lappert et al., 1980; Sadekov et al., 1998; Närhi et al., 2004; Singh et al., 2006). In the title compound (I), the Te—C bond length [2.058 (4) Å] is short, which agrees with the results reported by Lappert et al. (1980). Tellurourea metal complexes may be described in terms of the resonance hybrids as shown in the scheme 2. For this reason, the Te?C bond may have partial double bond character.

All the geometric parameters of (I) are comparable with those in related compounds (Akkurt et al., 2004b; Akkurt et al., 2005; Türktekin et al., 2004, Karaca et al., 2005).

In the title molecule, the benzimidazole ring system (C1—C3/N1/C1a—C3a/N1a) is essentially planar, with maximum deviations of 0.007 (5) Å for C2 and -0.007 (5) Å for C2a. The symmetry-related phenyl rings (C8–C13 and C8a–C13a) are oriented at angles of 67.9 (4)° to the plane of the benzimidazole ring system.

Related literature top

For related literature, see: Akkurt et al. (2004a,b, 2005); Aydın et al. (1999); Chakravorty et al. (1985); Karaca et al. (2005); Lappert (1988); Lappert et al. (1980); Roeterdink et al. (1983); Türktekin et al. (2004); İngeç et al. (1999); Närhi et al. (2004); Sadekov et al. (1998); Singh et al. (2006).

Experimental top

A mixture of bis(1,3-di(3-phenylpropyl)benzimidazolidine-2-ylidene) (0.55 g; 0.78 mmol) and tellurium (0.22 g; 1.72 mmol) in toluene (10 ml) was heated under reflux for 2 h. The mixture was then filtered to remove unreacted tellurium and upon cooling the filtrate to 253 K, light yellow crystals of the title compound were obtained. (Yield: 0.54 g, 72%; m.p.: 390–391 K). 1H-NMR (CDCl3): δ 2.25 (q, 4H, CH2), 2.83 (t, 4H, CH2), 4.53 (t, 4H, N—CH2), 7.14–7.24 (m, 14H, Ar—H). 13C-NMR (CDCl3): δ 29.74, 32.99, 49.25, 110.26, 123.61, 126.20, 128.38, 128.50, 133.93, 140.73, 144.18. Analysis calculated for C25H26N2Te: C 62.29, H 5.40, N 5.82%. Found: C 62.52, H 5.50, N 5.82%.

Refinement top

The H atoms were placed in calculated positions and refined using a riding model with C—H in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). Atoms C8, C9 and C13 in the phenyl ring appear to have unresolved disorder, so the distances C8—C9, C8—C13 and C9···C13 were restrained by SHELXL DFIX instructions [C8—C9 = 1.370 (12), C8—C13 = 1.336 (14) and C9···C13 = 2.229 (14) Å].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. [Symmetry code: (a) -y + 1, -x + 1, -z + 3/2.]
[Figure 2] Fig. 2. The resonance hybrids of tellurourea metal complexes (Lappert et al., 1980).
1,3-Bis(3-phenylpropyl)-1H-benzimidazole-2(3H)-tellurone top
Crystal data top
C25H26N2TeDx = 1.394 Mg m3
Mr = 482.08Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 55040 reflections
Hall symbol: P 4abw 2nwθ = 1.9–27.2°
a = 10.6004 (2) ŵ = 1.31 mm1
c = 20.4365 (6) ÅT = 296 K
V = 2296.42 (9) Å3Block, light yellow
Z = 40.54 × 0.48 × 0.39 mm
F(000) = 968
Data collection top
Stoe IPDSII
diffractometer
2264 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2166 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.049
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = 1213
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.539, Tmax = 0.630l = 2525
28301 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0574P)2 + 1.6917P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2264 reflectionsΔρmax = 0.92 e Å3
99 parametersΔρmin = 0.48 e Å3
3 restraintsAbsolute structure: Flack (1983), 889 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C25H26N2TeZ = 4
Mr = 482.08Mo Kα radiation
Tetragonal, P41212µ = 1.31 mm1
a = 10.6004 (2) ÅT = 296 K
c = 20.4365 (6) Å0.54 × 0.48 × 0.39 mm
V = 2296.42 (9) Å3
Data collection top
Stoe IPDSII
diffractometer
2264 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2166 reflections with I > 2σ(I)
Tmin = 0.539, Tmax = 0.630Rint = 0.049
28301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.92 e Å3
S = 1.09Δρmin = 0.48 e Å3
2264 reflectionsAbsolute structure: Flack (1983), 889 Friedel pairs
99 parametersAbsolute structure parameter: 0.01 (6)
3 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.13779 (3)0.86221 (3)0.750000.0633 (1)
N10.3555 (4)0.6989 (4)0.79960 (17)0.0585 (11)
C10.2751 (4)0.7249 (4)0.750000.0550 (14)
C20.4349 (5)0.6006 (5)0.7811 (2)0.0653 (17)
C30.5312 (6)0.5400 (6)0.8141 (3)0.084 (2)
C40.5917 (7)0.4441 (7)0.7828 (4)0.101 (3)
C50.3626 (6)0.7656 (5)0.8618 (2)0.0630 (16)
C60.4521 (5)0.8761 (5)0.8597 (2)0.0677 (16)
C70.4498 (6)0.9471 (5)0.9247 (3)0.0723 (19)
C80.5329 (9)1.0605 (7)0.9284 (5)0.1219 (15)
C90.4939 (9)1.1694 (7)0.9583 (5)0.1219 (15)
C100.5698 (9)1.2703 (7)0.9670 (5)0.1219 (15)
C110.6886 (9)1.2679 (7)0.9451 (5)0.1219 (15)
C120.7332 (10)1.1639 (7)0.9160 (5)0.1219 (15)
C130.6524 (9)1.0587 (7)0.9076 (5)0.1219 (15)
H30.553900.563800.856200.1020*
H40.656700.401400.803900.1210*
H5A0.389900.707300.895500.0750*
H5B0.279100.795500.873400.0750*
H6A0.427900.932700.824600.0810*
H6B0.536900.846200.851000.0810*
H7A0.363700.973300.933400.0870*
H7B0.474200.889200.959200.0870*
H90.411301.174000.973300.1460*
H100.539401.341700.988300.1460*
H110.740101.338300.950000.1460*
H120.816301.160700.901500.1460*
H130.683300.986600.887200.1460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0682 (2)0.0682 (2)0.0535 (2)0.0114 (2)0.0052 (2)0.0052 (2)
N10.071 (2)0.059 (2)0.0454 (17)0.002 (2)0.0194 (17)0.0106 (15)
C10.061 (2)0.061 (2)0.043 (3)0.002 (2)0.004 (2)0.004 (2)
C20.073 (3)0.061 (3)0.062 (3)0.003 (2)0.017 (2)0.017 (2)
C30.084 (4)0.085 (4)0.084 (3)0.012 (3)0.039 (3)0.015 (3)
C40.082 (4)0.085 (5)0.136 (6)0.024 (4)0.031 (4)0.020 (4)
C50.085 (3)0.065 (3)0.039 (2)0.001 (3)0.008 (2)0.0117 (18)
C60.085 (3)0.064 (3)0.054 (2)0.007 (3)0.014 (2)0.008 (2)
C70.091 (4)0.062 (3)0.064 (3)0.005 (3)0.016 (3)0.021 (2)
C80.132 (3)0.0736 (16)0.160 (3)0.0065 (19)0.034 (3)0.0275 (19)
C90.132 (3)0.0736 (16)0.160 (3)0.0065 (19)0.034 (3)0.0275 (19)
C100.132 (3)0.0736 (16)0.160 (3)0.0065 (19)0.034 (3)0.0275 (19)
C110.132 (3)0.0736 (16)0.160 (3)0.0065 (19)0.034 (3)0.0275 (19)
C120.132 (3)0.0736 (16)0.160 (3)0.0065 (19)0.034 (3)0.0275 (19)
C130.132 (3)0.0736 (16)0.160 (3)0.0065 (19)0.034 (3)0.0275 (19)
Geometric parameters (Å, º) top
Te1—C12.058 (4)C11—C121.339 (12)
N1—C11.353 (5)C12—C131.417 (12)
N1—C21.392 (7)C3—H30.9300
N1—C51.457 (6)C4—H40.9300
C2—C31.382 (8)C5—H5A0.9700
C2—C2i1.378 (6)C5—H5B0.9700
C3—C41.362 (10)C6—H6A0.9700
C4—C4i1.444 (11)C6—H6B0.9700
C5—C61.508 (8)C7—H7A0.9700
C6—C71.527 (7)C7—H7B0.9700
C7—C81.492 (10)C9—H90.9300
C8—C91.370 (12)C10—H100.9300
C8—C131.336 (14)C11—H110.9300
C9—C101.350 (12)C12—H120.9300
C10—C111.337 (14)C13—H130.9300
Te1···H5B3.0200H5A···H7B2.4900
Te1···H3ii3.1700H5B···Te13.0200
Te1···H7Bii3.2900H5B···H7A2.4200
Te1···H10iii3.3200H6A···H7Bii2.5900
Te1···H3iv3.1700H6B···C132.8100
Te1···H7Biv3.2900H6B···H132.2700
Te1···H10v3.3200H7A···H5B2.4200
Te1···H5Bi3.0200H7A···H92.3300
C3···H5A2.8600H7A···C4iv3.0900
C4···H7Avi3.0900H7A···H4iv2.5800
C5···H32.9500H7B···H5A2.4900
C6···H132.7700H7B···Te1vii3.2900
C13···H6B2.8100H7B···H6Avii2.5900
H3···C52.9500H7B···Te1vi3.2900
H3···H5A2.4500H9···H7A2.3300
H3···Te1vii3.1700H10···Te1viii3.3200
H3···Te1vi3.1700H10···Te1ix3.3200
H4···H7Avi2.5800H13···C62.7700
H5A···C32.8600H13···H6B2.2700
H5A···H32.4500
C1—N1—C2109.3 (3)N1—C5—H5A109.00
C1—N1—C5126.0 (4)N1—C5—H5B109.00
C2—N1—C5124.7 (4)C6—C5—H5A109.00
Te1—C1—N1126.1 (2)C6—C5—H5B109.00
Te1—C1—N1i126.1 (2)H5A—C5—H5B108.00
N1—C1—N1i107.8 (4)C5—C6—H6A110.00
N1—C2—C3131.5 (4)C5—C6—H6B110.00
N1—C2—C2i106.9 (4)C7—C6—H6A110.00
C2i—C2—C3121.7 (5)C7—C6—H6B110.00
C2—C3—C4117.8 (6)H6A—C6—H6B108.00
C3—C4—C4i120.6 (7)C6—C7—H7A108.00
N1—C5—C6112.6 (4)C6—C7—H7B108.00
C5—C6—C7110.4 (4)C8—C7—H7A108.00
C6—C7—C8115.6 (6)C8—C7—H7B108.00
C7—C8—C9121.6 (8)H7A—C7—H7B107.00
C7—C8—C13122.1 (7)C8—C9—H9118.00
C9—C8—C13116.1 (8)C10—C9—H9118.00
C8—C9—C10123.1 (9)C9—C10—H10120.00
C9—C10—C11120.2 (8)C11—C10—H10120.00
C10—C11—C12119.8 (8)C10—C11—H11120.00
C11—C12—C13119.2 (9)C12—C11—H11120.00
C8—C13—C12121.6 (8)C11—C12—H12120.00
C2—C3—H3121.00C13—C12—H12120.00
C4—C3—H3121.00C8—C13—H13119.00
C3—C4—H4120.00C12—C13—H13119.00
C4i—C4—H4120.00
C2—N1—C1—Te1179.6 (3)C2i—C2—C3—C40.8 (9)
C5—N1—C1—Te11.9 (7)C2—C3—C4—C4i0.3 (10)
C2—N1—C1—N1i0.4 (5)C3—C4—C4i—C3i0.8 (11)
C5—N1—C1—N1i178.1 (4)N1—C5—C6—C7176.6 (4)
C1—N1—C2—C3179.6 (6)C5—C6—C7—C8178.9 (6)
C5—N1—C2—C32.7 (9)C6—C7—C8—C9139.2 (8)
C1—N1—C2—C2i1.1 (5)C6—C7—C8—C1346.2 (11)
C5—N1—C2—C2i178.8 (5)C7—C8—C9—C10174.7 (9)
C1—N1—C5—C689.3 (6)C13—C8—C9—C100.1 (15)
C2—N1—C5—C688.1 (6)C7—C8—C13—C12175.0 (9)
N1—C2—C3—C4179.1 (6)C9—C8—C13—C120.2 (15)
N1—C2—C2i—C3i180.0 (5)C8—C9—C10—C111.1 (16)
C3—C2—C2i—N1i180.0 (5)C9—C10—C11—C121.7 (15)
C3—C2—C2i—C3i1.3 (8)C10—C11—C12—C131.4 (15)
N1—C2—C2i—N1i1.3 (6)C11—C12—C13—C80.4 (15)
Symmetry codes: (i) y+1, x+1, z+3/2; (ii) y1/2, x+3/2, z1/4; (iii) y3/2, x+3/2, z1/4; (iv) x1/2, y+3/2, z+7/4; (v) x1/2, y+5/2, z+7/4; (vi) x+1/2, y+3/2, z+7/4; (vii) y+3/2, x+1/2, z+1/4; (viii) y+3/2, x+3/2, z+1/4; (ix) x+1/2, y+5/2, z+7/4.

Experimental details

Crystal data
Chemical formulaC25H26N2Te
Mr482.08
Crystal system, space groupTetragonal, P41212
Temperature (K)296
a, c (Å)10.6004 (2), 20.4365 (6)
V3)2296.42 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.54 × 0.48 × 0.39
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.539, 0.630
No. of measured, independent and
observed [I > 2σ(I)] reflections
28301, 2264, 2166
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.09
No. of reflections2264
No. of parameters99
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.48
Absolute structureFlack (1983), 889 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Te1—C12.058 (4)
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund). ÜY and HK also thank the İnönü University Research Fund (BAPB-2006–41) for financial support of this study.

References

First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004a). Acta Cryst. E60, o1263–o1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004b). Acta Cryst. E60, o219–o221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yıldırım, S. O., Orhan, E., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2804–o2805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAydın, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295–296.  Google Scholar
First citationChakravorty, R., Irgolic, K. J. & Meyers, E. A. (1985). Acta Cryst. C41, 1545–1547.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationİngeç, Ş. K., Soylu, H., Küçükbay, H., Ercan, F. & Akkurt, M. (1999). Anal. Sci. 15, 927–928.  Google Scholar
First citationKaraca, S., Akkurt, M., Yılmaz, U., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2128–o2130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLappert, M. F. (1988). J. Organomet. Chem. 358, 185–214.  CrossRef CAS Web of Science Google Scholar
First citationLappert, M. F., Martin, T. R. & McLaughlin, G. M. (1980). J. Chem. Soc. Chem. Commun. pp. 635–637.  CrossRef Web of Science Google Scholar
First citationNärhi, S. M., Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2004). Acta Cryst. E60, o798–o800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoeterdink, F., Scheeren, J. W. & Laarhoven, W. H. (1983). Tetrahedron Lett. 24, 2307–2310.  CrossRef CAS Web of Science Google Scholar
First citationSadekov, I. D., Maksimenko, A. A. & Nivorozkhin, V. L. (1998). Russ. Chem. Rev. 67, 193–208.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G., Singh, A. K., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Polyhedron, 25, 3481–3487.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTürktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o817–o819.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o621-o622
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds