organic compounds
1,3-Bis(3-phenylpropyl)-1H-benzimidazole-2(3H)-tellurone
aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
The title compound, C25H26N2Te, was synthesized from bis[1,3-bis(3-phenylpropyl)benzimidazolidin-2-ylidene] and Te in a toluene solution. The molecule possesses a twofold rotation axis passing through the Te atom and the center of the benzimidazole ring system. The benzimidazole ring system makes an angle of 67.9 (4)° with the phenyl rings.
Related literature
For related literature, see: Akkurt et al. (2004a,b, 2005); Aydın et al. (1999); Chakravorty et al. (1985); Karaca et al. (2005); Lappert (1988); Lappert et al. (1980); Roeterdink et al. (1983); Türktekin et al. (2004); İngeç et al. (1999); Närhi et al. (2004); Sadekov et al. (1998); Singh et al. (2006).
Experimental
Crystal data
|
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808004893/ez2117sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004893/ez2117Isup2.hkl
A mixture of bis(1,3-di(3-phenylpropyl)benzimidazolidine-2-ylidene) (0.55 g; 0.78 mmol) and tellurium (0.22 g; 1.72 mmol) in toluene (10 ml) was heated under reflux for 2 h. The mixture was then filtered to remove unreacted tellurium and upon cooling the filtrate to 253 K, light yellow crystals of the title compound were obtained. (Yield: 0.54 g, 72%; m.p.: 390–391 K). 1H-NMR (CDCl3): δ 2.25 (q, 4H, CH2), 2.83 (t, 4H, CH2), 4.53 (t, 4H, N—CH2), 7.14–7.24 (m, 14H, Ar—H). 13C-NMR (CDCl3): δ 29.74, 32.99, 49.25, 110.26, 123.61, 126.20, 128.38, 128.50, 133.93, 140.73, 144.18. Analysis calculated for C25H26N2Te: C 62.29, H 5.40, N 5.82%. Found: C 62.52, H 5.50, N 5.82%.
The H atoms were placed in calculated positions and refined using a riding model with C—H in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). Atoms C8, C9 and C13 in the phenyl ring appear to have unresolved disorder, so the distances C8—C9, C8—C13 and C9···C13 were restrained by SHELXL DFIX instructions [C8—C9 = 1.370 (12), C8—C13 = 1.336 (14) and C9···C13 = 2.229 (14) Å].
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C25H26N2Te | Dx = 1.394 Mg m−3 |
Mr = 482.08 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 55040 reflections |
Hall symbol: P 4abw 2nw | θ = 1.9–27.2° |
a = 10.6004 (2) Å | µ = 1.31 mm−1 |
c = 20.4365 (6) Å | T = 296 K |
V = 2296.42 (9) Å3 | Block, light yellow |
Z = 4 | 0.54 × 0.48 × 0.39 mm |
F(000) = 968 |
Stoe IPDSII diffractometer | 2264 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2166 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.049 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.2° |
ω scans | h = −12→13 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −13→13 |
Tmin = 0.539, Tmax = 0.630 | l = −25→25 |
28301 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0574P)2 + 1.6917P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2264 reflections | Δρmax = 0.92 e Å−3 |
99 parameters | Δρmin = −0.48 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 889 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (6) |
C25H26N2Te | Z = 4 |
Mr = 482.08 | Mo Kα radiation |
Tetragonal, P41212 | µ = 1.31 mm−1 |
a = 10.6004 (2) Å | T = 296 K |
c = 20.4365 (6) Å | 0.54 × 0.48 × 0.39 mm |
V = 2296.42 (9) Å3 |
Stoe IPDSII diffractometer | 2264 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2166 reflections with I > 2σ(I) |
Tmin = 0.539, Tmax = 0.630 | Rint = 0.049 |
28301 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.105 | Δρmax = 0.92 e Å−3 |
S = 1.09 | Δρmin = −0.48 e Å−3 |
2264 reflections | Absolute structure: Flack (1983), 889 Friedel pairs |
99 parameters | Absolute structure parameter: 0.01 (6) |
3 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.13779 (3) | 0.86221 (3) | 0.75000 | 0.0633 (1) | |
N1 | 0.3555 (4) | 0.6989 (4) | 0.79960 (17) | 0.0585 (11) | |
C1 | 0.2751 (4) | 0.7249 (4) | 0.75000 | 0.0550 (14) | |
C2 | 0.4349 (5) | 0.6006 (5) | 0.7811 (2) | 0.0653 (17) | |
C3 | 0.5312 (6) | 0.5400 (6) | 0.8141 (3) | 0.084 (2) | |
C4 | 0.5917 (7) | 0.4441 (7) | 0.7828 (4) | 0.101 (3) | |
C5 | 0.3626 (6) | 0.7656 (5) | 0.8618 (2) | 0.0630 (16) | |
C6 | 0.4521 (5) | 0.8761 (5) | 0.8597 (2) | 0.0677 (16) | |
C7 | 0.4498 (6) | 0.9471 (5) | 0.9247 (3) | 0.0723 (19) | |
C8 | 0.5329 (9) | 1.0605 (7) | 0.9284 (5) | 0.1219 (15) | |
C9 | 0.4939 (9) | 1.1694 (7) | 0.9583 (5) | 0.1219 (15) | |
C10 | 0.5698 (9) | 1.2703 (7) | 0.9670 (5) | 0.1219 (15) | |
C11 | 0.6886 (9) | 1.2679 (7) | 0.9451 (5) | 0.1219 (15) | |
C12 | 0.7332 (10) | 1.1639 (7) | 0.9160 (5) | 0.1219 (15) | |
C13 | 0.6524 (9) | 1.0587 (7) | 0.9076 (5) | 0.1219 (15) | |
H3 | 0.55390 | 0.56380 | 0.85620 | 0.1020* | |
H4 | 0.65670 | 0.40140 | 0.80390 | 0.1210* | |
H5A | 0.38990 | 0.70730 | 0.89550 | 0.0750* | |
H5B | 0.27910 | 0.79550 | 0.87340 | 0.0750* | |
H6A | 0.42790 | 0.93270 | 0.82460 | 0.0810* | |
H6B | 0.53690 | 0.84620 | 0.85100 | 0.0810* | |
H7A | 0.36370 | 0.97330 | 0.93340 | 0.0870* | |
H7B | 0.47420 | 0.88920 | 0.95920 | 0.0870* | |
H9 | 0.41130 | 1.17400 | 0.97330 | 0.1460* | |
H10 | 0.53940 | 1.34170 | 0.98830 | 0.1460* | |
H11 | 0.74010 | 1.33830 | 0.95000 | 0.1460* | |
H12 | 0.81630 | 1.16070 | 0.90150 | 0.1460* | |
H13 | 0.68330 | 0.98660 | 0.88720 | 0.1460* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.0682 (2) | 0.0682 (2) | 0.0535 (2) | 0.0114 (2) | 0.0052 (2) | 0.0052 (2) |
N1 | 0.071 (2) | 0.059 (2) | 0.0454 (17) | −0.002 (2) | −0.0194 (17) | −0.0106 (15) |
C1 | 0.061 (2) | 0.061 (2) | 0.043 (3) | −0.002 (2) | −0.004 (2) | −0.004 (2) |
C2 | 0.073 (3) | 0.061 (3) | 0.062 (3) | 0.003 (2) | −0.017 (2) | −0.017 (2) |
C3 | 0.084 (4) | 0.085 (4) | 0.084 (3) | 0.012 (3) | −0.039 (3) | −0.015 (3) |
C4 | 0.082 (4) | 0.085 (5) | 0.136 (6) | 0.024 (4) | −0.031 (4) | −0.020 (4) |
C5 | 0.085 (3) | 0.065 (3) | 0.039 (2) | −0.001 (3) | −0.008 (2) | −0.0117 (18) |
C6 | 0.085 (3) | 0.064 (3) | 0.054 (2) | −0.007 (3) | −0.014 (2) | −0.008 (2) |
C7 | 0.091 (4) | 0.062 (3) | 0.064 (3) | 0.005 (3) | −0.016 (3) | −0.021 (2) |
C8 | 0.132 (3) | 0.0736 (16) | 0.160 (3) | −0.0065 (19) | −0.034 (3) | −0.0275 (19) |
C9 | 0.132 (3) | 0.0736 (16) | 0.160 (3) | −0.0065 (19) | −0.034 (3) | −0.0275 (19) |
C10 | 0.132 (3) | 0.0736 (16) | 0.160 (3) | −0.0065 (19) | −0.034 (3) | −0.0275 (19) |
C11 | 0.132 (3) | 0.0736 (16) | 0.160 (3) | −0.0065 (19) | −0.034 (3) | −0.0275 (19) |
C12 | 0.132 (3) | 0.0736 (16) | 0.160 (3) | −0.0065 (19) | −0.034 (3) | −0.0275 (19) |
C13 | 0.132 (3) | 0.0736 (16) | 0.160 (3) | −0.0065 (19) | −0.034 (3) | −0.0275 (19) |
Te1—C1 | 2.058 (4) | C11—C12 | 1.339 (12) |
N1—C1 | 1.353 (5) | C12—C13 | 1.417 (12) |
N1—C2 | 1.392 (7) | C3—H3 | 0.9300 |
N1—C5 | 1.457 (6) | C4—H4 | 0.9300 |
C2—C3 | 1.382 (8) | C5—H5A | 0.9700 |
C2—C2i | 1.378 (6) | C5—H5B | 0.9700 |
C3—C4 | 1.362 (10) | C6—H6A | 0.9700 |
C4—C4i | 1.444 (11) | C6—H6B | 0.9700 |
C5—C6 | 1.508 (8) | C7—H7A | 0.9700 |
C6—C7 | 1.527 (7) | C7—H7B | 0.9700 |
C7—C8 | 1.492 (10) | C9—H9 | 0.9300 |
C8—C9 | 1.370 (12) | C10—H10 | 0.9300 |
C8—C13 | 1.336 (14) | C11—H11 | 0.9300 |
C9—C10 | 1.350 (12) | C12—H12 | 0.9300 |
C10—C11 | 1.337 (14) | C13—H13 | 0.9300 |
Te1···H5B | 3.0200 | H5A···H7B | 2.4900 |
Te1···H3ii | 3.1700 | H5B···Te1 | 3.0200 |
Te1···H7Bii | 3.2900 | H5B···H7A | 2.4200 |
Te1···H10iii | 3.3200 | H6A···H7Bii | 2.5900 |
Te1···H3iv | 3.1700 | H6B···C13 | 2.8100 |
Te1···H7Biv | 3.2900 | H6B···H13 | 2.2700 |
Te1···H10v | 3.3200 | H7A···H5B | 2.4200 |
Te1···H5Bi | 3.0200 | H7A···H9 | 2.3300 |
C3···H5A | 2.8600 | H7A···C4iv | 3.0900 |
C4···H7Avi | 3.0900 | H7A···H4iv | 2.5800 |
C5···H3 | 2.9500 | H7B···H5A | 2.4900 |
C6···H13 | 2.7700 | H7B···Te1vii | 3.2900 |
C13···H6B | 2.8100 | H7B···H6Avii | 2.5900 |
H3···C5 | 2.9500 | H7B···Te1vi | 3.2900 |
H3···H5A | 2.4500 | H9···H7A | 2.3300 |
H3···Te1vii | 3.1700 | H10···Te1viii | 3.3200 |
H3···Te1vi | 3.1700 | H10···Te1ix | 3.3200 |
H4···H7Avi | 2.5800 | H13···C6 | 2.7700 |
H5A···C3 | 2.8600 | H13···H6B | 2.2700 |
H5A···H3 | 2.4500 | ||
C1—N1—C2 | 109.3 (3) | N1—C5—H5A | 109.00 |
C1—N1—C5 | 126.0 (4) | N1—C5—H5B | 109.00 |
C2—N1—C5 | 124.7 (4) | C6—C5—H5A | 109.00 |
Te1—C1—N1 | 126.1 (2) | C6—C5—H5B | 109.00 |
Te1—C1—N1i | 126.1 (2) | H5A—C5—H5B | 108.00 |
N1—C1—N1i | 107.8 (4) | C5—C6—H6A | 110.00 |
N1—C2—C3 | 131.5 (4) | C5—C6—H6B | 110.00 |
N1—C2—C2i | 106.9 (4) | C7—C6—H6A | 110.00 |
C2i—C2—C3 | 121.7 (5) | C7—C6—H6B | 110.00 |
C2—C3—C4 | 117.8 (6) | H6A—C6—H6B | 108.00 |
C3—C4—C4i | 120.6 (7) | C6—C7—H7A | 108.00 |
N1—C5—C6 | 112.6 (4) | C6—C7—H7B | 108.00 |
C5—C6—C7 | 110.4 (4) | C8—C7—H7A | 108.00 |
C6—C7—C8 | 115.6 (6) | C8—C7—H7B | 108.00 |
C7—C8—C9 | 121.6 (8) | H7A—C7—H7B | 107.00 |
C7—C8—C13 | 122.1 (7) | C8—C9—H9 | 118.00 |
C9—C8—C13 | 116.1 (8) | C10—C9—H9 | 118.00 |
C8—C9—C10 | 123.1 (9) | C9—C10—H10 | 120.00 |
C9—C10—C11 | 120.2 (8) | C11—C10—H10 | 120.00 |
C10—C11—C12 | 119.8 (8) | C10—C11—H11 | 120.00 |
C11—C12—C13 | 119.2 (9) | C12—C11—H11 | 120.00 |
C8—C13—C12 | 121.6 (8) | C11—C12—H12 | 120.00 |
C2—C3—H3 | 121.00 | C13—C12—H12 | 120.00 |
C4—C3—H3 | 121.00 | C8—C13—H13 | 119.00 |
C3—C4—H4 | 120.00 | C12—C13—H13 | 119.00 |
C4i—C4—H4 | 120.00 | ||
C2—N1—C1—Te1 | −179.6 (3) | C2i—C2—C3—C4 | 0.8 (9) |
C5—N1—C1—Te1 | −1.9 (7) | C2—C3—C4—C4i | 0.3 (10) |
C2—N1—C1—N1i | 0.4 (5) | C3—C4—C4i—C3i | −0.8 (11) |
C5—N1—C1—N1i | 178.1 (4) | N1—C5—C6—C7 | 176.6 (4) |
C1—N1—C2—C3 | −179.6 (6) | C5—C6—C7—C8 | −178.9 (6) |
C5—N1—C2—C3 | 2.7 (9) | C6—C7—C8—C9 | 139.2 (8) |
C1—N1—C2—C2i | −1.1 (5) | C6—C7—C8—C13 | −46.2 (11) |
C5—N1—C2—C2i | −178.8 (5) | C7—C8—C9—C10 | 174.7 (9) |
C1—N1—C5—C6 | −89.3 (6) | C13—C8—C9—C10 | −0.1 (15) |
C2—N1—C5—C6 | 88.1 (6) | C7—C8—C13—C12 | −175.0 (9) |
N1—C2—C3—C4 | 179.1 (6) | C9—C8—C13—C12 | −0.2 (15) |
N1—C2—C2i—C3i | 180.0 (5) | C8—C9—C10—C11 | 1.1 (16) |
C3—C2—C2i—N1i | 180.0 (5) | C9—C10—C11—C12 | −1.7 (15) |
C3—C2—C2i—C3i | −1.3 (8) | C10—C11—C12—C13 | 1.4 (15) |
N1—C2—C2i—N1i | 1.3 (6) | C11—C12—C13—C8 | −0.4 (15) |
Symmetry codes: (i) −y+1, −x+1, −z+3/2; (ii) y−1/2, −x+3/2, z−1/4; (iii) y−3/2, −x+3/2, z−1/4; (iv) x−1/2, −y+3/2, −z+7/4; (v) x−1/2, −y+5/2, −z+7/4; (vi) x+1/2, −y+3/2, −z+7/4; (vii) −y+3/2, x+1/2, z+1/4; (viii) −y+3/2, x+3/2, z+1/4; (ix) x+1/2, −y+5/2, −z+7/4. |
Experimental details
Crystal data | |
Chemical formula | C25H26N2Te |
Mr | 482.08 |
Crystal system, space group | Tetragonal, P41212 |
Temperature (K) | 296 |
a, c (Å) | 10.6004 (2), 20.4365 (6) |
V (Å3) | 2296.42 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.31 |
Crystal size (mm) | 0.54 × 0.48 × 0.39 |
Data collection | |
Diffractometer | Stoe IPDSII diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.539, 0.630 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28301, 2264, 2166 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.105, 1.09 |
No. of reflections | 2264 |
No. of parameters | 99 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.48 |
Absolute structure | Flack (1983), 889 Friedel pairs |
Absolute structure parameter | 0.01 (6) |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund). ÜY and HK also thank the İnönü University Research Fund (BAPB-2006–41) for financial support of this study.
References
Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004a). Acta Cryst. E60, o1263–o1265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004b). Acta Cryst. E60, o219–o221. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Yıldırım, S. O., Orhan, E., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2804–o2805. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aydın, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295–296. Google Scholar
Chakravorty, R., Irgolic, K. J. & Meyers, E. A. (1985). Acta Cryst. C41, 1545–1547. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
İngeç, Ş. K., Soylu, H., Küçükbay, H., Ercan, F. & Akkurt, M. (1999). Anal. Sci. 15, 927–928. Google Scholar
Karaca, S., Akkurt, M., Yılmaz, U., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2128–o2130. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lappert, M. F. (1988). J. Organomet. Chem. 358, 185–214. CrossRef CAS Web of Science Google Scholar
Lappert, M. F., Martin, T. R. & McLaughlin, G. M. (1980). J. Chem. Soc. Chem. Commun. pp. 635–637. CrossRef Web of Science Google Scholar
Närhi, S. M., Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2004). Acta Cryst. E60, o798–o800. Web of Science CSD CrossRef IUCr Journals Google Scholar
Roeterdink, F., Scheeren, J. W. & Laarhoven, W. H. (1983). Tetrahedron Lett. 24, 2307–2310. CrossRef CAS Web of Science Google Scholar
Sadekov, I. D., Maksimenko, A. A. & Nivorozkhin, V. L. (1998). Russ. Chem. Rev. 67, 193–208. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, G., Singh, A. K., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2006). Polyhedron, 25, 3481–3487. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Türktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o817–o819. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Electron-rich olefins are powerful reducing agents (Lappert, 1988). It is known that the ultimate oxidation products of electron-rich olefins with air are ureas; sulfur and selenium react similarly to form the corresponding analogues (Roeterdink et al., 1983; Lappert et al., 1980). The conversion of an electron-rich olefin into a tellurourea has a parallel in these known olefin reactions (Lappert et al., 1980). There are extensive studies of cyclic ureas containing imidazolidine groups, including their X-ray crystal structures. However, there is no example of an X-ray crystal structure study for the cyclic tellurourea containing a benzimidazole group. The objective of this study was to elucidate the first crystal structure of such a cyclic tellurourea and compare the results to the corresponding analogues contain sulfur (İngeç et al., 1999) and selenium (Aydın et al., 1999; Akkurt et al., 2004a).
The molecular structure of the title compound (I) is shown in Fig. 1. The molecule has a twofold screw axis through the midpoints of the C2—C2a and C4—C4a bonds and containing the atoms Te1 and C1 of the benzimidazole ring. The Te—C single bond length generally varies between 2.120 and 2.170 Å depending on the electron releasing effect of the ligand bonding to Te atom (Lappert et al., 1980; Sadekov et al., 1998; Närhi et al., 2004; Singh et al., 2006). In the title compound (I), the Te—C bond length [2.058 (4) Å] is short, which agrees with the results reported by Lappert et al. (1980). Tellurourea metal complexes may be described in terms of the resonance hybrids as shown in the scheme 2. For this reason, the Te?C bond may have partial double bond character.
All the geometric parameters of (I) are comparable with those in related compounds (Akkurt et al., 2004b; Akkurt et al., 2005; Türktekin et al., 2004, Karaca et al., 2005).
In the title molecule, the benzimidazole ring system (C1—C3/N1/C1a—C3a/N1a) is essentially planar, with maximum deviations of 0.007 (5) Å for C2 and -0.007 (5) Å for C2a. The symmetry-related phenyl rings (C8–C13 and C8a–C13a) are oriented at angles of 67.9 (4)° to the plane of the benzimidazole ring system.