metal-organic compounds
Dichlorido-1κCl,3κCl-bis{μ-2,2′-[propane-1,3-diylbis(iminomethylene)]diphenolato}-1:2κ6O,N,N′,O′:O,O′;2:3κ6O,O′:O,N,N′,O′-tricopper(II)
aDepartment of Engineering Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDarmstadt University of Technology, Institute of Materials Science, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cDepartment of Chemistry, Ankara University Science Faculty, 06100 Ankara, Turkey
*Correspondence e-mail: burke.ates@taek.gov.tr
The title linear trinuclear copper(II) complex, [Cu3(C17H20N2O2)2Cl2], was obtained from N,N′-bis(2-hydroxybenzyl)-1,3-propanediamine and CuCl2. The overall charge of the three Cu2+ ions is balanced by four deprotonated phenol groups and two Cl− ligands. The complex is centrosymmetric with the central Cu2+ occupying a special position (). This Cu2+ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu2+ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl− ligands occupying the fifth coordination site.
Related literature
For related literature, see: Addison et al. (1984); Atakol et al. (1999); Cremer & Pople (1975); Ercan et al. (2002); Fukuhara et al. (1990); Gerli et al. (1991); Mikuriya et al. (2001); Song et al. (2003, 2005); Spek (2003); Uhlenbrock et al. (1996); Yıldırım & Atakol (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808003048/fi2056sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808003048/fi2056Isup2.hkl
N,N'-bis(salicylidene)-1,3-propane-diamine was dissolved by slightly heating in MeOH (80 ml). NaBH4 was added into this solution in its solid form with small portions and the resulting mixture was rigorously stirred. The addition of NaBH4 was continued unless the solution became completely colorless. The colorless solution was mixed with ice (300 g) and kept on the bench for 24 h. The white precipitate was the reduced product of N,N'-bis(2-hydroxybenzyl)-1,3-propane-diamine (m.p. 379–380 K, yield % 87, the N—H streching band is observed at 3273 cm-1). N,N'-bis (2-hydroxybenzyl)-1,3-propane-diamine (0.285 g, 1 mmole) was dissolved in dmf (dimethyl-formamide)(20 ml) by heating and a solution of CuCl2.2H2O (0.255 g, 1.5 mmole) in hot dmf (20 ml) was added to it and the resulting mixture was kept on the bench for 4–5 d. The resulting crystals were filtered off, washed with EtOH and dried in oven at 353 K.
H1A and H2A (for NH) were located in a Fourier map and only their positions refined [N—H = 0.82 (3) and 0.86 (3) Å, Uiso(H) = 0.028 and 0.028 Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell
CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x, -y, 1 - z]. |
[Cu3(C17H20N2O2)2Cl2] | F(000) = 850 |
Mr = 830.25 | Dx = 1.583 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4076 reflections |
a = 11.0189 (7) Å | θ = 2.4–26.4° |
b = 15.3861 (8) Å | µ = 2.01 mm−1 |
c = 10.7441 (8) Å | T = 100 K |
β = 106.959 (7)° | Prism, dark green |
V = 1742.3 (2) Å3 | 0.36 × 0.22 × 0.14 mm |
Z = 2 |
Oxford Diffraction Xcalibur diffractometer | 3481 independent reflections |
Radiation source: fine-focus sealed tube | 2969 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 26.4°, θmin = 4.1° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2002) | h = −13→13 |
Tmin = 0.531, Tmax = 0.766 | k = −18→18 |
12067 measured reflections | l = −7→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0379P)2 + 1.1376P] where P = (Fo2 + 2Fc2)/3 |
3481 reflections | (Δ/σ)max = 0.019 |
220 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Cu3(C17H20N2O2)2Cl2] | V = 1742.3 (2) Å3 |
Mr = 830.25 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.0189 (7) Å | µ = 2.01 mm−1 |
b = 15.3861 (8) Å | T = 100 K |
c = 10.7441 (8) Å | 0.36 × 0.22 × 0.14 mm |
β = 106.959 (7)° |
Oxford Diffraction Xcalibur diffractometer | 3481 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2002) | 2969 reflections with I > 2σ(I) |
Tmin = 0.531, Tmax = 0.766 | Rint = 0.025 |
12067 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.57 e Å−3 |
3481 reflections | Δρmin = −0.32 e Å−3 |
220 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.5000 | 0.01443 (11) | |
Cu2 | 0.02986 (3) | 0.187585 (17) | 0.48593 (3) | 0.01380 (10) | |
Cl1 | 0.04255 (6) | 0.16106 (4) | 0.71982 (6) | 0.02363 (16) | |
O1 | −0.10643 (15) | 0.09894 (10) | 0.43769 (17) | 0.0170 (4) | |
O2 | 0.12675 (15) | 0.08066 (10) | 0.48475 (17) | 0.0187 (4) | |
N1 | −0.09257 (18) | 0.28603 (13) | 0.4363 (2) | 0.0153 (4) | |
H1A | −0.080 (3) | 0.3050 (19) | 0.369 (3) | 0.028* | |
N2 | 0.18192 (18) | 0.26353 (13) | 0.5115 (2) | 0.0158 (4) | |
H2A | 0.180 (3) | 0.2855 (19) | 0.437 (3) | 0.028* | |
C1 | −0.2034 (2) | 0.10818 (15) | 0.3275 (2) | 0.0153 (5) | |
C2 | −0.2429 (2) | 0.04128 (16) | 0.2376 (2) | 0.0185 (5) | |
H2 | −0.2027 | −0.0139 | 0.2531 | 0.022* | |
C3 | −0.3414 (2) | 0.05583 (17) | 0.1253 (3) | 0.0214 (5) | |
H3 | −0.3684 | 0.0102 | 0.0639 | 0.026* | |
C4 | −0.4010 (2) | 0.13600 (17) | 0.1012 (3) | 0.0222 (6) | |
H4 | −0.4680 | 0.1455 | 0.0236 | 0.027* | |
C5 | −0.3617 (2) | 0.20233 (16) | 0.1919 (2) | 0.0198 (5) | |
H5 | −0.4021 | 0.2574 | 0.1753 | 0.024* | |
C6 | −0.2644 (2) | 0.18960 (15) | 0.3063 (2) | 0.0159 (5) | |
C7 | −0.2269 (2) | 0.25755 (16) | 0.4097 (2) | 0.0188 (5) | |
H7A | −0.2831 | 0.3086 | 0.3828 | 0.023* | |
H7B | −0.2396 | 0.2344 | 0.4910 | 0.023* | |
C8 | −0.0623 (2) | 0.35758 (15) | 0.5329 (3) | 0.0202 (5) | |
H8A | −0.0640 | 0.3349 | 0.6186 | 0.024* | |
H8B | −0.1282 | 0.4031 | 0.5063 | 0.024* | |
C9 | 0.0669 (2) | 0.39773 (15) | 0.5461 (3) | 0.0216 (6) | |
H9A | 0.0678 | 0.4190 | 0.4594 | 0.026* | |
H9B | 0.0771 | 0.4489 | 0.6041 | 0.026* | |
C10 | 0.1804 (2) | 0.33853 (16) | 0.5985 (3) | 0.0208 (5) | |
H10A | 0.2590 | 0.3728 | 0.6105 | 0.025* | |
H10B | 0.1798 | 0.3163 | 0.6848 | 0.025* | |
C11 | 0.3017 (2) | 0.21331 (16) | 0.5631 (2) | 0.0191 (5) | |
H11A | 0.3026 | 0.1874 | 0.6477 | 0.023* | |
H11B | 0.3744 | 0.2539 | 0.5792 | 0.023* | |
C12 | 0.3198 (2) | 0.14203 (15) | 0.4743 (2) | 0.0160 (5) | |
C13 | 0.4258 (2) | 0.13781 (16) | 0.4284 (2) | 0.0198 (5) | |
H13 | 0.4855 | 0.1840 | 0.4470 | 0.024* | |
C14 | 0.4451 (2) | 0.06791 (17) | 0.3567 (3) | 0.0226 (6) | |
H14 | 0.5182 | 0.0658 | 0.3268 | 0.027* | |
C15 | 0.3588 (2) | 0.00111 (16) | 0.3285 (2) | 0.0205 (5) | |
H15 | 0.3731 | −0.0473 | 0.2797 | 0.025* | |
C16 | 0.2508 (2) | 0.00332 (15) | 0.3702 (2) | 0.0178 (5) | |
H16 | 0.1911 | −0.0429 | 0.3494 | 0.021* | |
C17 | 0.2309 (2) | 0.07401 (15) | 0.4429 (2) | 0.0152 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0114 (2) | 0.0123 (2) | 0.0181 (2) | −0.00059 (15) | 0.00195 (17) | 0.00469 (16) |
Cu2 | 0.01222 (16) | 0.01216 (15) | 0.01634 (17) | 0.00004 (10) | 0.00307 (12) | 0.00049 (11) |
Cl1 | 0.0282 (3) | 0.0268 (3) | 0.0169 (3) | 0.0022 (3) | 0.0081 (3) | 0.0001 (3) |
O1 | 0.0138 (8) | 0.0133 (8) | 0.0197 (9) | −0.0007 (6) | −0.0016 (7) | 0.0035 (7) |
O2 | 0.0151 (9) | 0.0141 (8) | 0.0297 (10) | −0.0003 (6) | 0.0110 (8) | 0.0025 (7) |
N1 | 0.0147 (10) | 0.0151 (10) | 0.0164 (11) | −0.0005 (8) | 0.0049 (9) | 0.0001 (8) |
N2 | 0.0157 (10) | 0.0145 (10) | 0.0157 (11) | −0.0019 (8) | 0.0022 (9) | −0.0001 (9) |
C1 | 0.0096 (11) | 0.0198 (12) | 0.0169 (13) | −0.0009 (9) | 0.0047 (10) | 0.0066 (10) |
C2 | 0.0146 (12) | 0.0189 (12) | 0.0228 (13) | −0.0008 (9) | 0.0067 (10) | 0.0034 (11) |
C3 | 0.0182 (12) | 0.0244 (13) | 0.0213 (14) | −0.0060 (10) | 0.0053 (11) | −0.0019 (11) |
C4 | 0.0167 (12) | 0.0304 (15) | 0.0182 (14) | −0.0028 (10) | 0.0030 (11) | 0.0053 (11) |
C5 | 0.0132 (12) | 0.0218 (13) | 0.0246 (14) | 0.0018 (9) | 0.0057 (11) | 0.0070 (11) |
C6 | 0.0104 (11) | 0.0176 (12) | 0.0213 (13) | −0.0012 (9) | 0.0072 (10) | 0.0029 (10) |
C7 | 0.0129 (11) | 0.0194 (12) | 0.0254 (14) | 0.0031 (9) | 0.0075 (11) | 0.0021 (11) |
C8 | 0.0238 (13) | 0.0155 (12) | 0.0207 (14) | 0.0045 (10) | 0.0053 (11) | −0.0033 (10) |
C9 | 0.0266 (14) | 0.0148 (12) | 0.0228 (14) | 0.0011 (10) | 0.0061 (12) | −0.0037 (10) |
C10 | 0.0210 (13) | 0.0153 (12) | 0.0233 (14) | −0.0041 (10) | 0.0020 (11) | −0.0055 (11) |
C11 | 0.0133 (12) | 0.0212 (12) | 0.0209 (14) | −0.0010 (9) | 0.0019 (10) | 0.0012 (10) |
C12 | 0.0138 (11) | 0.0181 (12) | 0.0140 (12) | 0.0012 (9) | 0.0010 (10) | 0.0034 (10) |
C13 | 0.0136 (12) | 0.0247 (14) | 0.0198 (13) | −0.0014 (10) | 0.0028 (10) | 0.0046 (11) |
C14 | 0.0167 (12) | 0.0313 (14) | 0.0222 (14) | 0.0048 (11) | 0.0094 (11) | 0.0085 (12) |
C15 | 0.0239 (13) | 0.0205 (13) | 0.0177 (13) | 0.0079 (10) | 0.0067 (11) | 0.0023 (10) |
C16 | 0.0170 (12) | 0.0169 (12) | 0.0178 (13) | 0.0004 (9) | 0.0026 (10) | 0.0036 (10) |
C17 | 0.0125 (11) | 0.0185 (12) | 0.0139 (12) | 0.0023 (9) | 0.0027 (10) | 0.0060 (10) |
Cu2—Cl1 | 2.5092 (7) | C7—H7B | 0.9900 |
Cu2—Cu1 | 2.9138 (3) | C8—N1 | 1.483 (3) |
Cu1—O2i | 1.9108 (16) | C8—C9 | 1.520 (4) |
Cu1—O1i | 1.9191 (15) | C8—H8A | 0.9900 |
Cu1—Cu2i | 2.9138 (3) | C8—H8B | 0.9900 |
O1—Cu1 | 1.9191 (15) | C9—C10 | 1.517 (3) |
O1—Cu2 | 1.9825 (16) | C9—H9A | 0.9900 |
O2—Cu1 | 1.9108 (16) | C9—H9B | 0.9900 |
O2—Cu2 | 1.9632 (16) | C10—N2 | 1.488 (3) |
N1—Cu2 | 1.995 (2) | C10—H10A | 0.9900 |
N1—H1A | 0.82 (3) | C10—H10B | 0.9900 |
N2—Cu2 | 1.995 (2) | C11—N2 | 1.490 (3) |
N2—H2A | 0.86 (3) | C11—C12 | 1.505 (3) |
C1—O1 | 1.351 (3) | C11—H11A | 0.9900 |
C1—C2 | 1.392 (3) | C11—H11B | 0.9900 |
C1—C6 | 1.408 (3) | C12—C13 | 1.394 (3) |
C2—C3 | 1.386 (3) | C12—C17 | 1.406 (3) |
C2—H2 | 0.9500 | C13—C14 | 1.376 (4) |
C3—C4 | 1.386 (4) | C13—H13 | 0.9500 |
C3—H3 | 0.9500 | C14—C15 | 1.373 (4) |
C4—C5 | 1.390 (4) | C14—H14 | 0.9500 |
C4—H4 | 0.9500 | C15—C16 | 1.389 (3) |
C5—C6 | 1.389 (3) | C15—H15 | 0.9500 |
C5—H5 | 0.9500 | C16—C17 | 1.393 (3) |
C6—C7 | 1.493 (3) | C16—H16 | 0.9500 |
C7—N1 | 1.489 (3) | C17—O2 | 1.353 (3) |
C7—H7A | 0.9900 | ||
O2—Cu1—O2i | 180.00 (10) | C3—C4—C5 | 119.2 (2) |
O2—Cu1—O1 | 80.93 (7) | C3—C4—H4 | 120.4 |
O2i—Cu1—O1 | 99.07 (7) | C5—C4—H4 | 120.4 |
O2—Cu1—O1i | 99.07 (7) | C6—C5—C4 | 121.3 (2) |
O2i—Cu1—O1i | 80.93 (7) | C6—C5—H5 | 119.4 |
O1—Cu1—O1i | 180.0 | C4—C5—H5 | 119.4 |
O2—Cu1—Cu2 | 41.91 (5) | C5—C6—C1 | 118.5 (2) |
O2i—Cu1—Cu2 | 138.09 (5) | C5—C6—C7 | 122.3 (2) |
O1—Cu1—Cu2 | 42.52 (5) | C1—C6—C7 | 119.1 (2) |
O1i—Cu1—Cu2 | 137.48 (5) | N1—C7—C6 | 113.15 (19) |
O2—Cu1—Cu2i | 138.09 (5) | N1—C7—H7A | 108.9 |
O2i—Cu1—Cu2i | 41.91 (5) | C6—C7—H7A | 108.9 |
O1—Cu1—Cu2i | 137.48 (5) | N1—C7—H7B | 109.0 |
O1i—Cu1—Cu2i | 42.52 (5) | C6—C7—H7B | 108.9 |
Cu2—Cu1—Cu2i | 180.000 (11) | H7A—C7—H7B | 107.8 |
O2—Cu2—O1 | 78.09 (7) | N1—C8—C9 | 112.4 (2) |
O2—Cu2—N1 | 163.99 (8) | N1—C8—H8A | 109.1 |
O1—Cu2—N1 | 92.91 (7) | C9—C8—H8A | 109.1 |
O2—Cu2—N2 | 93.17 (7) | N1—C8—H8B | 109.1 |
O1—Cu2—N2 | 168.74 (8) | C9—C8—H8B | 109.1 |
N1—Cu2—N2 | 93.87 (8) | H8A—C8—H8B | 107.9 |
O2—Cu2—Cl1 | 89.92 (5) | C10—C9—C8 | 116.0 (2) |
O1—Cu2—Cl1 | 88.09 (5) | C10—C9—H9A | 108.3 |
N1—Cu2—Cl1 | 103.12 (6) | C8—C9—H9A | 108.3 |
N2—Cu2—Cl1 | 99.10 (6) | C10—C9—H9B | 108.3 |
O2—Cu2—Cu1 | 40.55 (5) | C8—C9—H9B | 108.3 |
O1—Cu2—Cu1 | 40.86 (4) | H9A—C9—H9B | 107.4 |
N1—Cu2—Cu1 | 133.49 (6) | N2—C10—C9 | 113.1 (2) |
N2—Cu2—Cu1 | 132.54 (6) | N2—C10—H10A | 109.0 |
Cl1—Cu2—Cu1 | 76.178 (16) | C9—C10—H10A | 109.0 |
C1—O1—Cu1 | 129.48 (14) | N2—C10—H10B | 109.0 |
C1—O1—Cu2 | 120.13 (13) | C9—C10—H10B | 109.0 |
Cu1—O1—Cu2 | 96.62 (7) | H10A—C10—H10B | 107.8 |
C17—O2—Cu1 | 133.74 (15) | N2—C11—C12 | 114.1 (2) |
C17—O2—Cu2 | 125.53 (14) | N2—C11—H11A | 108.7 |
Cu1—O2—Cu2 | 97.54 (7) | C12—C11—H11A | 108.7 |
C8—N1—C7 | 111.16 (19) | N2—C11—H11B | 108.7 |
C8—N1—Cu2 | 112.34 (15) | C12—C11—H11B | 108.7 |
C7—N1—Cu2 | 112.63 (15) | H11A—C11—H11B | 107.6 |
C8—N1—H1A | 107 (2) | C13—C12—C17 | 118.5 (2) |
C7—N1—H1A | 110 (2) | C13—C12—C11 | 122.5 (2) |
Cu2—N1—H1A | 103 (2) | C17—C12—C11 | 118.8 (2) |
C10—N2—C11 | 109.87 (19) | C14—C13—C12 | 121.1 (2) |
C10—N2—Cu2 | 112.19 (15) | C14—C13—H13 | 119.4 |
C11—N2—Cu2 | 111.40 (15) | C12—C13—H13 | 119.4 |
C10—N2—H2A | 106.1 (19) | C15—C14—C13 | 119.9 (2) |
C11—N2—H2A | 109.0 (19) | C15—C14—H14 | 120.1 |
Cu2—N2—H2A | 108 (2) | C13—C14—H14 | 120.1 |
O1—C1—C2 | 122.5 (2) | C14—C15—C16 | 120.9 (2) |
O1—C1—C6 | 117.0 (2) | C14—C15—H15 | 119.5 |
C2—C1—C6 | 120.5 (2) | C16—C15—H15 | 119.5 |
C3—C2—C1 | 119.5 (2) | C15—C16—C17 | 119.3 (2) |
C3—C2—H2 | 120.3 | C15—C16—H16 | 120.3 |
C1—C2—H2 | 120.3 | C17—C16—H16 | 120.3 |
C2—C3—C4 | 121.0 (2) | O2—C17—C16 | 122.2 (2) |
C2—C3—H3 | 119.5 | O2—C17—C12 | 117.6 (2) |
C4—C3—H3 | 119.5 | C16—C17—C12 | 120.2 (2) |
O1—C1—C2—C3 | −178.7 (2) | C1—O1—Cu2—N2 | −84.8 (4) |
C6—C1—C2—C3 | 1.3 (3) | Cu1—O1—Cu2—N2 | 59.1 (4) |
C1—C2—C3—C4 | 0.1 (4) | C1—O1—Cu2—Cl1 | 145.23 (16) |
C2—C3—C4—C5 | −0.5 (4) | Cu1—O1—Cu2—Cl1 | −70.93 (6) |
C3—C4—C5—C6 | −0.4 (4) | C1—O1—Cu2—Cu1 | −143.8 (2) |
C4—C5—C6—C1 | 1.7 (4) | C8—N1—Cu2—O2 | −168.1 (2) |
C4—C5—C6—C7 | −175.4 (2) | C7—N1—Cu2—O2 | 65.5 (3) |
O1—C1—C6—C5 | 177.8 (2) | C8—N1—Cu2—O1 | 136.78 (16) |
C2—C1—C6—C5 | −2.1 (3) | C7—N1—Cu2—O1 | 10.33 (17) |
O1—C1—C6—C7 | −5.0 (3) | C8—N1—Cu2—N2 | −52.22 (17) |
C2—C1—C6—C7 | 175.0 (2) | C7—N1—Cu2—N2 | −178.67 (17) |
C5—C6—C7—N1 | −119.7 (2) | C8—N1—Cu2—Cl1 | 48.06 (16) |
C1—C6—C7—N1 | 63.2 (3) | C7—N1—Cu2—Cl1 | −78.39 (16) |
N1—C8—C9—C10 | −64.3 (3) | C8—N1—Cu2—Cu1 | 131.34 (14) |
C8—C9—C10—N2 | 63.9 (3) | C7—N1—Cu2—Cu1 | 4.9 (2) |
N2—C11—C12—C13 | 122.6 (2) | C10—N2—Cu2—O2 | −143.06 (16) |
N2—C11—C12—C17 | −61.6 (3) | C11—N2—Cu2—O2 | −19.41 (17) |
C17—C12—C13—C14 | −1.6 (4) | C10—N2—Cu2—O1 | 178.2 (3) |
C11—C12—C13—C14 | 174.2 (2) | C11—N2—Cu2—O1 | −58.1 (5) |
C12—C13—C14—C15 | 0.5 (4) | C10—N2—Cu2—N1 | 51.32 (17) |
C13—C14—C15—C16 | 0.7 (4) | C11—N2—Cu2—N1 | 174.98 (17) |
C14—C15—C16—C17 | −0.7 (4) | C10—N2—Cu2—Cl1 | −52.64 (16) |
C15—C16—C17—O2 | 179.0 (2) | C11—N2—Cu2—Cl1 | 71.02 (16) |
C15—C16—C17—C12 | −0.4 (3) | C10—N2—Cu2—Cu1 | −132.18 (14) |
C13—C12—C17—O2 | −177.9 (2) | C11—N2—Cu2—Cu1 | −8.5 (2) |
C11—C12—C17—O2 | 6.1 (3) | C17—O2—Cu1—O1 | −139.7 (2) |
C13—C12—C17—C16 | 1.5 (3) | Cu2—O2—Cu1—O1 | 20.00 (8) |
C11—C12—C17—C16 | −174.5 (2) | C17—O2—Cu1—O1i | 40.3 (2) |
C9—C8—N1—C7 | −170.9 (2) | Cu2—O2—Cu1—O1i | −160.00 (8) |
C9—C8—N1—Cu2 | 61.9 (2) | C17—O2—Cu1—Cu2 | −159.7 (3) |
C6—C7—N1—C8 | 176.1 (2) | C17—O2—Cu1—Cu2i | 20.3 (3) |
C6—C7—N1—Cu2 | −56.8 (2) | Cu2—O2—Cu1—Cu2i | 180.0 |
C9—C10—N2—C11 | 174.7 (2) | C1—O1—Cu1—O2 | 118.85 (19) |
C9—C10—N2—Cu2 | −60.8 (2) | Cu2—O1—Cu1—O2 | −19.76 (8) |
C12—C11—N2—C10 | −173.3 (2) | C1—O1—Cu1—O2i | −61.15 (19) |
C12—C11—N2—Cu2 | 61.7 (2) | Cu2—O1—Cu1—O2i | 160.24 (8) |
C2—C1—O1—Cu1 | 0.6 (3) | C1—O1—Cu1—Cu2 | 138.6 (2) |
C6—C1—O1—Cu1 | −179.40 (15) | C1—O1—Cu1—Cu2i | −41.4 (2) |
C2—C1—O1—Cu2 | 131.2 (2) | Cu2—O1—Cu1—Cu2i | 180.0 |
C6—C1—O1—Cu2 | −48.8 (3) | O1—Cu2—Cu1—O2 | 150.01 (11) |
C16—C17—O2—Cu1 | 15.6 (3) | N1—Cu2—Cu1—O2 | 158.32 (12) |
C12—C17—O2—Cu1 | −164.97 (17) | N2—Cu2—Cu1—O2 | −16.86 (11) |
C16—C17—O2—Cu2 | −139.41 (19) | Cl1—Cu2—Cu1—O2 | −106.58 (8) |
C12—C17—O2—Cu2 | 40.0 (3) | O2—Cu2—Cu1—O2i | 180.0 |
C17—O2—Cu2—O1 | 142.55 (19) | O1—Cu2—Cu1—O2i | −29.99 (11) |
Cu1—O2—Cu2—O1 | −19.52 (7) | N1—Cu2—Cu1—O2i | −21.68 (12) |
C17—O2—Cu2—N1 | 85.7 (3) | N2—Cu2—Cu1—O2i | 163.14 (11) |
Cu1—O2—Cu2—N1 | −76.4 (3) | Cl1—Cu2—Cu1—O2i | 73.42 (8) |
C17—O2—Cu2—N2 | −30.28 (19) | O2—Cu2—Cu1—O1 | −150.01 (11) |
Cu1—O2—Cu2—N2 | 167.64 (8) | N1—Cu2—Cu1—O1 | 8.31 (11) |
C17—O2—Cu2—Cl1 | −129.39 (18) | N2—Cu2—Cu1—O1 | −166.86 (11) |
Cu1—O2—Cu2—Cl1 | 68.54 (6) | Cl1—Cu2—Cu1—O1 | 103.41 (8) |
C17—O2—Cu2—Cu1 | 162.1 (2) | O2—Cu2—Cu1—O1i | 29.99 (11) |
C1—O1—Cu2—O2 | −124.44 (17) | O1—Cu2—Cu1—O1i | 180.0 |
Cu1—O1—Cu2—O2 | 19.40 (7) | N1—Cu2—Cu1—O1i | −171.69 (11) |
C1—O1—Cu2—N1 | 42.19 (17) | N2—Cu2—Cu1—O1i | 13.14 (11) |
Cu1—O1—Cu2—N1 | −173.97 (8) | Cl1—Cu2—Cu1—O1i | −76.59 (8) |
Symmetry code: (i) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu3(C17H20N2O2)2Cl2] |
Mr | 830.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.0189 (7), 15.3861 (8), 10.7441 (8) |
β (°) | 106.959 (7) |
V (Å3) | 1742.3 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.01 |
Crystal size (mm) | 0.36 × 0.22 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2002) |
Tmin, Tmax | 0.531, 0.766 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12067, 3481, 2969 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.075, 1.10 |
No. of reflections | 3481 |
No. of parameters | 220 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.57, −0.32 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).
Cu2—Cl1 | 2.5092 (7) | O2—Cu1 | 1.9108 (16) |
Cu2—Cu1 | 2.9138 (3) | O2—Cu2 | 1.9632 (16) |
O1—Cu1 | 1.9191 (15) | N1—Cu2 | 1.995 (2) |
O1—Cu2 | 1.9825 (16) | N2—Cu2 | 1.995 (2) |
O2—Cu1—O1 | 80.93 (7) | O2—Cu2—N2 | 93.17 (7) |
O2—Cu1—Cu2 | 41.91 (5) | O1—Cu2—N2 | 168.74 (8) |
O1—Cu1—Cu2 | 42.52 (5) | O2—Cu2—Cl1 | 89.92 (5) |
O2—Cu2—O1 | 78.09 (7) | O1—Cu2—Cl1 | 88.09 (5) |
O2—Cu2—N1 | 163.99 (8) | Cu1—O1—Cu2 | 96.62 (7) |
O1—Cu2—N1 | 92.91 (7) | Cu1—O2—Cu2 | 97.54 (7) |
Acknowledgements
OA is grateful to DAAD for support and acknowledges the financial support of the Ankara University Research Fund (grant No. 20050705105).
References
Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Ercan, F., Atakol, O., Arıcı, C., Svoboda, I. & Fuess, H. (2002). Acta Cryst. C58, m193–m196. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479. CSD CrossRef Web of Science Google Scholar
Gerli, A., Hagen, K. S. & Marzilli, L. G. (1991). Inorg. Chem. 30, 4673–4676. CSD CrossRef CAS Web of Science Google Scholar
Mikuriya, M., Ikenove, S., Nukada, R. & Lim, J. W. (2001). Bull. Chem. Soc. Jpn, 74, 101–102. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, Y., Gomez, P., Roubeav, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928. Web of Science CSD CrossRef Google Scholar
Song, Y., Gomez, P., Roubeav, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 109–115. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uhlenbrock, S., Wegner, R. & Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731–3736. CSD CrossRef Web of Science Google Scholar
Yıldırım, L. T. & Atakol, O. (2002). Cryst. Res. Technol. 37, 1352–1359. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bis-N,N'-bis(2-hydroxybenzyl)-1,3-propane-diamine is an ONNO type Schiff base and there have been various polynuclear complexes synthesized since 1990 (Fukuhara et al., 1990; Gerli et al., 1991; Uhlenbrock et al., 1996, Mikuriya et al., 2001).
In this study, N,N'-bis(salicylidene)-1,3-propane-diamine was reduced into a symmetrical phenol-amine compound by the help of NaBH4. A trinuclear Cu(II) complex was prepared by the reaction of the ligand obtained with CuCl2 and its molecular structure was determined. Previously, this complex had been prepared in MeOH solution and crystallized in its tetra-solvated form (Song et al., 2005). The trinuclear complex obtained in this structure is not solvated and has different crystallographic details.
As can seen from PLATON (Spek, 2003), the terminal Cu(II) ion has a square pyramidal coordination formed by the two phenolic oxygen and two iminic nitrogen atoms of the ligand and a chloride ion. There has been a T factor defined for five membered coordination sphere (Addison et al., 1984). This factor is given as T=a-b/60, where a and b correspond to two largest angles around the metal atom. If T=0 the coordination is an ideal square pyramid and if T=1 the coordination is ideal trigonal bipyramid. If the values listed in molecular geometry are employed the T value is found as 0.078 indicating that the terminal Cu(II) atoms has a near ideal square pyramidal symmetry. The Cu—Cl bond is longer than other coordination bonds (2.509 Å). The bond length in the square base are very close to each other (1.963 Å). The chalate ring (Cu2, N1, N2, C8, C9, C10) formed by the terminal Cu(II) ions has an almost ideal chair conformation. The conformation of the ring was analysed using PLATON. The Cremer-Pople puckering parameters are QT=1.374 (6), θ=-38.9 (2), ϕ=120.34 (12)° (Cremer et al., 1975).
The central Cu(II) ion is coordinated between four phenolic oxygen donors. The Cu1—O2 and Cu1—O1 distances are 1.911 Å and 1.919 Å, respectively. The phenolic O atoms act as bridging ligands between the central and the terminal Cu ions. The distance between Cu2 and an L.S. plane through O1, N1, N2 and O2 is 0.1894 (3) Å.. That is why the six membered chelate ring conformation of Schiff base complexes was reported as almost ideal (Yıldırım et al., 2002). The smallest Cu—Cu distance determined in similar complexes was reported as 2.914 Å (Song et al., 2005; Song et al., 2003). The Cu2—Cu1 distance in the title compound is 2.9138 (3) Å and thus close to the shortest reported distances. In complexes containing m-bonds such as AcO– and HCOO– this distance is bigger than 3.0 Å (Ercan et al., 2002; Atakol et al., 1999).