metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m481-m482

Di­chlorido-1κCl,3κCl-bis­­{μ-2,2′-[pro­pane-1,3-diylbis(imino­methyl­ene)]di­phenol­ato}-1:2κ6O,N,N′,O′:O,O′;2:3κ6O,O′:O,N,N′,O′-tricopper(II)

aDepartment of Engineering Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDarmstadt University of Technology, Institute of Materials Science, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cDepartment of Chemistry, Ankara University Science Faculty, 06100 Ankara, Turkey
*Correspondence e-mail: burke.ates@taek.gov.tr

(Received 27 November 2007; accepted 28 January 2008; online 15 February 2008)

The title linear trinuclear copper(II) complex, [Cu3(C17H20N2O2)2Cl2], was obtained from N,N′-bis­(2-hydroxy­benz­yl)-1,3-propane­diamine and CuCl2. The overall charge of the three Cu2+ ions is balanced by four deprotonated phenol groups and two Cl ligands. The complex is centrosymmetric with the central Cu2+ occupying a special position ([\overline{1}]). This Cu2+ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu2+ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl ligands occupying the fifth coordination site.

Related literature

For related literature, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Atakol et al. (1999[Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511-513.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Ercan et al. (2002[Ercan, F., Atakol, O., Arıcı, C., Svoboda, I. & Fuess, H. (2002). Acta Cryst. C58, m193-m196.]); Fukuhara et al. (1990[Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Gerli et al. (1991[Gerli, A., Hagen, K. S. & Marzilli, L. G. (1991). Inorg. Chem. 30, 4673-4676.]); Mikuriya et al. (2001[Mikuriya, M., Ikenove, S., Nukada, R. & Lim, J. W. (2001). Bull. Chem. Soc. Jpn, 74, 101-102.]); Song et al. (2003[Song, Y., Gomez, P., Roubeav, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924-2928.], 2005[Song, Y., Gomez, P., Roubeav, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 109-115.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); Uhlenbrock et al. (1996[Uhlenbrock, S., Wegner, R. & Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731-3736.]); Yıldırım & Atakol (2002[Yıldırım, L. T. & Atakol, O. (2002). Cryst. Res. Technol. 37, 1352-1359.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C17H20N2O2)2Cl2]

  • Mr = 830.25

  • Monoclinic, P 21 /c

  • a = 11.0189 (7) Å

  • b = 15.3861 (8) Å

  • c = 10.7441 (8) Å

  • β = 106.959 (7)°

  • V = 1742.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 100 (2) K

  • 0.36 × 0.22 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Poland.]) Tmin = 0.531, Tmax = 0.766

  • 12067 measured reflections

  • 3481 independent reflections

  • 2969 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.10

  • 3481 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu2—Cl1 2.5092 (7)
Cu2—Cu1 2.9138 (3)
O1—Cu1 1.9191 (15)
O1—Cu2 1.9825 (16)
O2—Cu1 1.9108 (16)
O2—Cu2 1.9632 (16)
N1—Cu2 1.995 (2)
N2—Cu2 1.995 (2)
O2—Cu1—O1 80.93 (7)
O2—Cu1—Cu2 41.91 (5)
O1—Cu1—Cu2 42.52 (5)
O2—Cu2—O1 78.09 (7)
O2—Cu2—N1 163.99 (8)
O1—Cu2—N1 92.91 (7)
O2—Cu2—N2 93.17 (7)
O1—Cu2—N2 168.74 (8)
O2—Cu2—Cl1 89.92 (5)
O1—Cu2—Cl1 88.09 (5)
Cu1—O1—Cu2 96.62 (7)
Cu1—O2—Cu2 97.54 (7)

Data collection: CrysAlis CCD (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Bis-N,N'-bis(2-hydroxybenzyl)-1,3-propane-diamine is an ONNO type Schiff base and there have been various polynuclear complexes synthesized since 1990 (Fukuhara et al., 1990; Gerli et al., 1991; Uhlenbrock et al., 1996, Mikuriya et al., 2001).

In this study, N,N'-bis(salicylidene)-1,3-propane-diamine was reduced into a symmetrical phenol-amine compound by the help of NaBH4. A trinuclear Cu(II) complex was prepared by the reaction of the ligand obtained with CuCl2 and its molecular structure was determined. Previously, this complex had been prepared in MeOH solution and crystallized in its tetra-solvated form (Song et al., 2005). The trinuclear complex obtained in this structure is not solvated and has different crystallographic details.

As can seen from PLATON (Spek, 2003), the terminal Cu(II) ion has a square pyramidal coordination formed by the two phenolic oxygen and two iminic nitrogen atoms of the ligand and a chloride ion. There has been a T factor defined for five membered coordination sphere (Addison et al., 1984). This factor is given as T=a-b/60, where a and b correspond to two largest angles around the metal atom. If T=0 the coordination is an ideal square pyramid and if T=1 the coordination is ideal trigonal bipyramid. If the values listed in molecular geometry are employed the T value is found as 0.078 indicating that the terminal Cu(II) atoms has a near ideal square pyramidal symmetry. The Cu—Cl bond is longer than other coordination bonds (2.509 Å). The bond length in the square base are very close to each other (1.963 Å). The chalate ring (Cu2, N1, N2, C8, C9, C10) formed by the terminal Cu(II) ions has an almost ideal chair conformation. The conformation of the ring was analysed using PLATON. The Cremer-Pople puckering parameters are QT=1.374 (6), θ=-38.9 (2), ϕ=120.34 (12)° (Cremer et al., 1975).

The central Cu(II) ion is coordinated between four phenolic oxygen donors. The Cu1—O2 and Cu1—O1 distances are 1.911 Å and 1.919 Å, respectively. The phenolic O atoms act as bridging ligands between the central and the terminal Cu ions. The distance between Cu2 and an L.S. plane through O1, N1, N2 and O2 is 0.1894 (3) Å.. That is why the six membered chelate ring conformation of Schiff base complexes was reported as almost ideal (Yıldırım et al., 2002). The smallest Cu—Cu distance determined in similar complexes was reported as 2.914 Å (Song et al., 2005; Song et al., 2003). The Cu2—Cu1 distance in the title compound is 2.9138 (3) Å and thus close to the shortest reported distances. In complexes containing m-bonds such as AcO– and HCOO– this distance is bigger than 3.0 Å (Ercan et al., 2002; Atakol et al., 1999).

Related literature top

For related literature, see: Addison et al. (1984); Atakol et al. (1999); Cremer & Pople (1975); Ercan et al. (2002); Fukuhara et al. (1990); Gerli et al. (1991); Mikuriya et al. (2001); Song et al. (2003, 2005); Spek (2003); Uhlenbrock et al. (1996); Yıldırım & Atakol (2002).

Experimental top

N,N'-bis(salicylidene)-1,3-propane-diamine was dissolved by slightly heating in MeOH (80 ml). NaBH4 was added into this solution in its solid form with small portions and the resulting mixture was rigorously stirred. The addition of NaBH4 was continued unless the solution became completely colorless. The colorless solution was mixed with ice (300 g) and kept on the bench for 24 h. The white precipitate was the reduced product of N,N'-bis(2-hydroxybenzyl)-1,3-propane-diamine (m.p. 379–380 K, yield % 87, the N—H streching band is observed at 3273 cm-1). N,N'-bis (2-hydroxybenzyl)-1,3-propane-diamine (0.285 g, 1 mmole) was dissolved in dmf (dimethyl-formamide)(20 ml) by heating and a solution of CuCl2.2H2O (0.255 g, 1.5 mmole) in hot dmf (20 ml) was added to it and the resulting mixture was kept on the bench for 4–5 d. The resulting crystals were filtered off, washed with EtOH and dried in oven at 353 K.

Refinement top

H1A and H2A (for NH) were located in a Fourier map and only their positions refined [N—H = 0.82 (3) and 0.86 (3) Å, Uiso(H) = 0.028 and 0.028 Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x, -y, 1 - z].
Dichlorido-1κCl,3κCl-bis{µ-2,2'-[propane-1,3- diylbis(iminomethylene)]diphenolato}- 1:2κ6O,N,N',O':O,O';2:3κ6O,O':O,N,N',O'-tricopper(II) top
Crystal data top
[Cu3(C17H20N2O2)2Cl2]F(000) = 850
Mr = 830.25Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4076 reflections
a = 11.0189 (7) Åθ = 2.4–26.4°
b = 15.3861 (8) ŵ = 2.01 mm1
c = 10.7441 (8) ÅT = 100 K
β = 106.959 (7)°Prism, dark green
V = 1742.3 (2) Å30.36 × 0.22 × 0.14 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3481 independent reflections
Radiation source: fine-focus sealed tube2969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.4°, θmin = 4.1°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2002)
h = 1313
Tmin = 0.531, Tmax = 0.766k = 1818
12067 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0379P)2 + 1.1376P]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max = 0.019
220 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu3(C17H20N2O2)2Cl2]V = 1742.3 (2) Å3
Mr = 830.25Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.0189 (7) ŵ = 2.01 mm1
b = 15.3861 (8) ÅT = 100 K
c = 10.7441 (8) Å0.36 × 0.22 × 0.14 mm
β = 106.959 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3481 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2002)
2969 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.766Rint = 0.025
12067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.57 e Å3
3481 reflectionsΔρmin = 0.32 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.50000.01443 (11)
Cu20.02986 (3)0.187585 (17)0.48593 (3)0.01380 (10)
Cl10.04255 (6)0.16106 (4)0.71982 (6)0.02363 (16)
O10.10643 (15)0.09894 (10)0.43769 (17)0.0170 (4)
O20.12675 (15)0.08066 (10)0.48475 (17)0.0187 (4)
N10.09257 (18)0.28603 (13)0.4363 (2)0.0153 (4)
H1A0.080 (3)0.3050 (19)0.369 (3)0.028*
N20.18192 (18)0.26353 (13)0.5115 (2)0.0158 (4)
H2A0.180 (3)0.2855 (19)0.437 (3)0.028*
C10.2034 (2)0.10818 (15)0.3275 (2)0.0153 (5)
C20.2429 (2)0.04128 (16)0.2376 (2)0.0185 (5)
H20.20270.01390.25310.022*
C30.3414 (2)0.05583 (17)0.1253 (3)0.0214 (5)
H30.36840.01020.06390.026*
C40.4010 (2)0.13600 (17)0.1012 (3)0.0222 (6)
H40.46800.14550.02360.027*
C50.3617 (2)0.20233 (16)0.1919 (2)0.0198 (5)
H50.40210.25740.17530.024*
C60.2644 (2)0.18960 (15)0.3063 (2)0.0159 (5)
C70.2269 (2)0.25755 (16)0.4097 (2)0.0188 (5)
H7A0.28310.30860.38280.023*
H7B0.23960.23440.49100.023*
C80.0623 (2)0.35758 (15)0.5329 (3)0.0202 (5)
H8A0.06400.33490.61860.024*
H8B0.12820.40310.50630.024*
C90.0669 (2)0.39773 (15)0.5461 (3)0.0216 (6)
H9A0.06780.41900.45940.026*
H9B0.07710.44890.60410.026*
C100.1804 (2)0.33853 (16)0.5985 (3)0.0208 (5)
H10A0.25900.37280.61050.025*
H10B0.17980.31630.68480.025*
C110.3017 (2)0.21331 (16)0.5631 (2)0.0191 (5)
H11A0.30260.18740.64770.023*
H11B0.37440.25390.57920.023*
C120.3198 (2)0.14203 (15)0.4743 (2)0.0160 (5)
C130.4258 (2)0.13781 (16)0.4284 (2)0.0198 (5)
H130.48550.18400.44700.024*
C140.4451 (2)0.06791 (17)0.3567 (3)0.0226 (6)
H140.51820.06580.32680.027*
C150.3588 (2)0.00111 (16)0.3285 (2)0.0205 (5)
H150.37310.04730.27970.025*
C160.2508 (2)0.00332 (15)0.3702 (2)0.0178 (5)
H160.19110.04290.34940.021*
C170.2309 (2)0.07401 (15)0.4429 (2)0.0152 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0114 (2)0.0123 (2)0.0181 (2)0.00059 (15)0.00195 (17)0.00469 (16)
Cu20.01222 (16)0.01216 (15)0.01634 (17)0.00004 (10)0.00307 (12)0.00049 (11)
Cl10.0282 (3)0.0268 (3)0.0169 (3)0.0022 (3)0.0081 (3)0.0001 (3)
O10.0138 (8)0.0133 (8)0.0197 (9)0.0007 (6)0.0016 (7)0.0035 (7)
O20.0151 (9)0.0141 (8)0.0297 (10)0.0003 (6)0.0110 (8)0.0025 (7)
N10.0147 (10)0.0151 (10)0.0164 (11)0.0005 (8)0.0049 (9)0.0001 (8)
N20.0157 (10)0.0145 (10)0.0157 (11)0.0019 (8)0.0022 (9)0.0001 (9)
C10.0096 (11)0.0198 (12)0.0169 (13)0.0009 (9)0.0047 (10)0.0066 (10)
C20.0146 (12)0.0189 (12)0.0228 (13)0.0008 (9)0.0067 (10)0.0034 (11)
C30.0182 (12)0.0244 (13)0.0213 (14)0.0060 (10)0.0053 (11)0.0019 (11)
C40.0167 (12)0.0304 (15)0.0182 (14)0.0028 (10)0.0030 (11)0.0053 (11)
C50.0132 (12)0.0218 (13)0.0246 (14)0.0018 (9)0.0057 (11)0.0070 (11)
C60.0104 (11)0.0176 (12)0.0213 (13)0.0012 (9)0.0072 (10)0.0029 (10)
C70.0129 (11)0.0194 (12)0.0254 (14)0.0031 (9)0.0075 (11)0.0021 (11)
C80.0238 (13)0.0155 (12)0.0207 (14)0.0045 (10)0.0053 (11)0.0033 (10)
C90.0266 (14)0.0148 (12)0.0228 (14)0.0011 (10)0.0061 (12)0.0037 (10)
C100.0210 (13)0.0153 (12)0.0233 (14)0.0041 (10)0.0020 (11)0.0055 (11)
C110.0133 (12)0.0212 (12)0.0209 (14)0.0010 (9)0.0019 (10)0.0012 (10)
C120.0138 (11)0.0181 (12)0.0140 (12)0.0012 (9)0.0010 (10)0.0034 (10)
C130.0136 (12)0.0247 (14)0.0198 (13)0.0014 (10)0.0028 (10)0.0046 (11)
C140.0167 (12)0.0313 (14)0.0222 (14)0.0048 (11)0.0094 (11)0.0085 (12)
C150.0239 (13)0.0205 (13)0.0177 (13)0.0079 (10)0.0067 (11)0.0023 (10)
C160.0170 (12)0.0169 (12)0.0178 (13)0.0004 (9)0.0026 (10)0.0036 (10)
C170.0125 (11)0.0185 (12)0.0139 (12)0.0023 (9)0.0027 (10)0.0060 (10)
Geometric parameters (Å, º) top
Cu2—Cl12.5092 (7)C7—H7B0.9900
Cu2—Cu12.9138 (3)C8—N11.483 (3)
Cu1—O2i1.9108 (16)C8—C91.520 (4)
Cu1—O1i1.9191 (15)C8—H8A0.9900
Cu1—Cu2i2.9138 (3)C8—H8B0.9900
O1—Cu11.9191 (15)C9—C101.517 (3)
O1—Cu21.9825 (16)C9—H9A0.9900
O2—Cu11.9108 (16)C9—H9B0.9900
O2—Cu21.9632 (16)C10—N21.488 (3)
N1—Cu21.995 (2)C10—H10A0.9900
N1—H1A0.82 (3)C10—H10B0.9900
N2—Cu21.995 (2)C11—N21.490 (3)
N2—H2A0.86 (3)C11—C121.505 (3)
C1—O11.351 (3)C11—H11A0.9900
C1—C21.392 (3)C11—H11B0.9900
C1—C61.408 (3)C12—C131.394 (3)
C2—C31.386 (3)C12—C171.406 (3)
C2—H20.9500C13—C141.376 (4)
C3—C41.386 (4)C13—H130.9500
C3—H30.9500C14—C151.373 (4)
C4—C51.390 (4)C14—H140.9500
C4—H40.9500C15—C161.389 (3)
C5—C61.389 (3)C15—H150.9500
C5—H50.9500C16—C171.393 (3)
C6—C71.493 (3)C16—H160.9500
C7—N11.489 (3)C17—O21.353 (3)
C7—H7A0.9900
O2—Cu1—O2i180.00 (10)C3—C4—C5119.2 (2)
O2—Cu1—O180.93 (7)C3—C4—H4120.4
O2i—Cu1—O199.07 (7)C5—C4—H4120.4
O2—Cu1—O1i99.07 (7)C6—C5—C4121.3 (2)
O2i—Cu1—O1i80.93 (7)C6—C5—H5119.4
O1—Cu1—O1i180.0C4—C5—H5119.4
O2—Cu1—Cu241.91 (5)C5—C6—C1118.5 (2)
O2i—Cu1—Cu2138.09 (5)C5—C6—C7122.3 (2)
O1—Cu1—Cu242.52 (5)C1—C6—C7119.1 (2)
O1i—Cu1—Cu2137.48 (5)N1—C7—C6113.15 (19)
O2—Cu1—Cu2i138.09 (5)N1—C7—H7A108.9
O2i—Cu1—Cu2i41.91 (5)C6—C7—H7A108.9
O1—Cu1—Cu2i137.48 (5)N1—C7—H7B109.0
O1i—Cu1—Cu2i42.52 (5)C6—C7—H7B108.9
Cu2—Cu1—Cu2i180.000 (11)H7A—C7—H7B107.8
O2—Cu2—O178.09 (7)N1—C8—C9112.4 (2)
O2—Cu2—N1163.99 (8)N1—C8—H8A109.1
O1—Cu2—N192.91 (7)C9—C8—H8A109.1
O2—Cu2—N293.17 (7)N1—C8—H8B109.1
O1—Cu2—N2168.74 (8)C9—C8—H8B109.1
N1—Cu2—N293.87 (8)H8A—C8—H8B107.9
O2—Cu2—Cl189.92 (5)C10—C9—C8116.0 (2)
O1—Cu2—Cl188.09 (5)C10—C9—H9A108.3
N1—Cu2—Cl1103.12 (6)C8—C9—H9A108.3
N2—Cu2—Cl199.10 (6)C10—C9—H9B108.3
O2—Cu2—Cu140.55 (5)C8—C9—H9B108.3
O1—Cu2—Cu140.86 (4)H9A—C9—H9B107.4
N1—Cu2—Cu1133.49 (6)N2—C10—C9113.1 (2)
N2—Cu2—Cu1132.54 (6)N2—C10—H10A109.0
Cl1—Cu2—Cu176.178 (16)C9—C10—H10A109.0
C1—O1—Cu1129.48 (14)N2—C10—H10B109.0
C1—O1—Cu2120.13 (13)C9—C10—H10B109.0
Cu1—O1—Cu296.62 (7)H10A—C10—H10B107.8
C17—O2—Cu1133.74 (15)N2—C11—C12114.1 (2)
C17—O2—Cu2125.53 (14)N2—C11—H11A108.7
Cu1—O2—Cu297.54 (7)C12—C11—H11A108.7
C8—N1—C7111.16 (19)N2—C11—H11B108.7
C8—N1—Cu2112.34 (15)C12—C11—H11B108.7
C7—N1—Cu2112.63 (15)H11A—C11—H11B107.6
C8—N1—H1A107 (2)C13—C12—C17118.5 (2)
C7—N1—H1A110 (2)C13—C12—C11122.5 (2)
Cu2—N1—H1A103 (2)C17—C12—C11118.8 (2)
C10—N2—C11109.87 (19)C14—C13—C12121.1 (2)
C10—N2—Cu2112.19 (15)C14—C13—H13119.4
C11—N2—Cu2111.40 (15)C12—C13—H13119.4
C10—N2—H2A106.1 (19)C15—C14—C13119.9 (2)
C11—N2—H2A109.0 (19)C15—C14—H14120.1
Cu2—N2—H2A108 (2)C13—C14—H14120.1
O1—C1—C2122.5 (2)C14—C15—C16120.9 (2)
O1—C1—C6117.0 (2)C14—C15—H15119.5
C2—C1—C6120.5 (2)C16—C15—H15119.5
C3—C2—C1119.5 (2)C15—C16—C17119.3 (2)
C3—C2—H2120.3C15—C16—H16120.3
C1—C2—H2120.3C17—C16—H16120.3
C2—C3—C4121.0 (2)O2—C17—C16122.2 (2)
C2—C3—H3119.5O2—C17—C12117.6 (2)
C4—C3—H3119.5C16—C17—C12120.2 (2)
O1—C1—C2—C3178.7 (2)C1—O1—Cu2—N284.8 (4)
C6—C1—C2—C31.3 (3)Cu1—O1—Cu2—N259.1 (4)
C1—C2—C3—C40.1 (4)C1—O1—Cu2—Cl1145.23 (16)
C2—C3—C4—C50.5 (4)Cu1—O1—Cu2—Cl170.93 (6)
C3—C4—C5—C60.4 (4)C1—O1—Cu2—Cu1143.8 (2)
C4—C5—C6—C11.7 (4)C8—N1—Cu2—O2168.1 (2)
C4—C5—C6—C7175.4 (2)C7—N1—Cu2—O265.5 (3)
O1—C1—C6—C5177.8 (2)C8—N1—Cu2—O1136.78 (16)
C2—C1—C6—C52.1 (3)C7—N1—Cu2—O110.33 (17)
O1—C1—C6—C75.0 (3)C8—N1—Cu2—N252.22 (17)
C2—C1—C6—C7175.0 (2)C7—N1—Cu2—N2178.67 (17)
C5—C6—C7—N1119.7 (2)C8—N1—Cu2—Cl148.06 (16)
C1—C6—C7—N163.2 (3)C7—N1—Cu2—Cl178.39 (16)
N1—C8—C9—C1064.3 (3)C8—N1—Cu2—Cu1131.34 (14)
C8—C9—C10—N263.9 (3)C7—N1—Cu2—Cu14.9 (2)
N2—C11—C12—C13122.6 (2)C10—N2—Cu2—O2143.06 (16)
N2—C11—C12—C1761.6 (3)C11—N2—Cu2—O219.41 (17)
C17—C12—C13—C141.6 (4)C10—N2—Cu2—O1178.2 (3)
C11—C12—C13—C14174.2 (2)C11—N2—Cu2—O158.1 (5)
C12—C13—C14—C150.5 (4)C10—N2—Cu2—N151.32 (17)
C13—C14—C15—C160.7 (4)C11—N2—Cu2—N1174.98 (17)
C14—C15—C16—C170.7 (4)C10—N2—Cu2—Cl152.64 (16)
C15—C16—C17—O2179.0 (2)C11—N2—Cu2—Cl171.02 (16)
C15—C16—C17—C120.4 (3)C10—N2—Cu2—Cu1132.18 (14)
C13—C12—C17—O2177.9 (2)C11—N2—Cu2—Cu18.5 (2)
C11—C12—C17—O26.1 (3)C17—O2—Cu1—O1139.7 (2)
C13—C12—C17—C161.5 (3)Cu2—O2—Cu1—O120.00 (8)
C11—C12—C17—C16174.5 (2)C17—O2—Cu1—O1i40.3 (2)
C9—C8—N1—C7170.9 (2)Cu2—O2—Cu1—O1i160.00 (8)
C9—C8—N1—Cu261.9 (2)C17—O2—Cu1—Cu2159.7 (3)
C6—C7—N1—C8176.1 (2)C17—O2—Cu1—Cu2i20.3 (3)
C6—C7—N1—Cu256.8 (2)Cu2—O2—Cu1—Cu2i180.0
C9—C10—N2—C11174.7 (2)C1—O1—Cu1—O2118.85 (19)
C9—C10—N2—Cu260.8 (2)Cu2—O1—Cu1—O219.76 (8)
C12—C11—N2—C10173.3 (2)C1—O1—Cu1—O2i61.15 (19)
C12—C11—N2—Cu261.7 (2)Cu2—O1—Cu1—O2i160.24 (8)
C2—C1—O1—Cu10.6 (3)C1—O1—Cu1—Cu2138.6 (2)
C6—C1—O1—Cu1179.40 (15)C1—O1—Cu1—Cu2i41.4 (2)
C2—C1—O1—Cu2131.2 (2)Cu2—O1—Cu1—Cu2i180.0
C6—C1—O1—Cu248.8 (3)O1—Cu2—Cu1—O2150.01 (11)
C16—C17—O2—Cu115.6 (3)N1—Cu2—Cu1—O2158.32 (12)
C12—C17—O2—Cu1164.97 (17)N2—Cu2—Cu1—O216.86 (11)
C16—C17—O2—Cu2139.41 (19)Cl1—Cu2—Cu1—O2106.58 (8)
C12—C17—O2—Cu240.0 (3)O2—Cu2—Cu1—O2i180.0
C17—O2—Cu2—O1142.55 (19)O1—Cu2—Cu1—O2i29.99 (11)
Cu1—O2—Cu2—O119.52 (7)N1—Cu2—Cu1—O2i21.68 (12)
C17—O2—Cu2—N185.7 (3)N2—Cu2—Cu1—O2i163.14 (11)
Cu1—O2—Cu2—N176.4 (3)Cl1—Cu2—Cu1—O2i73.42 (8)
C17—O2—Cu2—N230.28 (19)O2—Cu2—Cu1—O1150.01 (11)
Cu1—O2—Cu2—N2167.64 (8)N1—Cu2—Cu1—O18.31 (11)
C17—O2—Cu2—Cl1129.39 (18)N2—Cu2—Cu1—O1166.86 (11)
Cu1—O2—Cu2—Cl168.54 (6)Cl1—Cu2—Cu1—O1103.41 (8)
C17—O2—Cu2—Cu1162.1 (2)O2—Cu2—Cu1—O1i29.99 (11)
C1—O1—Cu2—O2124.44 (17)O1—Cu2—Cu1—O1i180.0
Cu1—O1—Cu2—O219.40 (7)N1—Cu2—Cu1—O1i171.69 (11)
C1—O1—Cu2—N142.19 (17)N2—Cu2—Cu1—O1i13.14 (11)
Cu1—O1—Cu2—N1173.97 (8)Cl1—Cu2—Cu1—O1i76.59 (8)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu3(C17H20N2O2)2Cl2]
Mr830.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0189 (7), 15.3861 (8), 10.7441 (8)
β (°) 106.959 (7)
V3)1742.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.36 × 0.22 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.531, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
12067, 3481, 2969
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.10
No. of reflections3481
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu2—Cl12.5092 (7)O2—Cu11.9108 (16)
Cu2—Cu12.9138 (3)O2—Cu21.9632 (16)
O1—Cu11.9191 (15)N1—Cu21.995 (2)
O1—Cu21.9825 (16)N2—Cu21.995 (2)
O2—Cu1—O180.93 (7)O2—Cu2—N293.17 (7)
O2—Cu1—Cu241.91 (5)O1—Cu2—N2168.74 (8)
O1—Cu1—Cu242.52 (5)O2—Cu2—Cl189.92 (5)
O2—Cu2—O178.09 (7)O1—Cu2—Cl188.09 (5)
O2—Cu2—N1163.99 (8)Cu1—O1—Cu296.62 (7)
O1—Cu2—N192.91 (7)Cu1—O2—Cu297.54 (7)
 

Acknowledgements

OA is grateful to DAAD for support and acknowledges the financial support of the Ankara University Research Fund (grant No. 20050705105).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAtakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationErcan, F., Atakol, O., Arıcı, C., Svoboda, I. & Fuess, H. (2002). Acta Cryst. C58, m193–m196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479.  CSD CrossRef Web of Science Google Scholar
First citationGerli, A., Hagen, K. S. & Marzilli, L. G. (1991). Inorg. Chem. 30, 4673–4676.  CSD CrossRef CAS Web of Science Google Scholar
First citationMikuriya, M., Ikenove, S., Nukada, R. & Lim, J. W. (2001). Bull. Chem. Soc. Jpn, 74, 101–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Gomez, P., Roubeav, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928.  Web of Science CSD CrossRef Google Scholar
First citationSong, Y., Gomez, P., Roubeav, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 109–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUhlenbrock, S., Wegner, R. & Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731–3736.  CSD CrossRef Web of Science Google Scholar
First citationYıldırım, L. T. & Atakol, O. (2002). Cryst. Res. Technol. 37, 1352–1359.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m481-m482
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds