inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

α-Lead tellurite from single-crystal data

aKarpov Institute of Physical Chemistry, 10 Vorontsovo Pole, 105064 Moscow, Russian Federation, and bMaterials Chemistry, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
*Correspondence e-mail: zaval@cc.nifhi.ac.ru

(Received 14 December 2007; accepted 30 January 2008; online 6 February 2008)

The crystal structure of the title compound, α-PbTeO3 (PTO), has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969), 106, 128–130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c) structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbOx] polyhedra (x = 7 and 9) which share their O atoms with TeO3 pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb2+ and Te4+ cations.

Related literature

Single crystals of PTO were grown by the Czochralski technique (Kosse, Politova, Bush et al., 1983[Kosse, L. I., Politova, E. D., Bush, A. A., Astafiev, A. V., Stefanovich, S. Yu., Myzgin, E. A. & Venevtsev, Yu. N. (1983). Sov. Phys. Crystallogr. 28, 300-301.]). For the temperature dependence of the physical properties of PTO, see: Kosse, Politova, Astafiev et al. (1983[Kosse, L. I., Politova, E. D., Astafiev, A. V., Guriev, A. V., Turok, I. I. & Venevtsev, Yu. N. (1983). Sov. Phys. Solid State, 25, 1170-1172.]). For the polymorphism of PTO, see: Tananaeva et al. (1977[Tananaeva, O. I., Latypova, Z. Kh. & Novoselova, A. V. (1977). Inorg. Mater. 13, 324-325.]), Robertson et al. (1976[Robertson, D. S., Shaw, N. & Young, I. M. (1976). J. Phys. D Appl. Phys. 9, 1257-1262.]), Young (1979[Young, I. M. (1979). J. Mater. Sci. 14, 1579-1585.]). Several different polymorphs were previously described as monoclinic (Mariolacos, 1969[Mariolacos, K. (1969). Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. 106, 128-130.]), triclinic (Williams, 1979[Williams, S. (1979). Miner. Mag. 43, 453-459.]), ortho­rhom­bic (Spiridonov & Tananaeva, 1982[Spiridonov, E. & Tananaeva, L. (1982). Dokl. Acad. Sci. USSR Earth. Sci. Sect. 262, 177-179.]), tetra­gonal (Sciau et al., 1986[Sciau, P., Lapasset, J. & Moret, J. (1986). Acta Cryst. C42, 1688-1690.]) and cubic (Gaitan et al., 1987[Gaitan, M., Jerez, A., Noguerlas, J., Pico, C. & Veiga, M. L. (1987). Synth. React. Inorg. Chem. 17, 479-483.]). For related literature, see: Brown (1974[Brown, I. D. (1974). J. Solid State Chem. 11, 214-233.]); Galy et al. (1975[Galy, J., Meunier, G., Anderson, S. & Astrom, A. (1975). J. Solid State Chem. 13, 142-159.]); Gillespie (1972[Gillespie, R. J. (1972). Molecular Geometry. London: Van Nostrand Reinhold.]); Tananaeva & Novoselova (1977[Tananaeva, O. I. & Novoselova, A. V. (1977). Inorg. Mater. 13, 910-912.]).

Experimental

Crystal data
  • PbTeO3

  • Mr = 382.79

  • Monoclinic, C 2/c

  • a = 26.555 (5) Å

  • b = 4.593 (1) Å

  • c = 17.958 (4) Å

  • β = 106.97 (3)°

  • V = 2094.9 (7) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 56.32 mm−1

  • T = 295 (2) K

  • 0.14 × 0.04 × 0.02 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.234, Tmax = 0.695 (expected range = 0.109–0.324)

  • 3717 measured reflections

  • 3608 independent reflections

  • 1676 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 0.77

  • 3608 reflections

  • 137 parameters

  • Δρmax = 2.31 e Å−3

  • Δρmin = −2.06 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CIFTAB97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Crystals with the Pb2+ and Te4+ cations having stereochemically active lone-pairs are very attractive materials for ferroelectric and non-linear optical applications. The knowledge of the crystal structures of these compounds should provide important information about the unusual mechanism of formation of their polar properties. The investigation of the PbO-TeO2 system (Robertson et al., 1976; Young, 1979) has provided evidence of a large number of different phases. The polymorphism, crystal structure and thermodynamic status of PbTeO3 (PTO) are not fully established and literature reports give conflicting statements (Tananaeva et al.,1977; Robertson et al.,1976; Young, 1979). Several different polymorphs have previously been described: monoclinic (Mariolacos, 1969), triclinic (Williams, 1979), tetragonal (Sciau et al., 1986) and cubic (Gaitan et al.,1987). It should be mentioned that Spiridonov & Tananaeva (1982) described α-PbTeO3 as orthorhombic. The tetragonal phase was shown to be ferroelectric. The phase change from the tetragonal to the monoclinic form at 783 K has been shown to be irreversible (Young, 1979). The present paper deals with the crystal structure determination of α-PTO. This structure can be described in terms of complex irregular Pb2+ polyhedra with 7 and 9 apices and separate Te4+O3 groups (Fig. 1,2). Three kinds of Pb—O distances can be distinguished: three short contacts (2.25–2.53 Å), three longer distances (2.63–2.96 Å) and three abnormally long distances (3.02–3.26 Å). The different Pb polyhedra are connected by face, edge and corner sharing through the Pb—O bonds forming the network with the honeycomb-like chains parallel to c axis. The Te4+ cations coordinate to three O atoms in a one-sided pyramidal coordination TeO3E (E are lone-pair electrons). The Te—O distances are in the range 1.85–1.90 Å. The O—Te—O angles are close to 100°. The next-nearest anions are located at distances greater than 2.7 Å. In accordance with Brown (1974) these additional weak contacts are important for the determination of the correct coordination geometry of the Te cations. Depending on the type of Te4+O3 E units, two types of tunnels are formed running along [010], which represent the required space for the electron lone pairs within the structure. According to Gillespie (1972), Galy et al. (1975) the electronic lone pair E is sitting inside these non-bonding regions.

Related literature top

Single crystals of PTO were grown by the Czochralski technique (Kosse, Politova, Bush et al., 1983). For the temperature dependence of the physical properties of PTO, see: Kosse, Politova, Astafiev et al. (1983). For the polymorphism of PTO, see: Tananaeva et al. (1977), Robertson et al. (1976), Young (1979). Several different polymorphs were previously described as monoclinic (Mariolacos, 1969), triclinic (Williams, 1979), orthorhombic (Spiridonov & Tananaeva, 1982), tetragonal (Sciau et al., 1986) and cubic (Gaitan et al., 1987). For related literature, see: Brown (1974); Galy et al. (1975); Gillespie (1972); Tananaeva & Novoselova (1977).

Experimental top

Single crystals of PTO were grown by the Czochralski technique as described earlier (Kosse, Politova, Bush et al., 1983; Kosse, Politova, Astafiev et al., 1983). The chemical composition of tested crystals was confirmed with energy-dispersive spectrometry analysis (LINK AN10000). Second harmonic generation (SHG) measurements showed no positive signals at room temperature which is in accordance with the given space group.

Refinement top

The structure of PTO was solved by the direct method in space group C2/c where the atomic coordinates of all Pb and Te cations were found. The oxygen atoms were localized by difference Fourier maps.

The very high absorption coefficient (µ=56.32 mm-1) and imperfect shape of crystal are the reason why the program DIFABS (Walker & Stuart, 1983) was used for absorption correction.

The highest residual electron density peak (2.31 e A-3) is located 1.00Å from atom Pb1 and the deepest hole

(-2.06 e A-3) is located 1.46Å from atom O4.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: CAD-4-PC (Enraf–Nonius, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: CIFTAB97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Polyhedral representation of the structure of α-PbTeO3.
[Figure 2] Fig. 2. Coordination polyhedra of the different Pb cations. Displacement ellipsoids are drawn at the 50% probability level. The labeling scheme for symmetry-related atoms is the following: (i) 0.5 - x,1/2 + y,1.5 - z˛ (ii) x,1 + y,z˛ (iii) -x,-y,1 - z˛ (iv) 0.5 - x,-1/2 + y,1.5 - z˛ (v) x,-1 - y,1/2 + z˛ (vi) x,-y,1/2 + z.
α-lead tellurite top
Crystal data top
PbTeO3F(000) = 3792
Mr = 382.79Dx = 7.282 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 24 reflections
a = 26.555 (5) Åθ = 12.1–14.5°
b = 4.593 (1) ŵ = 56.32 mm1
c = 17.958 (4) ÅT = 295 K
β = 106.97 (3)°Needle, colourless
V = 2094.9 (7) Å30.14 × 0.04 × 0.02 mm
Z = 24
Data collection top
Enraf–Nonius CAD-4
diffractometer
1676 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
β-filter monochromatorθmax = 32.0°, θmin = 1.6°
ω/2θ scansh = 3937
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 60
Tmin = 0.234, Tmax = 0.695l = 026
3717 measured reflections3 standard reflections every 60 min
3608 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0301P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 0.77Δρmax = 2.31 e Å3
3608 reflectionsΔρmin = 2.06 e Å3
137 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000052 (5)
Crystal data top
PbTeO3V = 2094.9 (7) Å3
Mr = 382.79Z = 24
Monoclinic, C2/cMo Kα radiation
a = 26.555 (5) ŵ = 56.32 mm1
b = 4.593 (1) ÅT = 295 K
c = 17.958 (4) Å0.14 × 0.04 × 0.02 mm
β = 106.97 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1676 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.054
Tmin = 0.234, Tmax = 0.6953 standard reflections every 60 min
3717 measured reflections intensity decay: none
3608 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026137 parameters
wR(F2) = 0.0630 restraints
S = 0.77Δρmax = 2.31 e Å3
3608 reflectionsΔρmin = 2.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.183652 (15)0.21366 (10)0.73592 (2)0.01749 (9)
Pb20.066493 (14)0.22395 (12)0.54345 (2)0.01847 (9)
Pb30.162024 (14)0.24695 (10)0.913902 (19)0.01916 (9)
Te10.04734 (2)0.23056 (15)0.36782 (3)0.01331 (11)
Te20.06941 (2)0.25178 (16)0.70793 (3)0.01367 (11)
Te30.20758 (3)0.30201 (15)0.59262 (4)0.01439 (13)
O10.0204 (3)0.179 (2)0.4532 (4)0.0240 (17)
O20.1172 (3)0.156 (2)0.4259 (5)0.0285 (19)
O30.0559 (4)0.6348 (18)0.3703 (6)0.034 (2)
O40.1359 (3)0.221 (2)0.7823 (4)0.0201 (15)
O50.0952 (4)0.1694 (19)0.6233 (4)0.028 (2)
O60.0659 (4)0.6528 (17)0.6935 (6)0.035 (2)
O70.2214 (3)0.2120 (18)0.6999 (4)0.0180 (14)
O80.1858 (4)0.683 (2)0.6000 (5)0.033 (2)
O90.2781 (3)0.355 (2)0.6016 (6)0.034 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01503 (16)0.0168 (2)0.02066 (16)0.00061 (16)0.00526 (13)0.00209 (16)
Pb20.01480 (15)0.0215 (2)0.01935 (15)0.00049 (18)0.00528 (12)0.00186 (17)
Pb30.02372 (17)0.02011 (19)0.01346 (14)0.00414 (19)0.00511 (12)0.00129 (16)
Te10.0161 (2)0.0109 (3)0.0145 (2)0.0019 (3)0.00698 (19)0.0003 (2)
Te20.0136 (2)0.0106 (3)0.0157 (2)0.0002 (3)0.00254 (19)0.0021 (3)
Te30.0163 (3)0.0122 (3)0.0137 (2)0.0009 (2)0.0029 (2)0.0001 (2)
O10.022 (4)0.035 (5)0.016 (3)0.007 (4)0.008 (3)0.003 (3)
O20.013 (3)0.032 (5)0.037 (4)0.005 (3)0.002 (3)0.007 (4)
O30.056 (7)0.007 (4)0.040 (5)0.010 (4)0.014 (5)0.002 (3)
O40.017 (3)0.030 (4)0.014 (3)0.013 (4)0.006 (2)0.004 (3)
O50.050 (6)0.022 (4)0.014 (3)0.015 (4)0.012 (4)0.010 (3)
O60.044 (6)0.005 (3)0.057 (6)0.004 (4)0.019 (5)0.012 (4)
O70.020 (3)0.014 (3)0.020 (3)0.006 (3)0.007 (3)0.006 (3)
O80.053 (6)0.021 (4)0.024 (4)0.016 (4)0.013 (4)0.000 (3)
O90.013 (3)0.052 (6)0.039 (5)0.014 (4)0.010 (3)0.000 (4)
Geometric parameters (Å, º) top
Pb1—O72.371 (8)Pb3—O3v2.750 (11)
Pb1—O7i2.471 (7)Te1—O31.870 (8)
Pb1—O8ii2.504 (8)Te1—O21.876 (9)
Pb1—O42.628 (8)Te1—O11.888 (7)
Pb2—O52.294 (8)Te2—O61.859 (8)
Pb2—O1iii2.334 (8)Te2—O51.878 (8)
Pb2—O12.528 (9)Te2—O41.883 (7)
Pb2—O6ii2.758 (10)Te3—O91.848 (8)
Pb3—O2iv2.246 (9)Te3—O81.858 (9)
Pb3—O42.263 (6)Te3—O71.899 (7)
Pb3—O9i2.471 (9)
O7—Pb1—O7i77.64 (19)O6—Te2—O595.9 (4)
O7—Pb1—O8ii76.1 (3)O6—Te2—O499.8 (5)
O7i—Pb1—O8ii96.7 (3)O5—Te2—O494.1 (4)
O7—Pb1—O475.0 (2)O9—Te3—O8101.4 (5)
O7i—Pb1—O4118.6 (2)O9—Te3—O792.8 (4)
O8ii—Pb1—O4127.2 (3)O8—Te3—O796.0 (4)
O5—Pb2—O1iii93.7 (3)Te1—O1—Pb2iii128.4 (4)
O5—Pb2—O180.5 (3)Te1—O1—Pb2112.6 (4)
O1iii—Pb2—O169.8 (3)Pb2iii—O1—Pb2110.2 (3)
O5—Pb2—O6ii69.3 (3)Te1—O2—Pb3vi124.2 (4)
O1iii—Pb2—O6ii72.9 (3)Te1—O3—Pb3vii108.1 (5)
O1—Pb2—O6ii129.5 (3)Te2—O4—Pb3132.5 (3)
O2iv—Pb3—O492.7 (3)Te2—O4—Pb1105.7 (3)
O2iv—Pb3—O9i77.7 (3)Pb3—O4—Pb1110.0 (3)
O4—Pb3—O9i81.7 (3)Te2—O5—Pb2122.1 (4)
O2iv—Pb3—O3v70.3 (3)Te2—O6—Pb2viii109.0 (4)
O4—Pb3—O3v74.8 (3)Te3—O7—Pb1119.0 (3)
O9i—Pb3—O3v138.7 (3)Te3—O7—Pb1ix108.2 (3)
O3—Te1—O294.2 (4)Pb1—O7—Pb1ix116.2 (3)
O3—Te1—O1100.2 (4)Te3—O8—Pb1viii110.2 (4)
O2—Te1—O194.2 (4)Te3—O9—Pb3ix139.0 (6)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x, y, z+1/2; (v) x, y1, z+1/2; (vi) x, y, z1/2; (vii) x, y1, z1/2; (viii) x, y1, z; (ix) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaPbTeO3
Mr382.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)26.555 (5), 4.593 (1), 17.958 (4)
β (°) 106.97 (3)
V3)2094.9 (7)
Z24
Radiation typeMo Kα
µ (mm1)56.32
Crystal size (mm)0.14 × 0.04 × 0.02
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.234, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
3717, 3608, 1676
Rint0.054
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 0.77
No. of reflections3608
No. of parameters137
Δρmax, Δρmin (e Å3)2.31, 2.06

Computer programs: CAD-4-PC (Enraf–Nonius, 1993), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), CIFTAB97 (Sheldrick, 2008).

 

Acknowledgements

The authors thank Dr E. D. Politova for the single-crystal preparation and Dr S. Yu. Stefanovich for the SHG measurements. This research was supported by the Russian Foundation for Basic Research (grant No. 06–03–32449).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1974). J. Solid State Chem. 11, 214–233.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGaitan, M., Jerez, A., Noguerlas, J., Pico, C. & Veiga, M. L. (1987). Synth. React. Inorg. Chem. 17, 479–483.  CrossRef CAS Web of Science Google Scholar
First citationGaly, J., Meunier, G., Anderson, S. & Astrom, A. (1975). J. Solid State Chem. 13, 142–159.  CrossRef CAS Web of Science Google Scholar
First citationGillespie, R. J. (1972). Molecular Geometry. London: Van Nostrand Reinhold.  Google Scholar
First citationKosse, L. I., Politova, E. D., Astafiev, A. V., Guriev, A. V., Turok, I. I. & Venevtsev, Yu. N. (1983). Sov. Phys. Solid State, 25, 1170–1172.  Google Scholar
First citationKosse, L. I., Politova, E. D., Bush, A. A., Astafiev, A. V., Stefanovich, S. Yu., Myzgin, E. A. & Venevtsev, Yu. N. (1983). Sov. Phys. Crystallogr. 28, 300–301.  Google Scholar
First citationMariolacos, K. (1969). Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. 106, 128–130.  Google Scholar
First citationRobertson, D. S., Shaw, N. & Young, I. M. (1976). J. Phys. D Appl. Phys. 9, 1257–1262.  CrossRef CAS Google Scholar
First citationSciau, P., Lapasset, J. & Moret, J. (1986). Acta Cryst. C42, 1688–1690.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpiridonov, E. & Tananaeva, L. (1982). Dokl. Acad. Sci. USSR Earth. Sci. Sect. 262, 177–179.  Google Scholar
First citationTananaeva, O. I., Latypova, Z. Kh. & Novoselova, A. V. (1977). Inorg. Mater. 13, 324–325.  Google Scholar
First citationTananaeva, O. I. & Novoselova, A. V. (1977). Inorg. Mater. 13, 910–912.  Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWilliams, S. (1979). Miner. Mag. 43, 453–459.  CrossRef CAS Web of Science Google Scholar
First citationYoung, I. M. (1979). J. Mater. Sci. 14, 1579–1585.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds