organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Hy­droxy­imino­meth­yl)-2-naphthol

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 16 November 2007; accepted 3 February 2008; online 8 February 2008)

The title compound, C11H9NO2, was prepared by a condens­ation reaction of 2-hydr­oxy-1-naphthaldehyde with hydroxyl­ammonium chloride in refluxing ethanol. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen-bond inter­actions result in a two-dimensional network.

Related literature

For general background, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetercycle Commun. 7, 83-90.]); Hodnett et al. (1970[Hodnett, E. M. & Mooney, P. D. (1970). J. Med. Chem. 13, 786-788.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO2

  • Mr = 187.19

  • Monoclinic, P 21 /c

  • a = 14.8382 (19) Å

  • b = 4.0462 (7) Å

  • c = 16.527 (2) Å

  • β = 114.933 (2)°

  • V = 899.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.56 × 0.45 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.984

  • 3977 measured reflections

  • 1573 independent reflections

  • 1009 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.04

  • 1573 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.86 2.577 (2) 146
O1—H1⋯O2i 0.82 1.97 2.771 (2) 164
C1—H1A⋯O1ii 0.93 2.66 3.527 (3) 156
C8—H8⋯O1ii 0.93 2.62 3.474 (3) 153
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been intensively investigated owing to their strong coordination capability and diverse biological activities, such as antibacterial, antitumor activities(Desai et al., 2001; Hodnett et al., 1970). We report here the synthesis and crystal structure of a new Schiff base compound derived from the condensation of 2-hydroxy-1-naphthaldehyde and hydroxylammonium chioride.

In the molecular structure(Scheme 1 and Fig.1), all the atoms are almost in one plane, with the C?N = 1.266 (3) Å. In the molecule, an intramolecular O2—H2···N1 hydrogen bond is observed(Table 1). The interactions of intermolecular hydrogen bond O1—H1···O2 form a one-dimensional chain-like structure(Fig. 2), which together with another two intermolecular H atoms C1—H1a···O1 and C8—H8···O1 (Table 1) result in the two-dimensional net-shaped structure.

Related literature top

For general background, see: Desai et al. 2001; Hodnett et al. 1970.

Experimental top

2-hydroxy-1-naphthaldehyde (1 mmol, 172.18 mg) in absolute ethanol (5 ml) was added dropwise to a absolute ethanol solution (10 ml) of hydroxylammonium chioride (1 mmol, 69.49 mg). The mixture was heated under reflux with stirring for 2 h and then filtered. The resulting solution was held at room temperature for 14 days, whereupon the colourless needle crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å (aromatic), 0.82 Å (hydroxyl) and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title complex, viewed approximately along the a axis.
1-(Hydroxyiminomethyl)-2-naphthol top
Crystal data top
C11H9NO2F(000) = 392
Mr = 187.19Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1237 reflections
a = 14.8382 (19) Åθ = 2.5–27.0°
b = 4.0462 (7) ŵ = 0.10 mm1
c = 16.527 (2) ÅT = 298 K
β = 114.933 (2)°Block, yellow
V = 899.8 (2) Å30.56 × 0.45 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
1573 independent reflections
Radiation source: fine-focus sealed tube1009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1715
Tmin = 0.953, Tmax = 0.984k = 44
3977 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.1603P]
where P = (Fo2 + 2Fc2)/3
1573 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H9NO2V = 899.8 (2) Å3
Mr = 187.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8382 (19) ŵ = 0.10 mm1
b = 4.0462 (7) ÅT = 298 K
c = 16.527 (2) Å0.56 × 0.45 × 0.18 mm
β = 114.933 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
1573 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1009 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.984Rint = 0.053
3977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
1573 reflectionsΔρmin = 0.20 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02725 (13)0.4774 (6)0.36227 (12)0.0492 (6)
O10.05788 (11)0.5784 (5)0.37113 (10)0.0675 (6)
H10.09440.67960.32620.101*
O20.14880 (11)0.4181 (5)0.28864 (9)0.0576 (6)
H20.09780.47580.29250.086*
C10.08718 (16)0.3186 (6)0.42939 (14)0.0450 (6)
H1A0.07090.28050.47710.054*
C20.18092 (14)0.1946 (6)0.43332 (13)0.0398 (6)
C30.20781 (15)0.2491 (6)0.36359 (14)0.0447 (6)
C40.29816 (17)0.1329 (7)0.36695 (16)0.0543 (7)
H40.31490.17460.31970.065*
C50.36087 (17)0.0385 (7)0.43808 (18)0.0574 (7)
H50.41970.11890.43830.069*
C60.33969 (16)0.1004 (6)0.51308 (16)0.0498 (7)
C70.24800 (15)0.0168 (6)0.50985 (14)0.0426 (6)
C80.22784 (17)0.0505 (7)0.58514 (15)0.0525 (7)
H80.16800.01890.58490.063*
C90.29445 (19)0.2143 (7)0.65726 (17)0.0627 (7)
H90.27950.25340.70570.075*
C100.38420 (19)0.3245 (7)0.66013 (19)0.0707 (8)
H100.42940.43330.71040.085*
C110.40583 (18)0.2721 (7)0.58864 (19)0.0634 (8)
H110.46530.35140.59000.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0425 (10)0.0617 (16)0.0470 (11)0.0002 (10)0.0225 (9)0.0005 (10)
O10.0471 (9)0.1046 (17)0.0565 (10)0.0234 (10)0.0274 (8)0.0178 (11)
O20.0556 (10)0.0760 (14)0.0459 (9)0.0074 (9)0.0260 (8)0.0040 (9)
C10.0442 (13)0.0525 (17)0.0411 (11)0.0030 (12)0.0207 (10)0.0005 (12)
C20.0390 (12)0.0386 (15)0.0440 (11)0.0084 (11)0.0196 (10)0.0125 (11)
C30.0429 (12)0.0469 (16)0.0451 (12)0.0123 (12)0.0195 (10)0.0131 (12)
C40.0516 (14)0.060 (2)0.0611 (15)0.0153 (13)0.0333 (13)0.0238 (15)
C50.0419 (13)0.0546 (19)0.0820 (17)0.0088 (13)0.0322 (13)0.0240 (16)
C60.0382 (12)0.0392 (16)0.0676 (15)0.0088 (11)0.0180 (12)0.0152 (13)
C70.0398 (12)0.0355 (15)0.0515 (13)0.0087 (10)0.0184 (10)0.0121 (12)
C80.0519 (14)0.0489 (18)0.0569 (14)0.0029 (12)0.0232 (12)0.0007 (13)
C90.0660 (17)0.054 (2)0.0632 (15)0.0036 (15)0.0220 (14)0.0115 (15)
C100.0581 (17)0.054 (2)0.0781 (18)0.0009 (14)0.0070 (15)0.0103 (16)
C110.0430 (14)0.0439 (18)0.0911 (19)0.0002 (13)0.0165 (14)0.0073 (16)
Geometric parameters (Å, º) top
N1—C11.266 (3)C5—C61.423 (3)
N1—O11.393 (2)C5—H50.9300
O1—H10.8200C6—C111.404 (3)
O2—C31.362 (3)C6—C71.420 (3)
O2—H20.8200C7—C81.423 (3)
C1—C21.454 (3)C8—C91.358 (3)
C1—H1A0.9300C8—H80.9300
C2—C31.387 (3)C9—C101.386 (3)
C2—C71.431 (3)C9—H90.9300
C3—C41.399 (3)C10—C111.365 (4)
C4—C51.344 (3)C10—H100.9300
C4—H40.9300C11—H110.9300
C1—N1—O1112.96 (16)C11—C6—C7119.9 (2)
N1—O1—H1109.5C11—C6—C5122.2 (2)
C3—O2—H2109.5C7—C6—C5117.9 (2)
N1—C1—C2121.31 (19)C6—C7—C8117.0 (2)
N1—C1—H1A119.3C6—C7—C2119.96 (19)
C2—C1—H1A119.3C8—C7—C2123.0 (2)
C3—C2—C7118.56 (19)C9—C8—C7121.2 (2)
C3—C2—C1120.9 (2)C9—C8—H8119.4
C7—C2—C1120.59 (18)C7—C8—H8119.4
O2—C3—C2122.40 (19)C8—C9—C10121.4 (2)
O2—C3—C4116.27 (19)C8—C9—H9119.3
C2—C3—C4121.3 (2)C10—C9—H9119.3
C5—C4—C3120.4 (2)C11—C10—C9119.6 (3)
C5—C4—H4119.8C11—C10—H10120.2
C3—C4—H4119.8C9—C10—H10120.2
C4—C5—C6121.8 (2)C10—C11—C6121.0 (2)
C4—C5—H5119.1C10—C11—H11119.5
C6—C5—H5119.1C6—C11—H11119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.862.577 (2)146
O1—H1···O2i0.821.972.771 (2)164
C1—H1A···O1ii0.932.663.527 (3)156
C8—H8···O1ii0.932.623.474 (3)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H9NO2
Mr187.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.8382 (19), 4.0462 (7), 16.527 (2)
β (°) 114.933 (2)
V3)899.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.45 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3977, 1573, 1009
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.04
No. of reflections1573
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.862.577 (2)146
O1—H1···O2i0.821.972.771 (2)164
C1—H1A···O1ii0.932.663.527 (3)156
C8—H8···O1ii0.932.623.474 (3)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetercycle Commun. 7, 83–90.  CAS Google Scholar
First citationHodnett, E. M. & Mooney, P. D. (1970). J. Med. Chem. 13, 786–788.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds