metal-organic compounds
Dichlorido(9-methyladenine-κN7)(η5-pentamethylcyclopentadienyl)iridium(III) dichloromethane solvate
aUniversität Kassel, FB 18, Naturwissenschaften, Abt. Metallorganische Chemie, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany, and bMartin-Luther-Universität Halle-Wittenberg, Institut für Chemie–Anorganische Chemie, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
*Correspondence e-mail: dirk.steinborn@chemie.uni-halle.de
In the title complex, [Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2 or [Ir(η5-C5Me5)Cl2(9-MeAde-κN7)]·CH2Cl2 (9-MeAde = 9-methyladenine), the coordination geometry of the IrIII atom approximates to a three-legged piano stool. The 9-methyladenine ligand is coordinated in a monodentate fashion to the Ir centre through its N-7 atom. The contains centrosymmetric pairs of molecules, interacting through two N—H⋯N hydrogen bonds. An intramolecular N—H⋯Cl hydrogen bond is formed between the H atom of an NH2 group and a chlorido ligand. Further short intra- and intermolecular C—H⋯Cl contacts are observed.
Related literature
For background information, see: Lippert (2000); Houlton (2002). For related literature, see: Zhu et al. (2002); Gaballa et al. (2004, 2008); Aakeröy et al. (1999); Baldovino-Pantaleon et al. (2007); Davies et al. (2003); Huang et al. (1998); Jeffrey & Saenger (1994); Kistenmacher & Rossi (1977); McMullan et al. (1980).
Experimental
Crystal data
|
Refinement
|
|
Data collection: STADI4 (Stoe & Cie, 2002); cell STADI4 (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808003760/fj2096sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808003760/fj2096Isup2.hkl
Reaction of [{IrCl2(η5-C5Me5)}2] with 9-methyladenine (9-MeAde) in 1: 2 ratio in methylene chloride resulted in the formation of yellow crystals of the title complex in 67% yield. 1H NMR (CD2Cl2, 200 MHz): δ 1.49 (s, 15H, C5(CH3)5), 3.88 (s, 3H, NCH3), 8.41 (s, br, 1H, H8), 8.64 (s, br, 1H, H2).
All non-H atoms were refined with anisotropic thermal parameters. H atoms were included in the model in calculated positions using the riding model, with their isotropic displacement parameter tied to 1.2 times that of the bonded atom.
Data collection: STADI4 (Stoe & Cie, 2002); cell
STADI4 (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Structure of the asymmetric unit of the title complex [IrCl2(η5-C5Me5)(9-MeAde-κN7)].CH2Cl2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. | |
Fig. 2. Structure of the dinuclear complex [{IrCl2(η5-C5Me5)(9-MeAde-κN7)}2] in crystals of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The numbering scheme of the C atoms is as shown in Figure 1. Symmetry codes: (i) –x + 2, –y, –z + 2. |
[Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2 | Z = 2 |
Mr = 632.41 | F(000) = 612 |
Triclinic, P1 | Dx = 1.920 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.294 (2) Å | Cell parameters from 32 reflections |
b = 11.8698 (14) Å | θ = 6.5–18.9° |
c = 13.649 (3) Å | µ = 6.60 mm−1 |
α = 71.338 (15)° | T = 200 K |
β = 83.83 (3)° | Block, colourless |
γ = 78.003 (14)° | 0.19 × 0.15 × 0.13 mm |
V = 1094.0 (4) Å3 |
Stoe STADI-4 diffractometer | 3246 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.068 |
Graphite monochromator | θmax = 25.0°, θmin = 1.6° |
profile data from ω/2θ scans | h = −8→8 |
Absorption correction: multi-scan (X-RED; Stoe & Cie, 2002) | k = −13→14 |
Tmin = 0.32, Tmax = 0.43 | l = −8→16 |
4132 measured reflections | 1 standard reflections every 60 min |
3807 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0666P)2] where P = (Fo2 + 2Fc2)/3 |
3807 reflections | (Δ/σ)max < 0.001 |
250 parameters | Δρmax = 2.87 e Å−3 |
0 restraints | Δρmin = −3.41 e Å−3 |
0 constraints |
[Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2 | γ = 78.003 (14)° |
Mr = 632.41 | V = 1094.0 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.294 (2) Å | Mo Kα radiation |
b = 11.8698 (14) Å | µ = 6.60 mm−1 |
c = 13.649 (3) Å | T = 200 K |
α = 71.338 (15)° | 0.19 × 0.15 × 0.13 mm |
β = 83.83 (3)° |
Stoe STADI-4 diffractometer | 3246 reflections with I > 2σ(I) |
Absorption correction: multi-scan (X-RED; Stoe & Cie, 2002) | Rint = 0.068 |
Tmin = 0.32, Tmax = 0.43 | 1 standard reflections every 60 min |
4132 measured reflections | intensity decay: none |
3807 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.13 | Δρmax = 2.87 e Å−3 |
3807 reflections | Δρmin = −3.41 e Å−3 |
250 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.9961 (15) | −0.0640 (10) | 0.7978 (9) | 0.030 (2) | |
H2 | 1.0628 | −0.1450 | 0.8165 | 0.036* | |
C4 | 0.8452 (14) | 0.0945 (9) | 0.6832 (8) | 0.023 (2) | |
C5 | 0.7931 (13) | 0.1571 (8) | 0.7549 (7) | 0.019 (2) | |
C6 | 0.8617 (15) | 0.0991 (9) | 0.8549 (8) | 0.026 (2) | |
C8 | 0.6814 (13) | 0.2726 (9) | 0.6092 (8) | 0.020 (2) | |
H8 | 0.6198 | 0.3402 | 0.5573 | 0.024* | |
C9 | 0.7869 (16) | 0.1435 (10) | 0.4929 (8) | 0.029 (2) | |
H9A | 0.7137 | 0.2109 | 0.4416 | 0.035* | |
H9B | 0.7375 | 0.0696 | 0.5034 | 0.035* | |
H9C | 0.9185 | 0.1318 | 0.4682 | 0.035* | |
C10 | 0.2376 (14) | 0.3257 (10) | 0.7454 (8) | 0.028 (2) | |
C11 | 0.3065 (16) | 0.2573 (10) | 0.8485 (9) | 0.030 (3) | |
C12 | 0.2955 (15) | 0.3417 (11) | 0.9036 (8) | 0.031 (3) | |
C13 | 0.2174 (16) | 0.4615 (11) | 0.8368 (10) | 0.037 (3) | |
C14 | 0.1805 (14) | 0.4482 (10) | 0.7419 (9) | 0.030 (3) | |
C15 | 0.213 (2) | 0.2713 (14) | 0.6624 (11) | 0.053 (4) | |
H15A | 0.2482 | 0.3242 | 0.5945 | 0.064* | |
H15B | 0.0821 | 0.2632 | 0.6635 | 0.064* | |
H15C | 0.2941 | 0.1914 | 0.6754 | 0.064* | |
C16 | 0.3688 (18) | 0.1234 (10) | 0.8885 (11) | 0.045 (3) | |
H16A | 0.4789 | 0.1048 | 0.9301 | 0.054* | |
H16B | 0.4014 | 0.0907 | 0.8301 | 0.054* | |
H16C | 0.2671 | 0.0869 | 0.9315 | 0.054* | |
C17 | 0.3513 (19) | 0.3108 (14) | 1.0118 (9) | 0.050 (4) | |
H17A | 0.4030 | 0.3772 | 1.0197 | 0.060* | |
H17B | 0.4465 | 0.2366 | 1.0282 | 0.060* | |
H17C | 0.2412 | 0.2982 | 1.0591 | 0.060* | |
C18 | 0.180 (2) | 0.5756 (12) | 0.8658 (13) | 0.060 (4) | |
H18A | 0.2126 | 0.6420 | 0.8067 | 0.072* | |
H18B | 0.2555 | 0.5651 | 0.9243 | 0.072* | |
H18C | 0.0464 | 0.5946 | 0.8855 | 0.072* | |
C19 | 0.0889 (17) | 0.5477 (13) | 0.6515 (12) | 0.056 (4) | |
H19A | 0.0830 | 0.6263 | 0.6621 | 0.068* | |
H19B | −0.0383 | 0.5361 | 0.6462 | 0.068* | |
H19C | 0.1627 | 0.5454 | 0.5876 | 0.068* | |
C20 | 0.331 (2) | 0.2130 (12) | 0.3148 (10) | 0.045 (3) | |
H20A | 0.2167 | 0.2111 | 0.2826 | 0.053* | |
H20B | 0.3533 | 0.2972 | 0.2903 | 0.053* | |
Cl1 | 0.5584 (4) | 0.5480 (2) | 0.6167 (2) | 0.0268 (5) | |
Cl2 | 0.7133 (4) | 0.4366 (2) | 0.8520 (2) | 0.0289 (6) | |
Cl3 | 0.2938 (5) | 0.1691 (3) | 0.4491 (3) | 0.0505 (8) | |
Cl4 | 0.5213 (6) | 0.1194 (4) | 0.2750 (4) | 0.0745 (12) | |
N1 | 0.9631 (12) | −0.0139 (8) | 0.8738 (7) | 0.027 (2) | |
N3 | 0.9494 (13) | −0.0174 (7) | 0.6998 (7) | 0.029 (2) | |
N6 | 0.8322 (13) | 0.1512 (8) | 0.9311 (7) | 0.031 (2) | |
H6A | 0.8789 | 0.1115 | 0.9921 | 0.037* | |
H6B | 0.7663 | 0.2249 | 0.9199 | 0.037* | |
N7 | 0.6850 (11) | 0.2692 (7) | 0.7069 (6) | 0.0188 (17) | |
N9 | 0.7732 (12) | 0.1709 (8) | 0.5912 (6) | 0.0233 (18) | |
Ir | 0.47641 (5) | 0.39087 (3) | 0.76639 (3) | 0.01833 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.030 (6) | 0.026 (6) | 0.033 (6) | 0.002 (5) | −0.006 (5) | −0.011 (5) |
C4 | 0.025 (5) | 0.024 (5) | 0.026 (5) | −0.008 (4) | −0.003 (4) | −0.011 (4) |
C5 | 0.022 (5) | 0.017 (5) | 0.017 (5) | −0.004 (4) | 0.001 (4) | −0.006 (4) |
C6 | 0.028 (6) | 0.023 (5) | 0.021 (5) | 0.002 (4) | −0.003 (4) | −0.003 (4) |
C8 | 0.014 (5) | 0.017 (5) | 0.025 (5) | 0.002 (4) | −0.004 (4) | −0.004 (4) |
C9 | 0.043 (7) | 0.025 (6) | 0.022 (5) | −0.009 (5) | 0.006 (5) | −0.011 (4) |
C10 | 0.018 (5) | 0.040 (7) | 0.029 (6) | −0.016 (5) | 0.005 (4) | −0.011 (5) |
C11 | 0.033 (6) | 0.025 (6) | 0.035 (6) | −0.017 (5) | 0.016 (5) | −0.009 (5) |
C12 | 0.026 (6) | 0.043 (7) | 0.025 (6) | −0.013 (5) | 0.010 (4) | −0.012 (5) |
C13 | 0.023 (6) | 0.030 (6) | 0.053 (8) | 0.005 (5) | 0.012 (5) | −0.015 (6) |
C14 | 0.018 (5) | 0.028 (6) | 0.037 (6) | 0.006 (4) | −0.002 (4) | −0.004 (5) |
C15 | 0.055 (9) | 0.069 (10) | 0.053 (9) | −0.046 (8) | 0.006 (7) | −0.026 (8) |
C16 | 0.048 (8) | 0.015 (6) | 0.064 (9) | −0.014 (5) | 0.005 (6) | 0.001 (6) |
C17 | 0.041 (7) | 0.074 (10) | 0.029 (7) | −0.006 (7) | 0.006 (6) | −0.013 (7) |
C18 | 0.054 (9) | 0.041 (8) | 0.092 (12) | 0.003 (7) | 0.027 (8) | −0.047 (8) |
C19 | 0.019 (6) | 0.057 (9) | 0.068 (10) | −0.001 (6) | 0.000 (6) | 0.012 (7) |
C20 | 0.054 (8) | 0.037 (7) | 0.047 (8) | −0.007 (6) | −0.001 (6) | −0.020 (6) |
Cl1 | 0.0323 (14) | 0.0227 (13) | 0.0256 (13) | −0.0081 (10) | −0.0010 (10) | −0.0057 (10) |
Cl2 | 0.0349 (14) | 0.0274 (13) | 0.0295 (14) | −0.0074 (11) | −0.0051 (11) | −0.0136 (11) |
Cl3 | 0.055 (2) | 0.0467 (19) | 0.058 (2) | −0.0206 (16) | 0.0060 (16) | −0.0227 (16) |
Cl4 | 0.071 (3) | 0.081 (3) | 0.072 (3) | 0.008 (2) | 0.009 (2) | −0.042 (2) |
N1 | 0.028 (5) | 0.018 (4) | 0.033 (5) | 0.000 (4) | −0.002 (4) | −0.008 (4) |
N3 | 0.032 (5) | 0.015 (4) | 0.040 (6) | 0.001 (4) | 0.000 (4) | −0.013 (4) |
N6 | 0.043 (6) | 0.023 (5) | 0.023 (5) | 0.011 (4) | −0.009 (4) | −0.011 (4) |
N7 | 0.021 (4) | 0.010 (4) | 0.020 (4) | 0.004 (3) | −0.002 (3) | −0.001 (3) |
N9 | 0.029 (5) | 0.022 (4) | 0.019 (4) | −0.006 (4) | 0.005 (3) | −0.008 (4) |
Ir | 0.0201 (2) | 0.0154 (2) | 0.0201 (2) | −0.00199 (14) | 0.00201 (14) | −0.00814 (15) |
C2—N3 | 1.325 (14) | C13—C18 | 1.494 (17) |
C2—N1 | 1.331 (14) | C13—Ir | 2.159 (11) |
C2—H2 | 0.9500 | C14—C19 | 1.510 (16) |
C4—N3 | 1.348 (13) | C14—Ir | 2.153 (10) |
C4—N9 | 1.375 (13) | C15—H15A | 0.9800 |
C4—C5 | 1.386 (14) | C15—H15B | 0.9800 |
C5—N7 | 1.392 (12) | C15—H15C | 0.9800 |
C5—C6 | 1.410 (14) | C16—H16A | 0.9800 |
C6—N1 | 1.349 (13) | C16—H16B | 0.9800 |
C6—N6 | 1.349 (14) | C16—H16C | 0.9800 |
C8—N7 | 1.325 (13) | C17—H17A | 0.9800 |
C8—N9 | 1.335 (13) | C17—H17B | 0.9800 |
C8—H8 | 0.9500 | C17—H17C | 0.9800 |
C9—N9 | 1.467 (13) | C18—H18A | 0.9800 |
C9—H9A | 0.9800 | C18—H18B | 0.9800 |
C9—H9B | 0.9800 | C18—H18C | 0.9800 |
C9—H9C | 0.9800 | C19—H19A | 0.9800 |
C10—C14 | 1.414 (16) | C19—H19B | 0.9800 |
C10—C11 | 1.463 (16) | C19—H19C | 0.9800 |
C10—C15 | 1.514 (17) | C20—Cl4 | 1.743 (13) |
C10—Ir | 2.127 (10) | C20—Cl3 | 1.745 (13) |
C11—C12 | 1.419 (16) | C20—H20A | 0.9900 |
C11—C16 | 1.493 (15) | C20—H20B | 0.9900 |
C11—Ir | 2.165 (10) | Cl1—Ir | 2.402 (3) |
C12—C13 | 1.458 (16) | Cl2—Ir | 2.423 (3) |
C12—C17 | 1.484 (16) | N6—H6A | 0.8800 |
C12—Ir | 2.164 (10) | N6—H6B | 0.8800 |
C13—C14 | 1.413 (17) | N7—Ir | 2.152 (8) |
N3—C2—N1 | 129.5 (10) | C12—C17—H17A | 109.5 |
N3—C2—H2 | 115.3 | C12—C17—H17B | 109.5 |
N1—C2—H2 | 115.3 | H17A—C17—H17B | 109.5 |
N3—C4—N9 | 127.0 (9) | C12—C17—H17C | 109.5 |
N3—C4—C5 | 127.0 (10) | H17A—C17—H17C | 109.5 |
N9—C4—C5 | 106.0 (9) | H17B—C17—H17C | 109.5 |
C4—C5—N7 | 108.9 (8) | C13—C18—H18A | 109.5 |
C4—C5—C6 | 116.4 (9) | C13—C18—H18B | 109.5 |
N7—C5—C6 | 134.6 (9) | H18A—C18—H18B | 109.5 |
N1—C6—N6 | 119.0 (9) | C13—C18—H18C | 109.5 |
N1—C6—C5 | 117.6 (9) | H18A—C18—H18C | 109.5 |
N6—C6—C5 | 123.4 (9) | H18B—C18—H18C | 109.5 |
N7—C8—N9 | 112.9 (8) | C14—C19—H19A | 109.5 |
N7—C8—H8 | 123.5 | C14—C19—H19B | 109.5 |
N9—C8—H8 | 123.5 | H19A—C19—H19B | 109.5 |
N9—C9—H9A | 109.5 | C14—C19—H19C | 109.5 |
N9—C9—H9B | 109.5 | H19A—C19—H19C | 109.5 |
H9A—C9—H9B | 109.5 | H19B—C19—H19C | 109.5 |
N9—C9—H9C | 109.5 | Cl4—C20—Cl3 | 112.3 (8) |
H9A—C9—H9C | 109.5 | Cl4—C20—H20A | 109.2 |
H9B—C9—H9C | 109.5 | Cl3—C20—H20A | 109.2 |
C14—C10—C11 | 107.9 (10) | Cl4—C20—H20B | 109.2 |
C14—C10—C15 | 126.5 (11) | Cl3—C20—H20B | 109.2 |
C11—C10—C15 | 125.3 (11) | H20A—C20—H20B | 107.9 |
C14—C10—Ir | 71.7 (6) | C2—N1—C6 | 119.0 (9) |
C11—C10—Ir | 71.5 (6) | C2—N3—C4 | 110.4 (9) |
C15—C10—Ir | 127.3 (8) | C6—N6—H6A | 120.0 |
C12—C11—C10 | 107.0 (10) | C6—N6—H6B | 120.0 |
C12—C11—C16 | 126.9 (11) | H6A—N6—H6B | 120.0 |
C10—C11—C16 | 126.1 (11) | C8—N7—C5 | 104.9 (8) |
C12—C11—Ir | 70.8 (6) | C8—N7—Ir | 119.3 (6) |
C10—C11—Ir | 68.7 (5) | C5—N7—Ir | 132.2 (6) |
C16—C11—Ir | 127.4 (8) | C8—N9—C4 | 107.2 (8) |
C11—C12—C13 | 108.4 (10) | C8—N9—C9 | 126.4 (9) |
C11—C12—C17 | 125.0 (12) | C4—N9—C9 | 126.3 (9) |
C13—C12—C17 | 126.6 (12) | C10—Ir—N7 | 97.3 (4) |
C11—C12—Ir | 70.9 (6) | C10—Ir—C14 | 38.6 (4) |
C13—C12—Ir | 70.1 (6) | N7—Ir—C14 | 130.7 (4) |
C17—C12—Ir | 125.7 (8) | C10—Ir—C13 | 65.1 (5) |
C14—C13—C12 | 107.3 (10) | N7—Ir—C13 | 160.2 (4) |
C14—C13—C18 | 127.1 (12) | C14—Ir—C13 | 38.3 (5) |
C12—C13—C18 | 125.6 (13) | C10—Ir—C12 | 65.4 (4) |
C14—C13—Ir | 70.6 (6) | N7—Ir—C12 | 126.5 (4) |
C12—C13—Ir | 70.4 (6) | C14—Ir—C12 | 64.8 (4) |
C18—C13—Ir | 125.4 (9) | C13—Ir—C12 | 39.4 (4) |
C13—C14—C10 | 109.4 (10) | C10—Ir—C11 | 39.9 (4) |
C13—C14—C19 | 125.8 (12) | N7—Ir—C11 | 95.5 (4) |
C10—C14—C19 | 124.7 (12) | C14—Ir—C11 | 65.2 (4) |
C13—C14—Ir | 71.1 (6) | C13—Ir—C11 | 65.3 (4) |
C10—C14—Ir | 69.7 (6) | C12—Ir—C11 | 38.3 (4) |
C19—C14—Ir | 126.8 (8) | C10—Ir—Cl1 | 112.7 (3) |
C10—C15—H15A | 109.5 | N7—Ir—Cl1 | 86.0 (2) |
C10—C15—H15B | 109.5 | C14—Ir—Cl1 | 93.1 (3) |
H15A—C15—H15B | 109.5 | C13—Ir—Cl1 | 108.6 (3) |
C10—C15—H15C | 109.5 | C12—Ir—Cl1 | 147.4 (3) |
H15A—C15—H15C | 109.5 | C11—Ir—Cl1 | 152.5 (3) |
H15B—C15—H15C | 109.5 | C10—Ir—Cl2 | 160.2 (3) |
C11—C16—H16A | 109.5 | N7—Ir—Cl2 | 91.0 (2) |
C11—C16—H16B | 109.5 | C14—Ir—Cl2 | 138.2 (3) |
H16A—C16—H16B | 109.5 | C13—Ir—Cl2 | 103.0 (4) |
C11—C16—H16C | 109.5 | C12—Ir—Cl2 | 95.2 (3) |
H16A—C16—H16C | 109.5 | C11—Ir—Cl2 | 121.6 (3) |
H16B—C16—H16C | 109.5 | Cl1—Ir—Cl2 | 85.72 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6A···N1i | 0.88 | 2.14 | 3.007 (13) | 170 |
N6—H6B···Cl2 | 0.88 | 2.35 | 3.168 (10) | 155 |
C8—H8···Cl1 | 0.95 | 2.77 | 3.237 (11) | 111 |
C8—H8···Cl1ii | 0.95 | 2.65 | 3.537 (11) | 156 |
C9—H9B···Cl3iii | 0.98 | 2.75 | 3.697 (13) | 163 |
C20—H20B···Cl1ii | 0.99 | 2.75 | 3.519 (15) | 135 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2 |
Mr | 632.41 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 200 |
a, b, c (Å) | 7.294 (2), 11.8698 (14), 13.649 (3) |
α, β, γ (°) | 71.338 (15), 83.83 (3), 78.003 (14) |
V (Å3) | 1094.0 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.60 |
Crystal size (mm) | 0.19 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Stoe STADI-4 diffractometer |
Absorption correction | Multi-scan (X-RED; Stoe & Cie, 2002) |
Tmin, Tmax | 0.32, 0.43 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4132, 3807, 3246 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.125, 1.13 |
No. of reflections | 3807 |
No. of parameters | 250 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.87, −3.41 |
Computer programs: STADI4 (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
C10—Ir | 2.127 (10) | C14—Ir | 2.153 (10) |
C11—Ir | 2.165 (10) | Cl1—Ir | 2.402 (3) |
C12—Ir | 2.164 (10) | Cl2—Ir | 2.423 (3) |
C13—Ir | 2.159 (11) | N7—Ir | 2.152 (8) |
N7—Ir—Cl1 | 86.0 (2) | Cl1—Ir—Cl2 | 85.72 (9) |
N7—Ir—Cl2 | 91.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6A···N1i | 0.8800 | 2.1400 | 3.007 (13) | 170.00 |
N6—H6B···Cl2 | 0.8800 | 2.3500 | 3.168 (10) | 155.00 |
C8—H8···Cl1 | 0.9500 | 2.7700 | 3.237 (11) | 111.00 |
C8—H8···Cl1ii | 0.9500 | 2.6500 | 3.537 (11) | 156.00 |
C9—H9B···Cl3iii | 0.9800 | 2.7500 | 3.697 (13) | 163.00 |
C20—H20B···Cl1ii | 0.9900 | 2.7500 | 3.519 (15) | 135.00 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1. |
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft for financial support.
References
Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Palinko, I. (1999). New J. Chem. pp. 145–152. Google Scholar
Baldovino-Pantaleon, O., Morales-Morales, D., Hernandez-Ortega, S., Toscano, R. A. & Valdes-Martinez, J. (2007). Cryst. Growth Des. 7, 117–123. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Davies, D. L., Al-Duaij, O., Fawcett, J., Giardiello, M., Hilton, S. T. & Russell, D. R. (2003). Dalton Trans. pp. 4132–4138. Web of Science CSD CrossRef Google Scholar
Gaballa, A., Schmidt, H., Hempel, G., Reichert, D., Wagner, C., Rusanov, E. & Steinborn, D. (2004). J. Inorg. Biochem. 98, 439–446. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gaballa, A. S., Schmidt, H., Wagner, C. & Steinborn, D. (2008). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.10.023. Google Scholar
Houlton, A. (2002). Adv. Inorg. Chem. 53, 87–158. Web of Science CrossRef CAS Google Scholar
Huang, L.-Y., Aulwurm, U. R., Heinemann, F. W., Knoch, F. & Kisch, H. (1998). Chem. Eur. J. 4, 1641–1646. CrossRef CAS Google Scholar
Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag. Google Scholar
Kistenmacher, T. J. & Rossi, M. (1977). Acta Cryst. B33, 253–256. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Lippert, B. (2000). Coord. Chem. Rev. 200–202, 487–516. Web of Science CrossRef CAS Google Scholar
McMullan, R. K., Benci, P. & Craven, B. M. (1980). Acta Cryst. B36, 1424–1430. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Zhu, X., Rusanov, E., Kluge, R., Schmidt, H. & Steinborn, D. (2002). Inorg. Chem. 41, 2667–2671. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due to their importance in chemotherapy, nucleobase complexes of platinum and other transition metals attract attention. We are interested in syntheses and characterization of such complexes having, especially, metals in higher oxidation states (Zhu et al., 2002; Gaballa et al., 2004; Gaballa et al., 2007). The iridium(III) title complex [IrCl2(η5-C5Me5)(9-MeAde-κN7)].CH2Cl2 (see Figure 1) crystallizes in the triclinic space group P1. Crystals contain centrosymmetric dinuclear molecules (see Figure 2). The coordination geometry of the iridium center approximates a three-legged piano stool, the irdium atom being directly bound to two chloro ligands, to a N7 coordinated 9-methyladenine ligand and to a η5-pentamethylcyclopentadienyl ligand. The 9-MeAde ligand is planar in good approximation, the greatest deviation from the mean plane was found for the exocyclic N6 atom (0.06 (1) Å). The Ir–N7 and Ir–Cl1/Ir–Cl2 bonds are as long as those in the complex [IrCl2(η5-C5Me5)(NH2Ph-κN)] (2.152 (8) versus. 2.152 Å and 2.402 (3)/2.423 (3) versus. 2.394/2.419 Å) (Davies et al., 2003).
The dimers are formed through two N6–H6A···N1' hydrogen bonds (N6···N1' 3.01 (1) Å; H6A···N1' 2.14 Å; N6–H6A···N1' 170°). Furthermore, the other hydrogen atom of the exocyclic amino group acts as hydrogen donor in a N6–H6B···Cl2 hydrogen bond (N6···Cl2 3.17 (1) Å; H6B···Cl2 2.35 Å; N6–H6B···Cl2 155°). The structural parameters of these two hydrogen bonds are in accord with analogous hydrogen bonds in nucleobases and in chloro metal complexes, respectively (Jeffrey & Saenger, 1994; Baldovino-Pantaleon et al., 2007). Noteworthy, in crystals of 9-methyladenine two N6–H6A···N1' and N6–H6B···N7' hydrogen bonds link molecules in ribbons (Kistenmacher & Rossi, 1977; McMullan et al., 1980). Furthermore, short intra- and intermolecular C–H···Cl contacts (see Table) indicate stabilizing interactions (Huang et al., 1998; Aakeröy et al., 1999).