organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-1,4-diazepan-5-one

aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCenter of Drug Discovery, China Pharmaceutical University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: shafei1983@163.com

(Received 7 December 2007; accepted 17 January 2008; online 8 February 2008)

The title compound, C12H16N2O, is a diazepane inter­mediate that can be used as an inhibitor of human nitric oxide synthesis. In the mol­ecule, the seven-membered ring has a chair-like conformation and the two rings are approximately perpendicular to one another, with a C—N—C—C torsion angle of 77.8 (4)°. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into dimers around a centre of symmetry, with C—H⋯O inter­actions linking the dimers into infinite sheets.

Related literature

For related literature, see: Gopalakrishnan et al. (2007[Gopalakrishnan, M., Sureshkumar, P., Thanusu, J., Kanagarajan, V., Govindaraju, R. & Jayasri, G. (2007). J. Enzyme Inhib. Med. Chem. 22, 709-715.]); Wlodarczyk et al. (2006[Wlodarczyk, N., Gilleron, P., Millet, R., Houssin, R., Goossens, J., Lemoine, A., Pommery, N., Wei, M. & Hénichart, J. (2006). Oncol. Res. 16, 107-118.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O

  • Mr = 204.27

  • Monoclinic, P 21 /c

  • a = 12.602 (3) Å

  • b = 7.4920 (15) Å

  • c = 12.824 (3) Å

  • β = 111.00 (3)°

  • V = 1130.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.985, Tmax = 0.992

  • 2308 measured reflections

  • 2205 independent reflections

  • 1162 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.189

  • S = 0.99

  • 2205 reflections

  • 130 parameters

  • 46 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Oi 0.86 2.00 2.821 (5) 160
C4—H4B⋯Oii 0.97 2.51 3.377 (5) 149
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a 1-substituted 1,4-diazepan-5-one; an important class of heterocyclic compounds that have widespread applications from pharmaceuticals (Wlodarczyk et al., 2006) to biology (Gopalakrishnan et al., 2007). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule (Fig. 1) the 7-membered ring has a chair-like conformation with C1,C2,C3 and C4 forming the planar seat of the chair and N2 out of the plane on one side and N1—C5 out of the plane on the other side. The two rings are approximately perpendicular to one another with a C3—N2—C6—C7 torsion angle of 77.8 (4)°. Intermolecular N—H···O hydrogen bonds link the molecules into dimers around a center of symmetry with C—H···O interactions linking the dimers into infinite sheets (Fig. 2).

Related literature top

For related literature, see: Gopalakrishnan et al. (2007); Wlodarczyk et al. (2006).

Experimental top

1-Benzyl-piperidin-4-one (18.9 g,0.1 mol) was added into a stirred mixture of sulfuric acid (40 ml) and dichloromethane (80 ml) at 273 K. Then, at 273 K, sodium azide (32.5 g,0.5 mol) was cautiously added over a period of 3 h and the resulting mixture was stirred for 1 h with the temperature kept at approximately 278 K. Then ice (1 kg) was quickly added and the solution was alkalized with ammonium hydroxide (15%,200 mL) to pH=11. The organic layer was separated with the water fraction extracted with dichloromethane (3x100mL). The organic extracts were combined,dried over NaSO4, and concentrated in vacuo. The residue was recrystallized from EtOAc to give the title compound, (I) (yield: 13.0 g, 65%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and 0.93 Å fro aromatic carbons and 0.97 Å for all others, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
1-Benzyl-1,4-diazepan-5-one top
Crystal data top
C12H16N2OF(000) = 440
Mr = 204.27Dx = 1.200 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.602 (3) Åθ = 9–12°
b = 7.4920 (15) ŵ = 0.08 mm1
c = 12.824 (3) ÅT = 298 K
β = 111.00 (3)°BLOCK, colourless
V = 1130.3 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1162 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 1514
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.985, Tmax = 0.992l = 015
2308 measured reflections3 standard reflections every 200 reflections
2205 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.04P)2 + 1.65P]
where P = (Fo2 + 2Fc2)/3
2205 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.52 e Å3
46 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H16N2OV = 1130.3 (4) Å3
Mr = 204.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.602 (3) ŵ = 0.08 mm1
b = 7.4920 (15) ÅT = 298 K
c = 12.824 (3) Å0.20 × 0.10 × 0.10 mm
β = 111.00 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1162 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.053
Tmin = 0.985, Tmax = 0.9923 standard reflections every 200 reflections
2308 measured reflections intensity decay: none
2205 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08846 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.00Δρmax = 0.52 e Å3
2205 reflectionsΔρmin = 0.18 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3935 (3)0.4319 (6)0.5667 (3)0.0870 (12)
H1A0.43120.52750.56670.104*
O0.5027 (3)0.2681 (5)0.4894 (3)0.108
N20.2757 (3)0.1384 (4)0.6724 (2)0.0542 (8)
C10.2993 (4)0.4434 (5)0.6094 (4)0.0705 (12)
H1B0.29400.56570.63190.085*
H1C0.22890.41580.54870.085*
C20.3090 (4)0.3232 (5)0.7059 (4)0.0697 (11)
H2A0.26130.36960.74460.084*
H2B0.38690.32450.75790.084*
C30.3581 (3)0.0442 (5)0.6349 (3)0.0632 (10)
H3A0.43340.05710.69120.076*
H3B0.33960.08200.62780.076*
C40.3596 (3)0.1132 (6)0.5236 (3)0.0683 (11)
H4A0.28170.12990.47350.082*
H4B0.39320.02220.49130.082*
C50.4230 (3)0.2848 (7)0.5289 (4)0.0765 (13)
C60.2595 (3)0.0404 (6)0.7642 (3)0.0685 (12)
H6A0.33320.00180.81570.082*
H6B0.22720.12040.80430.082*
C70.1827 (3)0.1221 (5)0.7265 (3)0.0531 (9)
C80.1029 (3)0.1333 (5)0.6142 (4)0.0643 (11)
H8A0.10170.04890.56060.077*
C90.0285 (4)0.2739 (6)0.5892 (4)0.0779 (13)
H9A0.02230.28450.51610.094*
C100.0241 (4)0.3960 (7)0.6626 (5)0.0865 (15)
H10A0.02880.48790.64060.104*
C110.0969 (5)0.3858 (6)0.7691 (5)0.0869 (15)
H11A0.09540.47100.82130.104*
C120.1748 (4)0.2447 (6)0.7999 (4)0.0713 (12)
H12A0.22300.23540.87410.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.065 (2)0.109 (3)0.076 (3)0.031 (2)0.0121 (19)0.027 (2)
O0.1080.1080.1080.0000.0390.000
N20.0666 (19)0.0520 (18)0.0461 (17)0.0091 (16)0.0229 (15)0.0087 (15)
C10.084 (3)0.048 (2)0.083 (3)0.011 (2)0.034 (2)0.003 (2)
C20.085 (3)0.050 (2)0.073 (3)0.004 (2)0.027 (2)0.011 (2)
C30.072 (3)0.055 (2)0.070 (3)0.005 (2)0.035 (2)0.002 (2)
C40.054 (2)0.089 (3)0.065 (2)0.012 (2)0.0255 (19)0.016 (2)
C50.051 (2)0.100 (3)0.084 (3)0.017 (2)0.030 (2)0.033 (3)
C60.069 (3)0.079 (3)0.055 (2)0.025 (2)0.020 (2)0.003 (2)
C70.060 (2)0.048 (2)0.058 (2)0.0113 (18)0.0293 (19)0.0002 (18)
C80.052 (2)0.058 (2)0.080 (3)0.003 (2)0.020 (2)0.009 (2)
C90.064 (3)0.064 (3)0.092 (3)0.012 (2)0.011 (2)0.007 (3)
C100.066 (3)0.074 (3)0.131 (5)0.018 (3)0.050 (3)0.009 (3)
C110.098 (4)0.061 (3)0.119 (4)0.001 (3)0.061 (4)0.018 (3)
C120.078 (3)0.064 (3)0.084 (3)0.011 (2)0.043 (3)0.003 (2)
Geometric parameters (Å, º) top
N1—C51.311 (6)C4—H4A0.9700
N1—C11.477 (5)C4—H4B0.9700
N1—H1A0.8600C6—C71.523 (5)
O—C51.284 (5)C6—H6A0.9700
N2—C61.462 (4)C6—H6B0.9700
N2—C21.465 (5)C7—C121.345 (5)
N2—C31.471 (4)C7—C81.433 (5)
C1—C21.500 (5)C8—C91.370 (5)
C1—H1B0.9700C8—H8A0.9300
C1—H1C0.9700C9—C101.328 (6)
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—C111.347 (7)
C3—C41.525 (5)C10—H10A0.9300
C3—H3A0.9700C11—C121.400 (6)
C3—H3B0.9700C11—H11A0.9300
C4—C51.502 (6)C12—H12A0.9300
C5—N1—C1124.0 (4)H4A—C4—H4B107.4
C5—N1—H1A118.0O—C5—N1126.5 (4)
C1—N1—H1A118.0O—C5—C4112.2 (5)
C6—N2—C2110.3 (3)N1—C5—C4121.3 (3)
C6—N2—C3109.9 (3)N2—C6—C7113.7 (3)
C2—N2—C3112.8 (3)N2—C6—H6A108.8
N1—C1—C2115.6 (4)C7—C6—H6A108.8
N1—C1—H1B108.4N2—C6—H6B108.8
C2—C1—H1B108.4C7—C6—H6B108.8
N1—C1—H1C108.4H6A—C6—H6B107.7
C2—C1—H1C108.4C12—C7—C8117.6 (4)
H1B—C1—H1C107.4C12—C7—C6121.5 (4)
N2—C2—C1113.3 (3)C8—C7—C6120.2 (3)
N2—C2—H2A108.9C9—C8—C7117.1 (4)
C1—C2—H2A108.9C9—C8—H8A121.5
N2—C2—H2B108.9C7—C8—H8A121.5
C1—C2—H2B108.9C10—C9—C8124.2 (5)
H2A—C2—H2B107.7C10—C9—H9A117.9
N2—C3—C4113.0 (3)C8—C9—H9A117.9
N2—C3—H3A109.0C9—C10—C11119.6 (5)
C4—C3—H3A109.0C9—C10—H10A120.2
N2—C3—H3B109.0C11—C10—H10A120.2
C4—C3—H3B109.0C10—C11—C12118.9 (5)
H3A—C3—H3B107.8C10—C11—H11A120.6
C5—C4—C3115.7 (3)C12—C11—H11A120.6
C5—C4—H4A108.4C7—C12—C11122.6 (4)
C3—C4—H4A108.4C7—C12—H12A118.7
C5—C4—H4B108.4C11—C12—H12A118.7
C3—C4—H4B108.4
C5—N1—C1—C258.5 (6)C3—N2—C6—C777.8 (4)
C6—N2—C2—C1165.8 (3)N2—C6—C7—C12167.9 (4)
C3—N2—C2—C170.9 (4)N2—C6—C7—C822.3 (5)
N1—C1—C2—N279.5 (5)C12—C7—C8—C93.2 (6)
C6—N2—C3—C4166.9 (3)C6—C7—C8—C9173.4 (4)
C2—N2—C3—C469.6 (4)C7—C8—C9—C101.8 (7)
N2—C3—C4—C578.3 (4)C8—C9—C10—C110.5 (8)
C1—N1—C5—O178.8 (4)C9—C10—C11—C120.7 (7)
C1—N1—C5—C41.4 (7)C8—C7—C12—C113.6 (6)
C3—C4—C5—O122.4 (4)C6—C7—C12—C11173.7 (4)
C3—C4—C5—N159.8 (6)C10—C11—C12—C72.4 (7)
C2—N2—C6—C7157.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Oi0.862.002.821 (5)160
C4—H4B···Oii0.972.513.377 (5)149
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H16N2O
Mr204.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.602 (3), 7.4920 (15), 12.824 (3)
β (°) 111.00 (3)
V3)1130.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.985, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2308, 2205, 1162
Rint0.053
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.189, 1.00
No. of reflections2205
No. of parameters130
No. of restraints46
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Oi0.862.002.821 (5)160.3
C4—H4B···Oii0.972.513.377 (5)149.4
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGopalakrishnan, M., Sureshkumar, P., Thanusu, J., Kanagarajan, V., Govindaraju, R. & Jayasri, G. (2007). J. Enzyme Inhib. Med. Chem. 22, 709–715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWlodarczyk, N., Gilleron, P., Millet, R., Houssin, R., Goossens, J., Lemoine, A., Pommery, N., Wei, M. & Hénichart, J. (2006). Oncol. Res. 16, 107–118.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds