organic compounds
1-Methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.13,7]decane tetrafluoroborate
aCentro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, and bUniversidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Av. do Campo Grande, 376, 1749-024, Lisbon, Portugal
*Correspondence e-mail: fatima.guedes@ist.utl.pt
The title compound, C7H15N3P+·BF4− or [PTA-Me][BF4], is the N-methylated derivative of the well known water-soluble aminophosphine 1,3,5-triaza-7-phosphaadamantane (PTA). The consists of a cage-like cation [PTA-Me]+ and a disordered tetrafluoroborate anion; two F atoms are disordered equally over two sites. A network of weak intermolecular C—H⋯F hydrogen bonds results in a three-dimensional supramolecular assembly.
Related literature
For general background, see: Kirillov et al. (2007); Smoleński & Pombeiro (2008). For a comprehensive review of PTA chemistry, see: Phillips et al. (2004). For the synthesis of PTA and [PTA-Me]I, see: Daigle et al. (1974); Daigle (1998). For related organic structures, see: Jogun et al. (1978); Forward et al. (1996); Otto et al. (2005); Kirillov et al. (2008). For related metal–organic structures, see: Kovacs et al. (2004); Smoleński et al. (2003); Pruchnik et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808003401/hb2695sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808003401/hb2695Isup2.hkl
An aqueous solution (25 ml) of [PTA-Me]I (1.00 mmol, 300 mg) and a methanolic (25 ml) solution of Tl[BF4] (1.00 mmol, 300 mg) were combined at ambient temperature [Caution: Thallium compounds are highly toxic and thus must be handled with extreme caution]. The resulting white suspension was stirred for 15 min and then filtered off, giving a white powder of thallium iodide that was discarded. The colourless filtrate was evaporated in vacuo, resulting in a white solid. It was recrystallized from MeOH to furnish colourless plates of (I) in ca 80% yield (after isolation by filtration and drying in vacuo).
[PTA-Me][BF4] is very soluble in middle-range polar solvents like Me2CO, CHCl3 and CH2Cl2, less soluble in H2O, MeOH, EtOH and DMSO, and insoluble in C6H6, and Et2O. FT–IR (KBr pellet), cm-1: 2965 w, 2908 w, 1461 s, 1407 s, 1347 w, 1313 s, 1292 s, 1249 s, 1120 s, 1094 s br, 1023 s, 983 s, 920 s, 899 s, 815 s, 769 s, 748 m, 732 m, 687 w, 635 w, 557 s, 534 w and 440 w. 1H NMR (300 MHz, D2O, 25°C, Me4Si): 4.86 and 4.75 (J(HAHB) = 11.4 Hz, 4H, NCHAHBN+), 4.52 and 4.36 (J(HAHB) = 13.8 Hz, 2H, NCHAHBN), 4.25 (d, 2J (H—P) = 6.8 Hz, 2H, PCH2N+), 3.88 and 3.75 (J(HAHB) = 15.3 Hz, 3J(HA—P) = 15.3 Hz, 3J(HB—P) = 8.7 Hz, 4H, PCHAHBN), 2.66 (s, 3H, N+CH3). 31P{1H} NMR (121.4 MHz, D2O, 25°C, 85% H3PO4): -85.7 (s).
All the hydrogen atoms were inserted in calculated positions (C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Atoms F1 and F3 are disordered over two sites with equal occupancies.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H15N3P+·BF4− | F(000) = 1072 |
Mr = 259.00 | Dx = 1.576 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1323 reflections |
a = 11.994 (2) Å | θ = 3.4–25.2° |
b = 11.6933 (18) Å | µ = 0.28 mm−1 |
c = 15.569 (2) Å | T = 150 K |
V = 2183.5 (6) Å3 | Plate, colourless |
Z = 8 | 0.16 × 0.12 × 0.10 mm |
Bruker SMART CCD diffractometer | 1948 independent reflections |
Radiation source: fine-focus sealed tube | 1391 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 25.3°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −14→14 |
Tmin = 0.956, Tmax = 0.972 | k = −14→13 |
10402 measured reflections | l = −18→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0512P)2 + 1.8936P] where P = (Fo2 + 2Fc2)/3 |
1948 reflections | (Δ/σ)max < 0.001 |
164 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
0 constraints |
C7H15N3P+·BF4− | V = 2183.5 (6) Å3 |
Mr = 259.00 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.994 (2) Å | µ = 0.28 mm−1 |
b = 11.6933 (18) Å | T = 150 K |
c = 15.569 (2) Å | 0.16 × 0.12 × 0.10 mm |
Bruker SMART CCD diffractometer | 1948 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1391 reflections with I > 2σ(I) |
Tmin = 0.956, Tmax = 0.972 | Rint = 0.061 |
10402 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.55 e Å−3 |
1948 reflections | Δρmin = −0.36 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5509 (2) | 0.7943 (2) | 0.68018 (19) | 0.0248 (7) | |
H1A | 0.5329 | 0.8736 | 0.6627 | 0.030* | |
H1B | 0.6303 | 0.7806 | 0.6663 | 0.030* | |
C2 | 0.3782 (2) | 0.7850 (2) | 0.79565 (18) | 0.0245 (7) | |
H2A | 0.3505 | 0.7667 | 0.8539 | 0.029* | |
H2B | 0.3533 | 0.8635 | 0.7815 | 0.029* | |
C3 | 0.5459 (2) | 0.6251 (2) | 0.80269 (18) | 0.0253 (7) | |
H3A | 0.6251 | 0.6043 | 0.7937 | 0.030* | |
H3B | 0.5247 | 0.5997 | 0.8611 | 0.030* | |
C4 | 0.5074 (2) | 0.5884 (2) | 0.65244 (18) | 0.0219 (6) | |
H4A | 0.4671 | 0.5360 | 0.6133 | 0.026* | |
H4B | 0.5883 | 0.5749 | 0.6448 | 0.026* | |
C5 | 0.3552 (2) | 0.7325 (2) | 0.64672 (18) | 0.0211 (6) | |
H5A | 0.3364 | 0.8136 | 0.6357 | 0.025* | |
H5B | 0.3100 | 0.6848 | 0.6074 | 0.025* | |
C6 | 0.3583 (2) | 0.5857 (2) | 0.75217 (18) | 0.0216 (6) | |
H6A | 0.3384 | 0.5678 | 0.8124 | 0.026* | |
H6B | 0.3146 | 0.5344 | 0.7145 | 0.026* | |
C11 | 0.5016 (3) | 0.7311 (3) | 0.53413 (18) | 0.0295 (7) | |
H11A | 0.4557 | 0.6780 | 0.5006 | 0.044* | |
H11B | 0.5806 | 0.7173 | 0.5217 | 0.044* | |
H11C | 0.4824 | 0.8099 | 0.5187 | 0.044* | |
B1 | 0.2262 (3) | 0.4814 (3) | 0.4904 (2) | 0.0266 (8) | |
N1 | 0.48031 (17) | 0.71288 (17) | 0.62773 (13) | 0.0146 (5) | |
N2 | 0.32749 (18) | 0.70450 (19) | 0.73373 (14) | 0.0199 (5) | |
N3 | 0.47713 (18) | 0.56276 (18) | 0.73947 (14) | 0.0190 (5) | |
F1A | 0.1098 (3) | 0.5043 (4) | 0.4732 (3) | 0.0580 (13) | 0.59 |
F2 | 0.23739 (16) | 0.37060 (14) | 0.46049 (11) | 0.0376 (5) | |
F3A | 0.2858 (5) | 0.5568 (4) | 0.4471 (3) | 0.0634 (14) | 0.59 |
F4 | 0.2252 (2) | 0.48727 (18) | 0.57697 (12) | 0.0627 (7) | |
P1 | 0.53278 (7) | 0.78233 (7) | 0.79717 (5) | 0.0275 (2) | |
F1B | 0.3444 (5) | 0.5214 (6) | 0.4871 (5) | 0.071 (2) | 0.41 |
F3B | 0.1703 (10) | 0.5502 (6) | 0.4431 (5) | 0.096 (3) | 0.41 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0204 (14) | 0.0198 (15) | 0.0343 (18) | −0.0049 (12) | −0.0006 (13) | 0.0022 (12) |
C2 | 0.0265 (15) | 0.0223 (15) | 0.0246 (16) | 0.0008 (12) | 0.0046 (13) | −0.0034 (12) |
C3 | 0.0204 (15) | 0.0314 (16) | 0.0240 (16) | −0.0016 (12) | −0.0053 (13) | 0.0056 (13) |
C4 | 0.0266 (15) | 0.0158 (14) | 0.0233 (17) | 0.0058 (12) | 0.0027 (12) | 0.0003 (11) |
C5 | 0.0187 (14) | 0.0220 (15) | 0.0225 (16) | 0.0024 (11) | −0.0058 (12) | 0.0006 (12) |
C6 | 0.0184 (14) | 0.0244 (16) | 0.0219 (15) | −0.0034 (12) | 0.0007 (12) | 0.0028 (12) |
C11 | 0.0391 (17) | 0.0301 (17) | 0.0193 (17) | 0.0029 (14) | 0.0054 (13) | 0.0036 (13) |
B1 | 0.039 (2) | 0.0219 (18) | 0.0187 (19) | 0.0019 (16) | 0.0014 (15) | −0.0018 (14) |
N1 | 0.0174 (11) | 0.0138 (11) | 0.0126 (12) | −0.0002 (9) | 0.0006 (9) | 0.0028 (8) |
N2 | 0.0176 (11) | 0.0219 (12) | 0.0203 (12) | −0.0006 (9) | 0.0009 (10) | 0.0008 (10) |
N3 | 0.0215 (12) | 0.0179 (12) | 0.0177 (13) | 0.0010 (10) | −0.0011 (10) | 0.0039 (9) |
F1A | 0.039 (2) | 0.044 (3) | 0.091 (4) | 0.0133 (19) | −0.020 (2) | −0.007 (2) |
F2 | 0.0468 (12) | 0.0268 (10) | 0.0393 (12) | 0.0008 (8) | −0.0028 (9) | −0.0112 (8) |
F3A | 0.085 (4) | 0.045 (3) | 0.060 (3) | −0.027 (3) | 0.034 (3) | 0.009 (2) |
F4 | 0.120 (2) | 0.0407 (12) | 0.0273 (12) | −0.0117 (13) | −0.0007 (12) | −0.0048 (9) |
P1 | 0.0306 (4) | 0.0273 (4) | 0.0244 (5) | −0.0070 (3) | −0.0052 (3) | −0.0014 (3) |
F1B | 0.044 (4) | 0.075 (5) | 0.094 (6) | −0.032 (3) | 0.031 (4) | −0.057 (4) |
F3B | 0.165 (10) | 0.047 (5) | 0.075 (6) | 0.046 (6) | −0.072 (6) | −0.005 (4) |
C1—N1 | 1.514 (3) | C5—N1 | 1.547 (3) |
C1—P1 | 1.840 (3) | C5—H5A | 0.9900 |
C1—H1A | 0.9900 | C5—H5B | 0.9900 |
C1—H1B | 0.9900 | C6—N3 | 1.463 (3) |
C2—N2 | 1.479 (3) | C6—N2 | 1.466 (3) |
C2—P1 | 1.854 (3) | C6—H6A | 0.9900 |
C2—H2A | 0.9900 | C6—H6B | 0.9900 |
C2—H2B | 0.9900 | C11—N1 | 1.495 (3) |
C3—N3 | 1.477 (3) | C11—H11A | 0.9800 |
C3—P1 | 1.847 (3) | C11—H11B | 0.9800 |
C3—H3A | 0.9900 | C11—H11C | 0.9800 |
C3—H3B | 0.9900 | B1—F3B | 1.281 (7) |
C4—N3 | 1.434 (3) | B1—F3A | 1.319 (5) |
C4—N1 | 1.540 (3) | B1—F4 | 1.350 (4) |
C4—H4A | 0.9900 | B1—F2 | 1.383 (4) |
C4—H4B | 0.9900 | B1—F1A | 1.447 (5) |
C5—N2 | 1.433 (4) | B1—F1B | 1.493 (7) |
N1—C1—P1 | 114.83 (18) | N1—C11—H11A | 109.5 |
N1—C1—H1A | 108.6 | N1—C11—H11B | 109.5 |
P1—C1—H1A | 108.6 | H11A—C11—H11B | 109.5 |
N1—C1—H1B | 108.6 | N1—C11—H11C | 109.5 |
P1—C1—H1B | 108.6 | H11A—C11—H11C | 109.5 |
H1A—C1—H1B | 107.5 | H11B—C11—H11C | 109.5 |
N2—C2—P1 | 114.14 (18) | F3B—B1—F3A | 64.6 (6) |
N2—C2—H2A | 108.7 | F3B—B1—F4 | 122.5 (5) |
P1—C2—H2A | 108.7 | F3A—B1—F4 | 118.7 (4) |
N2—C2—H2B | 108.7 | F3B—B1—F2 | 116.5 (4) |
P1—C2—H2B | 108.7 | F3A—B1—F2 | 113.7 (3) |
H2A—C2—H2B | 107.6 | F4—B1—F2 | 112.6 (3) |
N3—C3—P1 | 114.38 (18) | F3B—B1—F1A | 43.2 (5) |
N3—C3—H3A | 108.7 | F3A—B1—F1A | 107.7 (4) |
P1—C3—H3A | 108.7 | F4—B1—F1A | 99.6 (3) |
N3—C3—H3B | 108.7 | F2—B1—F1A | 101.8 (3) |
P1—C3—H3B | 108.7 | F3B—B1—F1B | 106.3 (7) |
H3A—C3—H3B | 107.6 | F3A—B1—F1B | 42.2 (3) |
N3—C4—N1 | 112.3 (2) | F4—B1—F1B | 91.5 (4) |
N3—C4—H4A | 109.1 | F2—B1—F1B | 101.0 (3) |
N1—C4—H4A | 109.1 | F1A—B1—F1B | 148.4 (5) |
N3—C4—H4B | 109.1 | C11—N1—C1 | 109.9 (2) |
N1—C4—H4B | 109.1 | C11—N1—C4 | 110.0 (2) |
H4A—C4—H4B | 107.9 | C1—N1—C4 | 110.0 (2) |
N2—C5—N1 | 111.8 (2) | C11—N1—C5 | 109.3 (2) |
N2—C5—H5A | 109.2 | C1—N1—C5 | 110.3 (2) |
N1—C5—H5A | 109.2 | C4—N1—C5 | 107.28 (19) |
N2—C5—H5B | 109.2 | C5—N2—C6 | 110.1 (2) |
N1—C5—H5B | 109.2 | C5—N2—C2 | 112.1 (2) |
H5A—C5—H5B | 107.9 | C6—N2—C2 | 111.8 (2) |
N3—C6—N2 | 113.1 (2) | C4—N3—C6 | 109.6 (2) |
N3—C6—H6A | 109.0 | C4—N3—C3 | 112.6 (2) |
N2—C6—H6A | 109.0 | C6—N3—C3 | 111.3 (2) |
N3—C6—H6B | 109.0 | C1—P1—C3 | 96.42 (13) |
N2—C6—H6B | 109.0 | C1—P1—C2 | 95.98 (13) |
H6A—C6—H6B | 107.8 | C3—P1—C2 | 95.91 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···F2i | 0.99 | 2.54 | 3.438 (3) | 151 |
C5—H5A···F4ii | 0.99 | 2.35 | 3.314 (3) | 166 |
C6—H6B···F4 | 0.99 | 2.46 | 3.364 (3) | 152 |
C11—H11B···F2iii | 0.98 | 2.43 | 3.350 (4) | 156 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H15N3P+·BF4− |
Mr | 259.00 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 150 |
a, b, c (Å) | 11.994 (2), 11.6933 (18), 15.569 (2) |
V (Å3) | 2183.5 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.16 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.956, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10402, 1948, 1391 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.121, 1.05 |
No. of reflections | 1948 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.36 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···F2i | 0.99 | 2.54 | 3.438 (3) | 151 |
C5—H5A···F4ii | 0.99 | 2.35 | 3.314 (3) | 166 |
C6—H6B···F4 | 0.99 | 2.46 | 3.364 (3) | 152 |
C11—H11B···F2iii | 0.98 | 2.43 | 3.350 (4) | 156 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the Foundation for Science and Technology (FCT) and its POCI 2010 programme (FEDER funded).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daigle, D. J. (1998). Inorg. Synth. 32, 40–45. CrossRef CAS Google Scholar
Daigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem. 11, 407–408. CrossRef CAS Google Scholar
Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996). Z. Kristallogr. 211, 131–132. CrossRef CAS Google Scholar
Jogun, K. H., Stezowski, J. J., Fluck, E. & Weissgraeber, H.-J. (1978). Z. Naturforsch. Teil B, 33, 1257–1262. Google Scholar
Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692. Web of Science CSD CrossRef Google Scholar
Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2008). Acta Cryst. E64, o496–o497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kovacs, J., Joó, F., Benyei, A. C. & Laurenczy, G. (2004). Dalton Trans. pp. 2336–2340. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342. Web of Science CrossRef CAS Google Scholar
Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993. Web of Science CrossRef CAS Google Scholar
Pruchnik, F. P., Smoleński, P., Galdecka, E. & Galdecki, Z. (1999). Inorg. Chim. Acta, 293, 110–114. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87–91. Google Scholar
Smoleński, P., Pruchnik, F. P., Ciunik, Z. & Lis, T. (2003). Inorg. Chem. 42, 3318–3222. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Being interested in the coordination chemistry of aminophosphine 1,3,5-triaza-7-phospha-adamantane (PTA) and related ligands (Kirillov et al., 2007; Smoleński & Pombeiro, 2008), we have prepared compound (I) from the analogous salt, [PTA-Me]I (Daigle et al., 1974; Daigle, 1998), to determine the coordination behaviour of the [PTA-Me]+ species in the absence of iodide ions.
Compound (I) crystallizes in an orthorhombic crystal system and its unit cell is composed of a cage-like N-methylated [PTA-Me]+ cation whose positive charge is balanced by a disordered tetrafluoroborate anion (Fig. 1). The title compound appears to be isostructural to the related salt (Jogun et al., 1978) that possesses the same anion but the P-methylated [PTA-Me]+ cation. The geometrical parameters for (I) are comparable to those of other compounds with N-methylated PTA cores, either free (Kirillov et al., 2008; Otto et al., 2005; Forward et al., 1996) or coordinated to the metal centres (Kovacs et al., 2004; Smoleński et al., 2003; Pruchnik et al., 1999).
In (I), the [PTA-Me]+ units are disposed relatively close to the [BF4]- anions, thus allowing their extensive assembling via weak intermolecular C—H···F hydrogen bonds [mean C···F separation = 3.366 (3) Å], resulting in the formation of a three-dimensional supramolecular framework (Table 1, Fig. 2).