organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-1-azonia-3,5-di­aza-7-phosphatri­cyclo­[3.3.1.13,7]decane tetra­fluoro­borate

aCentro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, and bUniversidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Av. do Campo Grande, 376, 1749-024, Lisbon, Portugal
*Correspondence e-mail: fatima.guedes@ist.utl.pt

(Received 24 January 2008; accepted 31 January 2008; online 6 February 2008)

The title compound, C7H15N3P+·BF4 or [PTA-Me][BF4], is the N-methyl­ated derivative of the well known water-soluble amino­phosphine 1,3,5-triaza-7-phosphaadamantane (PTA). The asymmetric unit consists of a cage-like cation [PTA-Me]+ and a disordered tetra­fluoro­borate anion; two F atoms are disordered equally over two sites. A network of weak inter­molecular C—H⋯F hydrogen bonds results in a three-dimensional supra­molecular assembly.

Related literature

For general background, see: Kirillov et al. (2007[Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686-2692.]); Smoleński & Pombeiro (2008[Smoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87-91.]). For a comprehensive review of PTA chemistry, see: Phillips et al. (2004[Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955-993.]). For the synthesis of PTA and [PTA-Me]I, see: Daigle et al. (1974[Daigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem. 11, 407-408.]); Daigle (1998[Daigle, D. J. (1998). Inorg. Synth. 32, 40-45.]). For related organic structures, see: Jogun et al. (1978[Jogun, K. H., Stezowski, J. J., Fluck, E. & Weissgraeber, H.-J. (1978). Z. Naturforsch. Teil B, 33, 1257-1262.]); Forward et al. (1996[Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996). Z. Kristallogr. 211, 131-132.]); Otto et al. (2005[Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337-4342.]); Kirillov et al. (2008[Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2008). Acta Cryst. E64, o496-o497.]). For related metal–organic structures, see: Kovacs et al. (2004[Kovacs, J., Joó, F., Benyei, A. C. & Laurenczy, G. (2004). Dalton Trans. pp. 2336-2340.]); Smoleński et al. (2003[Smoleński, P., Pruchnik, F. P., Ciunik, Z. & Lis, T. (2003). Inorg. Chem. 42, 3318-3222.]); Pruchnik et al. (1999[Pruchnik, F. P., Smoleński, P., Galdecka, E. & Galdecki, Z. (1999). Inorg. Chim. Acta, 293, 110-114.]).

[Scheme 1]

Experimental

Crystal data
  • C7H15N3P+·BF4

  • Mr = 259.00

  • Orthorhombic, P b c a

  • a = 11.994 (2) Å

  • b = 11.6933 (18) Å

  • c = 15.569 (2) Å

  • V = 2183.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 (2) K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.972

  • 10402 measured reflections

  • 1948 independent reflections

  • 1391 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.05

  • 1948 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F2i 0.99 2.54 3.438 (3) 151
C5—H5A⋯F4ii 0.99 2.35 3.314 (3) 166
C6—H6B⋯F4 0.99 2.46 3.364 (3) 152
C11—H11B⋯F2iii 0.98 2.43 3.350 (4) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Being interested in the coordination chemistry of aminophosphine 1,3,5-triaza-7-phospha-adamantane (PTA) and related ligands (Kirillov et al., 2007; Smoleński & Pombeiro, 2008), we have prepared compound (I) from the analogous salt, [PTA-Me]I (Daigle et al., 1974; Daigle, 1998), to determine the coordination behaviour of the [PTA-Me]+ species in the absence of iodide ions.

Compound (I) crystallizes in an orthorhombic crystal system and its unit cell is composed of a cage-like N-methylated [PTA-Me]+ cation whose positive charge is balanced by a disordered tetrafluoroborate anion (Fig. 1). The title compound appears to be isostructural to the related salt (Jogun et al., 1978) that possesses the same anion but the P-methylated [PTA-Me]+ cation. The geometrical parameters for (I) are comparable to those of other compounds with N-methylated PTA cores, either free (Kirillov et al., 2008; Otto et al., 2005; Forward et al., 1996) or coordinated to the metal centres (Kovacs et al., 2004; Smoleński et al., 2003; Pruchnik et al., 1999).

In (I), the [PTA-Me]+ units are disposed relatively close to the [BF4]- anions, thus allowing their extensive assembling via weak intermolecular C—H···F hydrogen bonds [mean C···F separation = 3.366 (3) Å], resulting in the formation of a three-dimensional supramolecular framework (Table 1, Fig. 2).

Related literature top

For general background, see: Kirillov et al. (2007); Smoleński & Pombeiro (2008). For a comprehensive review of PTA chemistry, see: Phillips et al. (2004). For the synthesis of PTA and [PTA-Me]I, see: Daigle et al. (1974); Daigle (1998). For related organic structures, see: Jogun et al. (1978); Forward et al. (1996); Otto et al. (2005); Kirillov et al. (2008). For related metal–organic structures, see: Kovacs et al. (2004); Smoleński et al. (2003); Pruchnik et al. (1999).

Experimental top

An aqueous solution (25 ml) of [PTA-Me]I (1.00 mmol, 300 mg) and a methanolic (25 ml) solution of Tl[BF4] (1.00 mmol, 300 mg) were combined at ambient temperature [Caution: Thallium compounds are highly toxic and thus must be handled with extreme caution]. The resulting white suspension was stirred for 15 min and then filtered off, giving a white powder of thallium iodide that was discarded. The colourless filtrate was evaporated in vacuo, resulting in a white solid. It was recrystallized from MeOH to furnish colourless plates of (I) in ca 80% yield (after isolation by filtration and drying in vacuo).

[PTA-Me][BF4] is very soluble in middle-range polar solvents like Me2CO, CHCl3 and CH2Cl2, less soluble in H2O, MeOH, EtOH and DMSO, and insoluble in C6H6, and Et2O. FT–IR (KBr pellet), cm-1: 2965 w, 2908 w, 1461 s, 1407 s, 1347 w, 1313 s, 1292 s, 1249 s, 1120 s, 1094 s br, 1023 s, 983 s, 920 s, 899 s, 815 s, 769 s, 748 m, 732 m, 687 w, 635 w, 557 s, 534 w and 440 w. 1H NMR (300 MHz, D2O, 25°C, Me4Si): 4.86 and 4.75 (J(HAHB) = 11.4 Hz, 4H, NCHAHBN+), 4.52 and 4.36 (J(HAHB) = 13.8 Hz, 2H, NCHAHBN), 4.25 (d, 2J (H—P) = 6.8 Hz, 2H, PCH2N+), 3.88 and 3.75 (J(HAHB) = 15.3 Hz, 3J(HA—P) = 15.3 Hz, 3J(HB—P) = 8.7 Hz, 4H, PCHAHBN), 2.66 (s, 3H, N+CH3). 31P{1H} NMR (121.4 MHz, D2O, 25°C, 85% H3PO4): -85.7 (s).

Refinement top

All the hydrogen atoms were inserted in calculated positions (C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Atoms F1 and F3 are disordered over two sites with equal occupancies.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 20% probability level. H atoms are represented as spheres of arbitrary radius. The disordered F1 and F3 atoms are shown over their two positions.
[Figure 2] Fig. 2. Partial representation (view along the b axis) of the crystal packing diagram of (I) showing the generation of the three-dimensional supramolecular assembly via C—H···F hydrogen bonds and C···F short contacts (blue dotted lines). Hydrogen atoms and disordered F1B and F3B atoms are omitted for clarity. C, grey; N, blue; P, orange; F, light green; B, pink.
1-Methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.13,7]decane tetrafluoroborate top
Crystal data top
C7H15N3P+·BF4F(000) = 1072
Mr = 259.00Dx = 1.576 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 1323 reflections
a = 11.994 (2) Åθ = 3.4–25.2°
b = 11.6933 (18) ŵ = 0.28 mm1
c = 15.569 (2) ÅT = 150 K
V = 2183.5 (6) Å3Plate, colourless
Z = 80.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
1948 independent reflections
Radiation source: fine-focus sealed tube1391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.956, Tmax = 0.972k = 1413
10402 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.8936P]
where P = (Fo2 + 2Fc2)/3
1948 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.36 e Å3
0 constraints
Crystal data top
C7H15N3P+·BF4V = 2183.5 (6) Å3
Mr = 259.00Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.994 (2) ŵ = 0.28 mm1
b = 11.6933 (18) ÅT = 150 K
c = 15.569 (2) Å0.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
1948 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1391 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.972Rint = 0.061
10402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
1948 reflectionsΔρmin = 0.36 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5509 (2)0.7943 (2)0.68018 (19)0.0248 (7)
H1A0.53290.87360.66270.030*
H1B0.63030.78060.66630.030*
C20.3782 (2)0.7850 (2)0.79565 (18)0.0245 (7)
H2A0.35050.76670.85390.029*
H2B0.35330.86350.78150.029*
C30.5459 (2)0.6251 (2)0.80269 (18)0.0253 (7)
H3A0.62510.60430.79370.030*
H3B0.52470.59970.86110.030*
C40.5074 (2)0.5884 (2)0.65244 (18)0.0219 (6)
H4A0.46710.53600.61330.026*
H4B0.58830.57490.64480.026*
C50.3552 (2)0.7325 (2)0.64672 (18)0.0211 (6)
H5A0.33640.81360.63570.025*
H5B0.31000.68480.60740.025*
C60.3583 (2)0.5857 (2)0.75217 (18)0.0216 (6)
H6A0.33840.56780.81240.026*
H6B0.31460.53440.71450.026*
C110.5016 (3)0.7311 (3)0.53413 (18)0.0295 (7)
H11A0.45570.67800.50060.044*
H11B0.58060.71730.52170.044*
H11C0.48240.80990.51870.044*
B10.2262 (3)0.4814 (3)0.4904 (2)0.0266 (8)
N10.48031 (17)0.71288 (17)0.62773 (13)0.0146 (5)
N20.32749 (18)0.70450 (19)0.73373 (14)0.0199 (5)
N30.47713 (18)0.56276 (18)0.73947 (14)0.0190 (5)
F1A0.1098 (3)0.5043 (4)0.4732 (3)0.0580 (13)0.59
F20.23739 (16)0.37060 (14)0.46049 (11)0.0376 (5)
F3A0.2858 (5)0.5568 (4)0.4471 (3)0.0634 (14)0.59
F40.2252 (2)0.48727 (18)0.57697 (12)0.0627 (7)
P10.53278 (7)0.78233 (7)0.79717 (5)0.0275 (2)
F1B0.3444 (5)0.5214 (6)0.4871 (5)0.071 (2)0.41
F3B0.1703 (10)0.5502 (6)0.4431 (5)0.096 (3)0.41
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (14)0.0198 (15)0.0343 (18)0.0049 (12)0.0006 (13)0.0022 (12)
C20.0265 (15)0.0223 (15)0.0246 (16)0.0008 (12)0.0046 (13)0.0034 (12)
C30.0204 (15)0.0314 (16)0.0240 (16)0.0016 (12)0.0053 (13)0.0056 (13)
C40.0266 (15)0.0158 (14)0.0233 (17)0.0058 (12)0.0027 (12)0.0003 (11)
C50.0187 (14)0.0220 (15)0.0225 (16)0.0024 (11)0.0058 (12)0.0006 (12)
C60.0184 (14)0.0244 (16)0.0219 (15)0.0034 (12)0.0007 (12)0.0028 (12)
C110.0391 (17)0.0301 (17)0.0193 (17)0.0029 (14)0.0054 (13)0.0036 (13)
B10.039 (2)0.0219 (18)0.0187 (19)0.0019 (16)0.0014 (15)0.0018 (14)
N10.0174 (11)0.0138 (11)0.0126 (12)0.0002 (9)0.0006 (9)0.0028 (8)
N20.0176 (11)0.0219 (12)0.0203 (12)0.0006 (9)0.0009 (10)0.0008 (10)
N30.0215 (12)0.0179 (12)0.0177 (13)0.0010 (10)0.0011 (10)0.0039 (9)
F1A0.039 (2)0.044 (3)0.091 (4)0.0133 (19)0.020 (2)0.007 (2)
F20.0468 (12)0.0268 (10)0.0393 (12)0.0008 (8)0.0028 (9)0.0112 (8)
F3A0.085 (4)0.045 (3)0.060 (3)0.027 (3)0.034 (3)0.009 (2)
F40.120 (2)0.0407 (12)0.0273 (12)0.0117 (13)0.0007 (12)0.0048 (9)
P10.0306 (4)0.0273 (4)0.0244 (5)0.0070 (3)0.0052 (3)0.0014 (3)
F1B0.044 (4)0.075 (5)0.094 (6)0.032 (3)0.031 (4)0.057 (4)
F3B0.165 (10)0.047 (5)0.075 (6)0.046 (6)0.072 (6)0.005 (4)
Geometric parameters (Å, º) top
C1—N11.514 (3)C5—N11.547 (3)
C1—P11.840 (3)C5—H5A0.9900
C1—H1A0.9900C5—H5B0.9900
C1—H1B0.9900C6—N31.463 (3)
C2—N21.479 (3)C6—N21.466 (3)
C2—P11.854 (3)C6—H6A0.9900
C2—H2A0.9900C6—H6B0.9900
C2—H2B0.9900C11—N11.495 (3)
C3—N31.477 (3)C11—H11A0.9800
C3—P11.847 (3)C11—H11B0.9800
C3—H3A0.9900C11—H11C0.9800
C3—H3B0.9900B1—F3B1.281 (7)
C4—N31.434 (3)B1—F3A1.319 (5)
C4—N11.540 (3)B1—F41.350 (4)
C4—H4A0.9900B1—F21.383 (4)
C4—H4B0.9900B1—F1A1.447 (5)
C5—N21.433 (4)B1—F1B1.493 (7)
N1—C1—P1114.83 (18)N1—C11—H11A109.5
N1—C1—H1A108.6N1—C11—H11B109.5
P1—C1—H1A108.6H11A—C11—H11B109.5
N1—C1—H1B108.6N1—C11—H11C109.5
P1—C1—H1B108.6H11A—C11—H11C109.5
H1A—C1—H1B107.5H11B—C11—H11C109.5
N2—C2—P1114.14 (18)F3B—B1—F3A64.6 (6)
N2—C2—H2A108.7F3B—B1—F4122.5 (5)
P1—C2—H2A108.7F3A—B1—F4118.7 (4)
N2—C2—H2B108.7F3B—B1—F2116.5 (4)
P1—C2—H2B108.7F3A—B1—F2113.7 (3)
H2A—C2—H2B107.6F4—B1—F2112.6 (3)
N3—C3—P1114.38 (18)F3B—B1—F1A43.2 (5)
N3—C3—H3A108.7F3A—B1—F1A107.7 (4)
P1—C3—H3A108.7F4—B1—F1A99.6 (3)
N3—C3—H3B108.7F2—B1—F1A101.8 (3)
P1—C3—H3B108.7F3B—B1—F1B106.3 (7)
H3A—C3—H3B107.6F3A—B1—F1B42.2 (3)
N3—C4—N1112.3 (2)F4—B1—F1B91.5 (4)
N3—C4—H4A109.1F2—B1—F1B101.0 (3)
N1—C4—H4A109.1F1A—B1—F1B148.4 (5)
N3—C4—H4B109.1C11—N1—C1109.9 (2)
N1—C4—H4B109.1C11—N1—C4110.0 (2)
H4A—C4—H4B107.9C1—N1—C4110.0 (2)
N2—C5—N1111.8 (2)C11—N1—C5109.3 (2)
N2—C5—H5A109.2C1—N1—C5110.3 (2)
N1—C5—H5A109.2C4—N1—C5107.28 (19)
N2—C5—H5B109.2C5—N2—C6110.1 (2)
N1—C5—H5B109.2C5—N2—C2112.1 (2)
H5A—C5—H5B107.9C6—N2—C2111.8 (2)
N3—C6—N2113.1 (2)C4—N3—C6109.6 (2)
N3—C6—H6A109.0C4—N3—C3112.6 (2)
N2—C6—H6A109.0C6—N3—C3111.3 (2)
N3—C6—H6B109.0C1—P1—C396.42 (13)
N2—C6—H6B109.0C1—P1—C295.98 (13)
H6A—C6—H6B107.8C3—P1—C295.91 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F2i0.992.543.438 (3)151
C5—H5A···F4ii0.992.353.314 (3)166
C6—H6B···F40.992.463.364 (3)152
C11—H11B···F2iii0.982.433.350 (4)156
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H15N3P+·BF4
Mr259.00
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)11.994 (2), 11.6933 (18), 15.569 (2)
V3)2183.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.956, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
10402, 1948, 1391
Rint0.061
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.05
No. of reflections1948
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.36

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F2i0.992.543.438 (3)151
C5—H5A···F4ii0.992.353.314 (3)166
C6—H6B···F40.992.463.364 (3)152
C11—H11B···F2iii0.982.433.350 (4)156
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Foundation for Science and Technology (FCT) and its POCI 2010 programme (FEDER funded).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaigle, D. J. (1998). Inorg. Synth. 32, 40–45.  CrossRef CAS Google Scholar
First citationDaigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem. 11, 407–408.  CrossRef CAS Google Scholar
First citationForward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996). Z. Kristallogr. 211, 131–132.  CrossRef CAS Google Scholar
First citationJogun, K. H., Stezowski, J. J., Fluck, E. & Weissgraeber, H.-J. (1978). Z. Naturforsch. Teil B, 33, 1257–1262.  Google Scholar
First citationKirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692.  Web of Science CSD CrossRef Google Scholar
First citationKirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2008). Acta Cryst. E64, o496–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovacs, J., Joó, F., Benyei, A. C. & Laurenczy, G. (2004). Dalton Trans. pp. 2336–2340.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.  Web of Science CrossRef CAS Google Scholar
First citationPhillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.  Web of Science CrossRef CAS Google Scholar
First citationPruchnik, F. P., Smoleński, P., Galdecka, E. & Galdecki, Z. (1999). Inorg. Chim. Acta, 293, 110–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87–91.  Google Scholar
First citationSmoleński, P., Pruchnik, F. P., Ciunik, Z. & Lis, T. (2003). Inorg. Chem. 42, 3318–3222.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds