organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­acetyl-1,4-di­phenyl-1,4-di­hydro-1,2,4,5-tetra­zine

aChemistry Department, The Hashemite University, Zarka, Jordan, and bDepartment of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: manoaimi@hu.edu.jo

(Received 3 September 2007; accepted 28 January 2008; online 6 February 2008)

In the title compound, C18H16N4O2, the central six-membered ring has a boat conformation.

Related literature

For background, see: Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 24, pp. 901-955. Oxford: Elsevier.]). For further synthetic details, see: Al-Noaimi et al. (2007[Al-Noaimi, M. Z., Saadeh, H., Haddad, S. F., El-Barghouthi, M., El-khateeb, M. & Crutchley, R. J. (2007). Polyhedron, 26, 3675-3685.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4O2

  • Mr = 320.35

  • Monoclinic, P 21 /c

  • a = 11.7853 (6) Å

  • b = 14.7217 (7) Å

  • c = 9.5113 (4) Å

  • β = 92.350 (1)°

  • V = 1648.82 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.28 × 0.23 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.989

  • 24032 measured reflections

  • 2985 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.02

  • 2985 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: XL in SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer, 1996).

As part of our studies in this area, the title compound, (I), was prepared and its structure determined by X-ray diffraction (Fig. 1).

In (I), atoms N1, C3, N4 and C6 are coplanar [r.m.s. deviation = 0.010 Å] and atoms N2 and N5 deviate from the plane by 0.457 and 0.451 Å, respectively. Thus, the central tetrazine ring in (I) has a boat conformation.

The dihedral angle between the plane defined by atoms N1 C3 N4 C6 and the C11—C16 benzene ring plane is 28.27 (9)°. The dihedral angle between the same atoms and the C17—C22 benzene ring is 40.11 (5)°. The dihedral angle between the C11—C16 and C17—C22 benzene rings is 66.19 (9)°.

Related literature top

For background, see: Sauer (1996). For further synthetic details, see: Al-Noaimi et al. (2007).

Experimental top

A solution of 1-phenylhydrazono-1-chloropropanone (10 g, 55 mmol) (Al-Noaimi et al., 2007) and triethylamine (7.2 g, 71 mmol) in ethanol (80 ml) was refluxed for 2 h, and then the solvent was partially removed under reduced pressure. A solution of the compound in ethanol was concentrated gradually at room temperature to afford red blocks of (I) (m.p. 439–441 K).

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008); program(s) used to refine structure: XL in SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
3,6-Diacetyl-1,4-diphenyl-1,4-dihydro-1,2,4,5-tetrazine top
Crystal data top
C18H16N4O2F(000) = 672
Mr = 320.35Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4916 reflections
a = 11.7853 (6) Åθ = 2.2–23.9°
b = 14.7217 (7) ŵ = 0.09 mm1
c = 9.5113 (4) ÅT = 298 K
β = 92.350 (1)°Block, red
V = 1648.82 (13) Å30.28 × 0.23 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2985 independent reflections
Radiation source: normal-focus sealed tube2090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.3 pixels mm-1θmax = 25.3°, θmin = 1.7°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.973, Tmax = 0.989l = 1111
24032 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1852P]
where P = (Fo2 + 2Fc2)/3
2985 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H16N4O2V = 1648.82 (13) Å3
Mr = 320.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7853 (6) ŵ = 0.09 mm1
b = 14.7217 (7) ÅT = 298 K
c = 9.5113 (4) Å0.28 × 0.23 × 0.12 mm
β = 92.350 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2985 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2090 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.989Rint = 0.038
24032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
2985 reflectionsΔρmin = 0.14 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.19860 (13)0.04264 (11)0.24262 (17)0.0476 (4)
C60.06963 (13)0.17718 (11)0.30979 (16)0.0443 (4)
C70.01584 (14)0.23941 (12)0.41383 (18)0.0485 (4)
C80.03913 (16)0.33770 (12)0.3984 (2)0.0615 (5)
H8A0.00630.37040.47400.092*
H8B0.00650.35880.31020.092*
H8C0.11970.34760.40090.092*
C90.29164 (15)0.02517 (13)0.27788 (19)0.0566 (5)
C100.25803 (17)0.12250 (14)0.2816 (3)0.0861 (7)
H10A0.32280.15880.30930.129*
H10B0.22980.14090.18990.129*
H10C0.19970.13060.34810.129*
C110.31755 (13)0.15724 (12)0.12166 (17)0.0479 (4)
C120.36333 (14)0.24291 (13)0.14032 (19)0.0567 (5)
H120.33380.28250.20570.068*
C130.45313 (16)0.26945 (15)0.0613 (2)0.0681 (5)
H130.48330.32750.07260.082*
C140.49833 (16)0.21120 (16)0.0338 (2)0.0707 (6)
H140.56000.22910.08520.085*
C150.45218 (16)0.12619 (15)0.0529 (2)0.0666 (5)
H150.48310.08650.11710.080*
C160.36055 (15)0.09929 (13)0.02212 (19)0.0582 (5)
H160.32770.04260.00610.070*
C170.09434 (13)0.07208 (11)0.28912 (17)0.0466 (4)
C180.12547 (14)0.00429 (12)0.36200 (18)0.0533 (5)
H180.07050.04370.39960.064*
C190.23938 (16)0.02164 (14)0.3785 (2)0.0660 (5)
H190.26110.07300.42770.079*
C200.32094 (16)0.03634 (17)0.3228 (2)0.0744 (6)
H200.39740.02460.33510.089*
C210.28909 (16)0.11175 (16)0.2489 (2)0.0730 (6)
H210.34430.15090.21120.088*
C220.17587 (15)0.12967 (13)0.2303 (2)0.0603 (5)
H220.15450.18010.17870.072*
N10.16981 (11)0.19907 (9)0.27549 (14)0.0495 (4)
N20.22031 (11)0.13056 (9)0.19490 (14)0.0496 (4)
N40.09917 (11)0.02070 (9)0.28117 (14)0.0489 (4)
N50.02219 (10)0.09373 (9)0.26874 (14)0.0460 (4)
O70.04003 (12)0.20784 (9)0.50509 (14)0.0728 (4)
O90.38657 (10)0.00113 (9)0.30439 (15)0.0717 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0384 (9)0.0512 (11)0.0535 (10)0.0003 (8)0.0079 (7)0.0038 (8)
C60.0394 (9)0.0460 (10)0.0481 (10)0.0020 (7)0.0072 (7)0.0017 (7)
C70.0423 (9)0.0533 (11)0.0504 (10)0.0028 (8)0.0069 (8)0.0011 (8)
C80.0665 (12)0.0545 (12)0.0640 (12)0.0037 (9)0.0095 (9)0.0061 (9)
C90.0407 (10)0.0647 (12)0.0653 (12)0.0063 (9)0.0125 (8)0.0026 (9)
C100.0592 (13)0.0587 (13)0.141 (2)0.0137 (10)0.0099 (13)0.0077 (13)
C110.0369 (9)0.0583 (11)0.0488 (10)0.0014 (8)0.0060 (7)0.0026 (8)
C120.0455 (10)0.0626 (12)0.0625 (12)0.0040 (9)0.0093 (8)0.0045 (9)
C130.0515 (12)0.0737 (14)0.0797 (14)0.0133 (10)0.0126 (10)0.0048 (11)
C140.0479 (11)0.0961 (17)0.0691 (14)0.0026 (11)0.0165 (10)0.0149 (12)
C150.0573 (12)0.0870 (16)0.0567 (12)0.0107 (11)0.0176 (9)0.0008 (10)
C160.0536 (11)0.0616 (12)0.0604 (12)0.0014 (9)0.0136 (9)0.0035 (9)
C170.0373 (9)0.0525 (10)0.0505 (10)0.0004 (7)0.0088 (7)0.0066 (8)
C180.0476 (10)0.0567 (11)0.0563 (11)0.0033 (8)0.0101 (8)0.0060 (9)
C190.0550 (12)0.0711 (14)0.0732 (13)0.0173 (10)0.0170 (10)0.0112 (10)
C200.0398 (11)0.0975 (17)0.0867 (15)0.0139 (11)0.0098 (10)0.0248 (13)
C210.0415 (11)0.0894 (16)0.0875 (15)0.0130 (10)0.0023 (10)0.0096 (12)
C220.0443 (11)0.0639 (12)0.0728 (13)0.0083 (9)0.0045 (9)0.0018 (10)
N10.0442 (8)0.0493 (8)0.0560 (9)0.0011 (6)0.0128 (6)0.0039 (7)
N20.0406 (8)0.0492 (8)0.0601 (9)0.0001 (6)0.0163 (6)0.0047 (7)
N40.0373 (8)0.0484 (8)0.0615 (9)0.0036 (6)0.0076 (6)0.0027 (7)
N50.0344 (7)0.0457 (8)0.0585 (9)0.0038 (6)0.0088 (6)0.0009 (7)
O70.0844 (10)0.0649 (9)0.0717 (9)0.0061 (7)0.0377 (8)0.0061 (7)
O90.0402 (8)0.0865 (10)0.0887 (10)0.0030 (7)0.0061 (7)0.0111 (8)
Geometric parameters (Å, º) top
C3—N41.2834 (19)C13—C141.370 (3)
C3—N21.399 (2)C13—H130.9300
C3—C91.510 (2)C14—C151.374 (3)
C6—N11.2790 (19)C14—H140.9300
C6—N51.399 (2)C15—C161.377 (2)
C6—C71.507 (2)C15—H150.9300
C7—O71.2041 (19)C16—H160.9300
C7—C81.481 (2)C17—C181.378 (2)
C8—H8A0.9600C17—C221.382 (2)
C8—H8B0.9600C17—N51.431 (2)
C8—H8C0.9600C18—C191.382 (2)
C9—O91.201 (2)C18—H180.9300
C9—C101.487 (3)C19—C201.375 (3)
C10—H10A0.9600C19—H190.9300
C10—H10B0.9600C20—C211.375 (3)
C10—H10C0.9600C20—H200.9300
C11—C121.380 (2)C21—C221.379 (3)
C11—C161.386 (2)C21—H210.9300
C11—N21.4207 (19)C22—H220.9300
C12—C131.380 (2)N1—N21.4130 (18)
C12—H120.9300N4—N51.4086 (17)
N4—C3—N2120.46 (15)C13—C14—H14120.2
N4—C3—C9115.67 (15)C15—C14—H14120.2
N2—C3—C9122.88 (14)C14—C15—C16120.54 (19)
N1—C6—N5120.85 (14)C14—C15—H15119.7
N1—C6—C7115.58 (15)C16—C15—H15119.7
N5—C6—C7122.89 (14)C15—C16—C11119.58 (18)
O7—C7—C8123.90 (16)C15—C16—H16120.2
O7—C7—C6119.72 (16)C11—C16—H16120.2
C8—C7—C6116.35 (15)C18—C17—C22120.59 (16)
C7—C8—H8A109.5C18—C17—N5121.77 (15)
C7—C8—H8B109.5C22—C17—N5117.63 (15)
H8A—C8—H8B109.5C17—C18—C19119.19 (18)
C7—C8—H8C109.5C17—C18—H18120.4
H8A—C8—H8C109.5C19—C18—H18120.4
H8B—C8—H8C109.5C20—C19—C18120.6 (2)
O9—C9—C10123.52 (17)C20—C19—H19119.7
O9—C9—C3119.68 (17)C18—C19—H19119.7
C10—C9—C3116.77 (16)C21—C20—C19119.81 (18)
C9—C10—H10A109.5C21—C20—H20120.1
C9—C10—H10B109.5C19—C20—H20120.1
H10A—C10—H10B109.5C20—C21—C22120.40 (19)
C9—C10—H10C109.5C20—C21—H21119.8
H10A—C10—H10C109.5C22—C21—H21119.8
H10B—C10—H10C109.5C21—C22—C17119.41 (19)
C12—C11—C16119.90 (16)C21—C22—H22120.3
C12—C11—N2120.56 (15)C17—C22—H22120.3
C16—C11—N2119.32 (15)C6—N1—N2111.85 (13)
C13—C12—C11119.55 (17)C3—N2—N1113.44 (12)
C13—C12—H12120.2C3—N2—C11125.24 (13)
C11—C12—H12120.2N1—N2—C11115.77 (13)
C14—C13—C12120.68 (19)C3—N4—N5112.11 (13)
C14—C13—H13119.7C6—N5—N4113.47 (12)
C12—C13—H13119.7C6—N5—C17122.19 (13)
C13—C14—C15119.68 (18)N4—N5—C17115.92 (13)
N1—C6—C7—O7140.54 (17)N5—C6—N1—N20.3 (2)
N5—C6—C7—O730.1 (2)C7—C6—N1—N2171.13 (13)
N1—C6—C7—C837.6 (2)N4—C3—N2—N142.1 (2)
N5—C6—C7—C8151.76 (15)C9—C3—N2—N1126.06 (16)
N4—C3—C9—O9147.50 (17)N4—C3—N2—C11165.46 (15)
N2—C3—C9—O921.2 (3)C9—C3—N2—C1126.4 (2)
N4—C3—C9—C1030.7 (2)C6—N1—N2—C340.54 (19)
N2—C3—C9—C10160.58 (17)C6—N1—N2—C11164.27 (14)
C16—C11—C12—C131.2 (3)C12—C11—N2—C3146.46 (17)
N2—C11—C12—C13175.75 (17)C16—C11—N2—C339.0 (2)
C11—C12—C13—C141.0 (3)C12—C11—N2—N15.4 (2)
C12—C13—C14—C151.5 (3)C16—C11—N2—N1169.15 (15)
C13—C14—C15—C160.4 (3)N2—C3—N4—N50.1 (2)
C14—C15—C16—C112.6 (3)C9—C3—N4—N5168.86 (14)
C12—C11—C16—C153.0 (3)N1—C6—N5—N441.6 (2)
N2—C11—C16—C15177.59 (17)C7—C6—N5—N4128.49 (15)
C22—C17—C18—C191.5 (3)N1—C6—N5—C17171.60 (15)
N5—C17—C18—C19179.92 (15)C7—C6—N5—C1718.3 (2)
C17—C18—C19—C200.1 (3)C3—N4—N5—C640.05 (18)
C18—C19—C20—C210.6 (3)C3—N4—N5—C17170.98 (14)
C19—C20—C21—C220.1 (3)C18—C17—N5—C6124.46 (17)
C20—C21—C22—C171.3 (3)C22—C17—N5—C656.9 (2)
C18—C17—C22—C212.1 (3)C18—C17—N5—N421.6 (2)
N5—C17—C22—C21179.28 (16)C22—C17—N5—N4157.09 (15)

Experimental details

Crystal data
Chemical formulaC18H16N4O2
Mr320.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.7853 (6), 14.7217 (7), 9.5113 (4)
β (°) 92.350 (1)
V3)1648.82 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.23 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.973, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
24032, 2985, 2090
Rint0.038
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.02
No. of reflections2985
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: SMART (Bruker, 2006), SAINT (Bruker, 2006), XS in SHELXTL (Sheldrick, 2008), XL in SHELXTL (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported in part by the Deanship of Academic Research, The Hashemite University, Jordan. The authors also thank Brendan Twamley, University Research Office, U. of Idaho, Moscow, Idaho, USA.

References

First citationAl-Noaimi, M. Z., Saadeh, H., Haddad, S. F., El-Barghouthi, M., El-khateeb, M. & Crutchley, R. J. (2007). Polyhedron, 26, 3675–3685.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 24, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds