organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Hydr­­oxy-3-nitro­benz­yl)methyl­ammonium chloride

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 30 November 2007; accepted 18 February 2008; online 27 February 2008)

The title compound, C8H11N2O3+·Cl, was synthesized as an inter­mediate in the development of a new sugar sensor. The structure displays N—H⋯Cl and O—H⋯O hydrogen bonding, as well as weak O—H⋯Cl inter­actions and ππ stacking (3.298 Å). There are two formula units in the asymmetric unit.

Related literature

For related literature, see: James et al. (1995[James, T. D., Sandanayake, K. R. A. S., Iuguchi, R. & Shinkai, S. (1995). J. Am. Chem. Soc. 117, 8982-8987.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N2O3+·Cl

  • Mr = 218.64

  • Triclinic, [P \overline 1]

  • a = 7.7650 (2) Å

  • b = 10.5922 (3) Å

  • c = 13.5987 (4) Å

  • α = 70.262 (1)°

  • β = 78.368 (1)°

  • γ = 76.459 (1)°

  • V = 1014.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 173 (2) K

  • 0.48 × 0.39 × 0.36 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 11798 measured reflections

  • 4901 independent reflections

  • 4057 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.06

  • 4901 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯Cl1A 0.92 2.23 3.1301 (11) 167
N2A—H2B⋯Cl1B 0.92 2.18 3.0898 (11) 173
O1A—H1A⋯O2A 0.84 1.89 2.5917 (14) 140
O1A—H1A⋯Cl1Bi 0.84 2.87 3.3918 (10) 122
N2B—H2C⋯Cl1Aii 0.92 2.17 3.0775 (11) 168
N2B—H2D⋯Cl1Biii 0.92 2.26 3.1671 (10) 168
O1B—H1B⋯O2B 0.84 1.88 2.5860 (14) 141
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), was synthesized as an intermediate in the development of a new sugar sensor (James et al., 1995). The compound itself is also novel and is being reported for the first time.

The structure consists of two molecules in the asymmetric unit (Figure 1). The cation consists of a planar nitro phenol ring with a methylaminomethyl group in the para position with respect to the hydroxy group (O1) on the ring. The methylammonium groups attached to the methylene carbon (C7) deviate from the plane of the ring with a torsion angle of -121.52 (13)° for C3A—C4A—C7A—N2A and -46.81 (16)° for C3B—C4B—C7B—N2B.

The structure exhibits both intermolecular (N1—H1···Cl) and intramolecular (O1—H1···O2) hydrogen bonding interactions (Table 1, Figure 2). The chloride ions act as hydrogen bond acceptors between adjacent molecules. Weak interactions are also observed between O1—H1···Cl1. These interactions, with a bond length of 2.87Å (O1A—H1A···Cl1Bi), are more likely weak Van der Waals interactions rather than true hydrogen bonds. See Table 1 for a full list of all hydrogen bond interactions. An interdigitated, layered structure is observed with the aromatic groups ππ stacking above each other and the methylaminomethyl group interacting with the chloride ions in hydrogen bonded layers (Figure 3).

Related literature top

For related literature, see: James et al. (1995).

Experimental top

4-Chloromethyl-2-nitrophenol, 3.8 g (20 mmol), was dissolved in DMF (30 ml). To this was added triethylamine (3 ml) followed by 40% methylamine in H2O (5 ml, 58 mmol). The reaction was heated to 333 K and left to stir overnight. The solvent was removed under vacuum to afford an orange solid, which was recrystallized from methanol at room temperature. Yield 3.49 g (80%). Decomposition point 373–375 K.

1H-NMR (400 MHz, D2O): p.p.m. = 0.00 (TMS), 2.62 (s, 3H, CH3), 4.12 (s, 2H, CH2), 7.14 (d, J = 8.5 Hz, 1H, H5), 7.60 (d, J = 8.5 Hz, 1H, H6), 8.13 (s, 1H, H3).13C-NMR(100 MHz, D2O): p.p.m. = 0.00 (TMS), 32.58 (CH3), 51.50 (CH2),121.30 (C6), 123.50 (C4), 127.75 (C3), 136.86 (C2), 139.04 (C5), 154.76 (C1).

Refinement top

Hydrogen atoms were located in the difference map then positioned geometrically, and allowed to ride on their respective parent atoms, with bond lengths of 0.99Å (CH2), 0.98Å (CH3), 0.95Å (CH), 0.98Å (NH2) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set equal to 1.2 (CH2, CH and NH2), or 1.5 (CH3 and OH) times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing ellipsoids at the 50% probability level and the numbering scheme employed.
[Figure 2] Fig. 2. Diagram of the inter- and intramolecular hydrogen bonding. Hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. Depiction of the packing. Hydrogen atoms have been omitted for clarity.
(4-Hydroxy-3-nitrobenzyl)methylammonium chloride top
Crystal data top
C8H11N2O3+·ClZ = 4
Mr = 218.64F(000) = 456
Triclinic, P1Dx = 1.432 Mg m3
Dm = 1.432 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7650 (2) ÅCell parameters from 6008 reflections
b = 10.5922 (3) Åθ = 4.6–28.4°
c = 13.5987 (4) ŵ = 0.36 mm1
α = 70.262 (1)°T = 173 K
β = 78.368 (1)°Block, orange
γ = 76.459 (1)°0.48 × 0.39 × 0.36 mm
V = 1014.27 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4057 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 28.0°, θmin = 1.6°
ϕ and ω scansh = 1010
11798 measured reflectionsk = 1313
4901 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.0174P]
where P = (Fo2 + 2Fc2)/3
4901 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H11N2O3+·Clγ = 76.459 (1)°
Mr = 218.64V = 1014.27 (5) Å3
Triclinic, P1Z = 4
a = 7.7650 (2) ÅMo Kα radiation
b = 10.5922 (3) ŵ = 0.36 mm1
c = 13.5987 (4) ÅT = 173 K
α = 70.262 (1)°0.48 × 0.39 × 0.36 mm
β = 78.368 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4057 reflections with I > 2σ(I)
11798 measured reflectionsRint = 0.034
4901 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
4901 reflectionsΔρmin = 0.31 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.07924 (17)0.64421 (12)0.39067 (10)0.0280 (3)
C2A0.05629 (16)0.60295 (12)0.36161 (10)0.0266 (3)
C3A0.02230 (17)0.54096 (12)0.28266 (10)0.0277 (3)
H3A0.11680.51290.26520.033*
C4A0.14689 (17)0.52009 (12)0.22990 (10)0.0272 (3)
C5A0.28403 (17)0.55999 (13)0.25897 (11)0.0311 (3)
H5A0.40220.54520.22380.037*
C6A0.25051 (17)0.61995 (13)0.33725 (11)0.0318 (3)
H6A0.34620.64560.35560.038*
C7A0.17964 (18)0.46001 (13)0.14103 (11)0.0328 (3)
H7A0.06580.44120.13180.039*
H7B0.22240.52690.07490.039*
C8A0.3333 (2)0.26316 (15)0.07972 (12)0.0408 (3)
H8A0.22000.23590.08190.061*
H8B0.42770.18220.09340.061*
H8C0.36460.32630.01000.061*
N1A0.23762 (14)0.62436 (11)0.41284 (10)0.0339 (3)
N2A0.31439 (14)0.33107 (10)0.16086 (8)0.0270 (2)
H2A0.42330.35030.16210.032*
H2B0.28070.27260.22590.032*
O1A0.06011 (13)0.70500 (10)0.46491 (8)0.0388 (2)
H1A0.04650.71230.49390.058*
O2A0.27172 (14)0.68749 (10)0.47848 (9)0.0457 (3)
O3A0.35065 (13)0.58060 (12)0.39075 (10)0.0518 (3)
C1B0.08090 (17)0.14787 (12)0.89457 (10)0.0271 (3)
C2B0.03119 (15)0.10203 (12)0.85044 (10)0.0248 (3)
C3B0.03195 (16)0.04521 (12)0.76886 (10)0.0256 (3)
H3B0.04830.01640.74010.031*
C4B0.21073 (16)0.03066 (12)0.72966 (10)0.0251 (3)
C5B0.32453 (17)0.07415 (13)0.77435 (11)0.0294 (3)
H5B0.44860.06360.74880.035*
C6B0.26146 (17)0.13157 (13)0.85399 (11)0.0317 (3)
H6B0.34230.16080.88210.038*
C7B0.28683 (17)0.02588 (12)0.63923 (10)0.0285 (3)
H7C0.25380.04400.57290.034*
H7D0.41890.04550.63400.034*
C8B0.3304 (2)0.22269 (14)0.57491 (11)0.0383 (3)
H8D0.32270.16180.50280.057*
H8E0.28440.30510.58410.057*
H8F0.45540.24780.58790.057*
N1B0.22054 (14)0.11494 (11)0.88843 (9)0.0311 (3)
N2B0.22290 (13)0.15229 (10)0.65039 (9)0.0260 (2)
H2C0.22930.21000.71800.031*
H2D0.10520.13060.63910.031*
O1B0.03022 (13)0.20461 (10)0.97277 (8)0.0357 (2)
H1B0.08050.20950.99120.054*
O2B0.28171 (13)0.17175 (11)0.95706 (8)0.0424 (3)
O3B0.31379 (13)0.06993 (12)0.85167 (10)0.0492 (3)
Cl1A0.70902 (4)0.37097 (3)0.13787 (3)0.03519 (10)
Cl1B0.18542 (4)0.12266 (3)0.36875 (2)0.03163 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0284 (6)0.0254 (6)0.0266 (7)0.0009 (5)0.0051 (5)0.0051 (5)
C2A0.0210 (6)0.0246 (6)0.0276 (7)0.0023 (5)0.0007 (5)0.0024 (5)
C3A0.0258 (6)0.0239 (6)0.0309 (7)0.0044 (5)0.0065 (5)0.0039 (5)
C4A0.0286 (6)0.0240 (6)0.0247 (6)0.0008 (5)0.0042 (5)0.0041 (5)
C5A0.0213 (6)0.0327 (7)0.0350 (7)0.0018 (5)0.0002 (5)0.0087 (6)
C6A0.0238 (6)0.0334 (7)0.0394 (8)0.0037 (5)0.0074 (6)0.0119 (6)
C7A0.0336 (7)0.0331 (7)0.0283 (7)0.0017 (6)0.0063 (6)0.0088 (6)
C8A0.0502 (9)0.0437 (8)0.0341 (8)0.0092 (7)0.0013 (7)0.0208 (7)
N1A0.0250 (6)0.0310 (6)0.0382 (7)0.0029 (5)0.0015 (5)0.0055 (5)
N2A0.0277 (5)0.0285 (5)0.0241 (5)0.0061 (4)0.0002 (4)0.0083 (4)
O1A0.0370 (5)0.0461 (6)0.0373 (6)0.0035 (5)0.0040 (5)0.0213 (5)
O2A0.0373 (6)0.0484 (6)0.0471 (7)0.0046 (5)0.0121 (5)0.0213 (5)
O3A0.0232 (5)0.0635 (7)0.0721 (8)0.0122 (5)0.0004 (5)0.0258 (6)
C1B0.0277 (6)0.0275 (6)0.0248 (6)0.0024 (5)0.0058 (5)0.0066 (5)
C2B0.0207 (6)0.0238 (6)0.0269 (6)0.0030 (5)0.0032 (5)0.0045 (5)
C3B0.0236 (6)0.0245 (6)0.0287 (7)0.0049 (5)0.0061 (5)0.0065 (5)
C4B0.0244 (6)0.0231 (6)0.0251 (6)0.0025 (5)0.0046 (5)0.0044 (5)
C5B0.0211 (6)0.0338 (7)0.0320 (7)0.0029 (5)0.0052 (5)0.0085 (6)
C6B0.0258 (6)0.0382 (7)0.0353 (7)0.0063 (5)0.0100 (6)0.0128 (6)
C7B0.0292 (6)0.0286 (6)0.0264 (7)0.0069 (5)0.0011 (5)0.0072 (5)
C8B0.0434 (8)0.0395 (8)0.0332 (8)0.0029 (6)0.0012 (6)0.0193 (6)
N1B0.0233 (5)0.0322 (6)0.0359 (7)0.0050 (5)0.0010 (5)0.0098 (5)
N2B0.0232 (5)0.0282 (5)0.0255 (5)0.0020 (4)0.0036 (4)0.0084 (4)
O1B0.0335 (5)0.0462 (6)0.0327 (5)0.0062 (4)0.0038 (4)0.0200 (4)
O2B0.0322 (5)0.0554 (6)0.0411 (6)0.0068 (5)0.0061 (4)0.0237 (5)
O3B0.0251 (5)0.0671 (7)0.0690 (8)0.0133 (5)0.0015 (5)0.0376 (6)
Cl1A0.02968 (17)0.0419 (2)0.02772 (18)0.00866 (14)0.00213 (13)0.00206 (14)
Cl1B0.02849 (17)0.03788 (18)0.02609 (18)0.00808 (13)0.00452 (13)0.00475 (13)
Geometric parameters (Å, º) top
C1A—O1A1.3378 (15)C1B—O1B1.3413 (15)
C1A—C6A1.3924 (18)C1B—C6B1.3925 (18)
C1A—C2A1.3981 (18)C1B—C2B1.3996 (17)
C2A—C3A1.3908 (18)C2B—C3B1.3882 (17)
C2A—N1A1.4425 (16)C2B—N1B1.4473 (15)
C3A—C4A1.3713 (18)C3B—C4B1.3755 (17)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.4008 (18)C4B—C5B1.3994 (17)
C4A—C7A1.5000 (18)C4B—C7B1.5030 (17)
C5A—C6A1.3682 (19)C5B—C6B1.3691 (18)
C5A—H5A0.9500C5B—H5B0.9500
C6A—H6A0.9500C6B—H6B0.9500
C7A—N2A1.4928 (16)C7B—N2B1.4852 (15)
C7A—H7A0.9900C7B—H7C0.9900
C7A—H7B0.9900C7B—H7D0.9900
C8A—N2A1.4759 (16)C8B—N2B1.4788 (16)
C8A—H8A0.9800C8B—H8D0.9800
C8A—H8B0.9800C8B—H8E0.9800
C8A—H8C0.9800C8B—H8F0.9800
N1A—O3A1.2109 (15)N1B—O3B1.2125 (14)
N1A—O2A1.2406 (15)N1B—O2B1.2350 (14)
N2A—H2A0.9200N2B—H2C0.9200
N2A—H2B0.9200N2B—H2D0.9200
O1A—H1A0.8400O1B—H1B0.8400
O1A—C1A—C6A116.81 (12)O1B—C1B—C6B117.37 (11)
O1A—C1A—C2A126.21 (12)O1B—C1B—C2B125.88 (12)
C6A—C1A—C2A116.98 (12)C6B—C1B—C2B116.74 (11)
C3A—C2A—C1A121.68 (12)C3B—C2B—C1B122.28 (11)
C3A—C2A—N1A117.71 (11)C3B—C2B—N1B117.56 (11)
C1A—C2A—N1A120.61 (11)C1B—C2B—N1B120.15 (11)
C4A—C3A—C2A120.34 (12)C4B—C3B—C2B119.98 (11)
C4A—C3A—H3A119.8C4B—C3B—H3B120.0
C2A—C3A—H3A119.8C2B—C3B—H3B120.0
C3A—C4A—C5A118.47 (12)C3B—C4B—C5B118.22 (11)
C3A—C4A—C7A119.74 (12)C3B—C4B—C7B122.67 (11)
C5A—C4A—C7A121.76 (12)C5B—C4B—C7B119.08 (11)
C6A—C5A—C4A121.07 (12)C6B—C5B—C4B121.63 (12)
C6A—C5A—H5A119.5C6B—C5B—H5B119.2
C4A—C5A—H5A119.5C4B—C5B—H5B119.2
C5A—C6A—C1A121.45 (12)C5B—C6B—C1B121.13 (12)
C5A—C6A—H6A119.3C5B—C6B—H6B119.4
C1A—C6A—H6A119.3C1B—C6B—H6B119.4
N2A—C7A—C4A111.77 (10)N2B—C7B—C4B113.02 (10)
N2A—C7A—H7A109.3N2B—C7B—H7C109.0
C4A—C7A—H7A109.3C4B—C7B—H7C109.0
N2A—C7A—H7B109.3N2B—C7B—H7D109.0
C4A—C7A—H7B109.3C4B—C7B—H7D109.0
H7A—C7A—H7B107.9H7C—C7B—H7D107.8
N2A—C8A—H8A109.5N2B—C8B—H8D109.5
N2A—C8A—H8B109.5N2B—C8B—H8E109.5
H8A—C8A—H8B109.5H8D—C8B—H8E109.5
N2A—C8A—H8C109.5N2B—C8B—H8F109.5
H8A—C8A—H8C109.5H8D—C8B—H8F109.5
H8B—C8A—H8C109.5H8E—C8B—H8F109.5
O3A—N1A—O2A122.35 (12)O3B—N1B—O2B122.23 (11)
O3A—N1A—C2A119.40 (12)O3B—N1B—C2B118.92 (11)
O2A—N1A—C2A118.25 (11)O2B—N1B—C2B118.84 (10)
C8A—N2A—C7A112.24 (11)C8B—N2B—C7B111.57 (10)
C8A—N2A—H2A109.2C8B—N2B—H2C109.3
C7A—N2A—H2A109.2C7B—N2B—H2C109.3
C8A—N2A—H2B109.2C8B—N2B—H2D109.3
C7A—N2A—H2B109.2C7B—N2B—H2D109.3
H2A—N2A—H2B107.9H2C—N2B—H2D108.0
C1A—O1A—H1A109.5C1B—O1B—H1B109.5
O1A—C1A—C2A—C3A179.66 (12)O1B—C1B—C2B—C3B179.51 (12)
C6A—C1A—C2A—C3A0.25 (19)C6B—C1B—C2B—C3B1.17 (19)
O1A—C1A—C2A—N1A0.0 (2)O1B—C1B—C2B—N1B0.5 (2)
C6A—C1A—C2A—N1A179.92 (11)C6B—C1B—C2B—N1B179.83 (11)
C1A—C2A—C3A—C4A0.80 (19)C1B—C2B—C3B—C4B0.92 (19)
N1A—C2A—C3A—C4A178.87 (11)N1B—C2B—C3B—C4B179.94 (11)
C2A—C3A—C4A—C5A1.30 (18)C2B—C3B—C4B—C5B0.13 (18)
C2A—C3A—C4A—C7A176.71 (11)C2B—C3B—C4B—C7B178.01 (11)
C3A—C4A—C5A—C6A0.77 (19)C3B—C4B—C5B—C6B0.89 (19)
C7A—C4A—C5A—C6A177.19 (12)C7B—C4B—C5B—C6B177.32 (12)
C4A—C5A—C6A—C1A0.3 (2)C4B—C5B—C6B—C1B0.6 (2)
O1A—C1A—C6A—C5A179.13 (12)O1B—C1B—C6B—C5B179.78 (12)
C2A—C1A—C6A—C5A0.8 (2)C2B—C1B—C6B—C5B0.4 (2)
C3A—C4A—C7A—N2A121.52 (13)C3B—C4B—C7B—N2B46.81 (16)
C5A—C4A—C7A—N2A60.54 (16)C5B—C4B—C7B—N2B135.07 (12)
C3A—C2A—N1A—O3A4.67 (18)C3B—C2B—N1B—O3B3.65 (18)
C1A—C2A—N1A—O3A175.66 (12)C1B—C2B—N1B—O3B177.30 (12)
C3A—C2A—N1A—O2A175.38 (12)C3B—C2B—N1B—O2B176.18 (11)
C1A—C2A—N1A—O2A4.30 (18)C1B—C2B—N1B—O2B2.86 (18)
C4A—C7A—N2A—C8A173.76 (12)C4B—C7B—N2B—C8B166.60 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···Cl1A0.922.233.1301 (11)167
N2A—H2B···Cl1B0.922.183.0898 (11)173
O1A—H1A···O2A0.841.892.5917 (14)140
O1A—H1A···Cl1Bi0.842.873.3918 (10)122
N2B—H2C···Cl1Aii0.922.173.0775 (11)168
N2B—H2D···Cl1Biii0.922.263.1671 (10)168
O1B—H1B···O2B0.841.882.5860 (14)141
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H11N2O3+·Cl
Mr218.64
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.7650 (2), 10.5922 (3), 13.5987 (4)
α, β, γ (°)70.262 (1), 78.368 (1), 76.459 (1)
V3)1014.27 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.48 × 0.39 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11798, 4901, 4057
Rint0.034
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.06
No. of reflections4901
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 1999), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···Cl1A0.922.233.1301 (11)166.7
N2A—H2B···Cl1B0.922.183.0898 (11)172.6
O1A—H1A···O2A0.841.892.5917 (14)140.2
O1A—H1A···Cl1Bi0.842.873.3918 (10)122.4
N2B—H2C···Cl1Aii0.922.173.0775 (11)168.0
N2B—H2D···Cl1Biii0.922.263.1671 (10)168.2
O1B—H1B···O2B0.841.882.5860 (14)141.1
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance in the acquisition of the crystallographic data. Aspen Pharmacare is acknowledged for their financial support.

References

First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJames, T. D., Sandanayake, K. R. A. S., Iuguchi, R. & Shinkai, S. (1995). J. Am. Chem. Soc. 117, 8982–8987.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds