organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(11R)-13-[2-(4-Hy­droxy­phen­yl)ethyl­amino]-4,5-ep­­oxy-11,13-di­hydro­costunolide monohydrate

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pcrooks@email.uky.edu

(Received 25 January 2008; accepted 5 February 2008; online 29 February 2008)

The title compound (systematic name: 12-{[2-(4-hydroxyphenyl)ethyl]aminomethyl}-4,8-dimethyl-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one monohydrate), C23H31NO4·H2O, was obtained by the reaction of tyramine with parthenolide. The configuration of the new chiral center in the title compound is R, establishing the stereospecificity of the amination reaction. The water molecule is disordered over three positions; the site occupancy factors are 0.45, 0.40 and 0.15.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Crooks et al. (2005[Crooks, P. A., Jordan, C. T. & Wei, X. (2005). US Patent Appl. Publ. Cont.-Part. US Ser. No. 888 274.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. D. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. Oxford University Press.]); Hewlett et al. (1996[Hewlett, M. J., Begley, M. J., Groenewegen, W. A., Heptinstall, S., Knight, D. W., May, J., Salan, U. & Toplis, D. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 1979-1986..]); Nasim et al. (2007a[Nasim, S., Parkin, S. & Crooks, P. A. (2007a). Acta Cryst. E63, o3922.],b[Nasim, S., Parkin, S. & Crooks, P. A. (2007b). Acta Cryst. E63, o4274.]).

[Scheme 1]

Experimental

Crystal data
  • C23H31NO4·H2O

  • Mr = 403.50

  • Monoclinic, P 21

  • a = 10.8307 (7) Å

  • b = 6.9478 (5) Å

  • c = 14.4835 (9) Å

  • β = 94.631 (3)°

  • V = 1086.32 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 90.0 (2) K

  • 0.25 × 0.10 × 0.03 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS in APEX2; ­Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.979

  • 13335 measured reflections

  • 3532 independent reflections

  • 3420 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.07

  • 3532 reflections

  • 276 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1365 Friedel pairs

  • Flack parameter: 0.12 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.94 (3) 2.22 (3) 2.979 (3) 137 (2)
O1′—H1′⋯O1W1i 0.84 1.75 2.568 (4) 164
O1′—H1′⋯O1W2i 0.84 2.01 2.832 (6) 166
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Parthenolide, is a germacrene sesquiterpene lactone. It has been isolated from several different species of plant in the Asteraceae (Compositae) family, feverfew (Tanacetum parthenium) being one of them. (Hewlett et al., 1996). The title compound was synthesized as part of an ongoing drug discovery effort (Crooks et al., 2005)and is the adduct of the neurotransmiter, tyramine and the cytotoxic sesquiterpene, parthenolide. This compound was found to crystallize as the monohydrate, in contrast to other structurally related parthenolide analogs (Nasim et al., 2007a, 2007b). The side-chain was found to be in a fully extented conformation. The absolute stereochemistry of the newly formed methine carbon at C-11 was found to be R, which is typical of such amine adducts of parthenolide (Nasim et al., 2007a, 2007b). Bond distances and angles within the molecule were quite regular with average normal bond lengths (Allen et al., 1987). A weak hydrogen bond (Desiraju et al., 1999) is observed between N-1H and O3 of the carbonyl oxygen of the 5-membered lactone ring (2.22 (3) A°, 2.97 (3) A°, 137.0 (2) °) (Table 1),

Related literature top

For related literature, see: Allen et al. (1987); Crooks et al. (2005); Desiraju & Steiner (1999); Hewlett et al. (1996); Nasim et al. (2007a,b).

Experimental top

The title compound was prepared utilizing the general procedure reported earlier (Nasim et al., 2007a, 2007b). Anal. (C23H31NO4. H2O): C 68.46, H 8.24, N 3.47%. Found C 68.20, H 7.94, N 3.41%.

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: APEX2 (Bruker–Nonius, 2004); data reduction: APEX2 (Bruker–Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram, viewed down the a axis; hydrogen atoms have been omitted for clarity.
12-{[2-(4-hydroxyphenyl)ethyl]aminomethyl}-4,8-dimethyl- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one monohydrate top
Crystal data top
C23H31NO4·H2OF(000) = 436
Mr = 403.50Dx = 1.234 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 5637 reflections
a = 10.8307 (7) Åθ = 3.1–68.0°
b = 6.9478 (5) ŵ = 0.70 mm1
c = 14.4835 (9) ÅT = 90 K
β = 94.631 (3)°Lath, colourless
V = 1086.32 (12) Å30.25 × 0.10 × 0.03 mm
Z = 2
Data collection top
Bruker X8 Proteum
diffractometer
3532 independent reflections
Radiation source: fine-focus rotating anode3420 reflections with I > 2σ(I)
Bruker Helios multilayer optics monochromatorRint = 0.031
Detector resolution: 18 pixels mm-1θmax = 68.1°, θmin = 3.1°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(SADABS in APEX2; Bruker–Nonius, 2004)
k = 85
Tmin = 0.763, Tmax = 0.979l = 1717
13335 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.347P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.009
3532 reflectionsΔρmax = 0.40 e Å3
276 parametersΔρmin = 0.21 e Å3
7 restraintsAbsolute structure: Flack (1983), 1365 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (6)
Crystal data top
C23H31NO4·H2OV = 1086.32 (12) Å3
Mr = 403.50Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.8307 (7) ŵ = 0.70 mm1
b = 6.9478 (5) ÅT = 90 K
c = 14.4835 (9) Å0.25 × 0.10 × 0.03 mm
β = 94.631 (3)°
Data collection top
Bruker X8 Proteum
diffractometer
3532 independent reflections
Absorption correction: multi-scan
(SADABS in APEX2; Bruker–Nonius, 2004)
3420 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.979Rint = 0.031
13335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.40 e Å3
S = 1.07Δρmin = 0.21 e Å3
3532 reflectionsAbsolute structure: Flack (1983), 1365 Friedel pairs
276 parametersAbsolute structure parameter: 0.12 (6)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

CIFCHECK squawks about H atoms being detached from their oxygen atom in the third disorder component of the water. They are are in fact 0.85Å from O1W3, but the occupancy factor is only 0.15. They were included so as to get the atom count correct, and no claim is made for their veracity.

This three-component disorder for the water is consistent with the fact that the crystals appeared to be cracking due to solvent loss. The actual crystal chosen was carefully cut so that it did not have any cracks, but still it is quite likely that the three-part disorder is related to this observed tendency for these crystals to dry and crack.

_publ_section_exptl_refinement: H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.95 Å (Csp2—H), 1.00 Å (R3CH), 0.99 Å (R2CH2), 0.98 Å (RCH3), 0.84 Å (OH) and 0.85 Å (OH2) except for the NH hydrogen coordinates, which were refined. Hydrogen atom Uiso(H) values were set to 1.2Ueq or 1.5Ueq (RCH3, OH, OH2) of the attached atom. Since the water molecule was severely disordered the hydrogen atoms were placed in reasonable but not necessarily correct positions, and were subsequently fixed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.37395 (12)0.7648 (2)0.49755 (9)0.0254 (3)
O20.49033 (12)0.7364 (2)0.33035 (10)0.0271 (3)
O30.63676 (15)0.7794 (3)0.23432 (11)0.0412 (4)
C10.25041 (19)0.2241 (3)0.48640 (15)0.0280 (4)
H10.32900.17140.50630.034*
C20.18591 (19)0.3303 (4)0.55824 (14)0.0307 (5)
H2A0.18610.25140.61520.037*
H2B0.09870.35460.53530.037*
C30.25190 (18)0.5226 (3)0.58044 (14)0.0273 (4)
H3A0.20130.60160.62000.033*
H3B0.33280.49790.61520.033*
C40.27179 (17)0.6305 (3)0.49340 (13)0.0235 (4)
C50.38514 (16)0.5853 (3)0.44868 (13)0.0219 (4)
H50.44000.48820.48240.026*
C60.39582 (17)0.5921 (3)0.34653 (13)0.0224 (4)
H60.31460.62960.31370.027*
C70.44268 (17)0.4046 (3)0.30577 (14)0.0237 (4)
H70.49610.33710.35520.028*
C80.34519 (19)0.2617 (3)0.26488 (14)0.0286 (4)
H8A0.27330.33580.23740.034*
H8B0.38070.19080.21400.034*
C90.2983 (2)0.1148 (3)0.33238 (15)0.0302 (5)
H9A0.25570.00980.29620.036*
H9B0.37050.05780.36880.036*
C100.21163 (19)0.1940 (3)0.39806 (14)0.0267 (4)
C110.52534 (18)0.4772 (3)0.23293 (13)0.0253 (4)
H110.47630.48150.17140.030*
C120.55874 (18)0.6778 (3)0.26267 (14)0.0285 (5)
C140.08422 (19)0.2379 (4)0.35502 (15)0.0350 (5)
H14A0.03320.28840.40240.053*
H14B0.04650.11990.32850.053*
H14C0.08960.33400.30600.053*
C150.15749 (18)0.7084 (3)0.44137 (15)0.0297 (5)
H15A0.12260.81120.47760.045*
H15B0.09640.60500.43080.045*
H15C0.17870.76000.38170.045*
C130.63833 (18)0.3509 (4)0.22548 (15)0.0314 (5)
H13A0.69190.35790.28410.038*
H13B0.61160.21550.21610.038*
N10.70913 (16)0.4104 (3)0.14878 (13)0.0315 (4)
H1N0.715 (2)0.545 (5)0.1522 (19)0.038*
C2'0.83004 (18)0.3144 (4)0.15110 (14)0.0316 (5)
H2'10.86670.30930.21590.038*
H2'20.88610.39130.11490.038*
C3'0.82123 (19)0.1106 (4)0.11202 (15)0.0340 (5)
H3'10.76320.03470.14700.041*
H3'20.78710.11600.04660.041*
C4'0.94557 (18)0.0102 (4)0.11730 (14)0.0289 (5)
C5'0.9675 (2)0.1565 (4)0.16744 (14)0.0332 (5)
H5'0.90270.21060.19950.040*
C6'1.0815 (2)0.2469 (4)0.17225 (15)0.0362 (5)
H6'1.09370.36320.20630.043*
C7'1.17797 (19)0.1682 (4)0.12744 (14)0.0367 (6)
C8'1.15766 (19)0.0002 (4)0.07758 (14)0.0350 (5)
H8'1.22310.05580.04690.042*
C9'1.04241 (19)0.0871 (4)0.07215 (14)0.0309 (5)
H9'1.02940.20170.03690.037*
O1'1.28929 (16)0.2601 (4)0.13551 (11)0.0526 (5)
H1'1.33250.22260.09340.079*
O1W10.5653 (4)0.2900 (9)0.0060 (3)0.0465 (12)0.45
H1W10.51240.22390.02060.070*0.45
H2W10.52950.39870.00440.070*0.45
O1W20.5563 (4)0.4210 (10)0.0128 (3)0.0465 (12)0.40
H1W20.48120.38470.02070.070*0.40
H2W20.54790.53540.00650.070*0.40
O1W30.5279 (11)0.0765 (18)0.0245 (7)0.036 (2)*0.15
H1W30.49280.02890.03670.054*0.15
H2W30.60440.05060.03490.054*0.15
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (6)0.0190 (8)0.0332 (7)0.0028 (6)0.0026 (5)0.0055 (6)
O20.0275 (7)0.0209 (8)0.0336 (7)0.0044 (6)0.0079 (5)0.0018 (6)
O30.0432 (9)0.0406 (11)0.0417 (9)0.0141 (8)0.0154 (7)0.0025 (8)
C10.0289 (9)0.0174 (11)0.0371 (11)0.0053 (8)0.0010 (8)0.0026 (9)
C20.0308 (10)0.0297 (12)0.0313 (10)0.0076 (10)0.0004 (8)0.0020 (9)
C30.0248 (9)0.0281 (13)0.0289 (10)0.0036 (9)0.0025 (7)0.0031 (9)
C40.0219 (9)0.0194 (11)0.0288 (9)0.0021 (8)0.0001 (7)0.0048 (8)
C50.0204 (9)0.0166 (10)0.0282 (9)0.0009 (7)0.0016 (7)0.0018 (8)
C60.0180 (8)0.0191 (11)0.0301 (10)0.0009 (7)0.0020 (7)0.0006 (8)
C70.0231 (9)0.0204 (11)0.0276 (9)0.0025 (8)0.0028 (7)0.0009 (8)
C80.0311 (10)0.0238 (12)0.0306 (10)0.0030 (9)0.0012 (8)0.0054 (9)
C90.0355 (11)0.0178 (12)0.0369 (11)0.0033 (9)0.0006 (8)0.0033 (9)
C100.0295 (10)0.0176 (11)0.0323 (10)0.0070 (8)0.0014 (8)0.0018 (8)
C110.0243 (9)0.0273 (12)0.0240 (9)0.0033 (8)0.0000 (7)0.0008 (8)
C120.0253 (9)0.0319 (13)0.0283 (10)0.0023 (9)0.0016 (8)0.0032 (9)
C140.0293 (10)0.0384 (14)0.0367 (11)0.0051 (10)0.0019 (8)0.0033 (10)
C150.0207 (9)0.0282 (12)0.0403 (11)0.0029 (8)0.0031 (8)0.0022 (9)
C130.0268 (10)0.0359 (13)0.0316 (10)0.0075 (9)0.0034 (8)0.0014 (9)
N10.0259 (9)0.0344 (12)0.0346 (9)0.0058 (8)0.0045 (7)0.0057 (8)
C2'0.0208 (9)0.0407 (15)0.0331 (10)0.0041 (9)0.0016 (8)0.0003 (10)
C3'0.0233 (10)0.0441 (15)0.0347 (10)0.0005 (10)0.0035 (8)0.0018 (10)
C4'0.0230 (10)0.0358 (13)0.0279 (10)0.0010 (9)0.0030 (7)0.0053 (9)
C5'0.0329 (10)0.0375 (14)0.0291 (10)0.0032 (10)0.0014 (8)0.0015 (10)
C6'0.0442 (12)0.0331 (13)0.0303 (10)0.0037 (11)0.0025 (9)0.0003 (10)
C7'0.0313 (10)0.0530 (17)0.0249 (9)0.0134 (11)0.0037 (8)0.0071 (10)
C8'0.0240 (10)0.0523 (16)0.0290 (10)0.0037 (10)0.0049 (8)0.0002 (10)
C9'0.0260 (10)0.0365 (14)0.0308 (10)0.0020 (9)0.0051 (8)0.0031 (10)
O1'0.0398 (9)0.0826 (15)0.0345 (9)0.0333 (10)0.0025 (7)0.0012 (9)
O1W10.0196 (11)0.088 (4)0.0315 (12)0.004 (2)0.0016 (9)0.010 (3)
O1W20.0196 (11)0.088 (4)0.0315 (12)0.004 (2)0.0016 (9)0.010 (3)
Geometric parameters (Å, º) top
O1—C51.444 (3)C14—H14C0.9800
O1—C41.445 (2)C15—H15A0.9800
O2—C121.339 (3)C15—H15B0.9800
O2—C61.465 (2)C15—H15C0.9800
O3—C121.199 (3)C13—N11.460 (3)
C1—C101.330 (3)C13—H13A0.9900
C1—C21.494 (3)C13—H13B0.9900
C1—H10.9500N1—C2'1.468 (3)
C2—C31.537 (3)N1—H1N0.94 (3)
C2—H2A0.9900C2'—C3'1.525 (4)
C2—H2B0.9900C2'—H2'10.9900
C3—C41.497 (3)C2'—H2'20.9900
C3—H3A0.9900C3'—C4'1.513 (3)
C3—H3B0.9900C3'—H3'10.9900
C4—C51.468 (3)C3'—H3'20.9900
C4—C151.498 (3)C4'—C5'1.377 (4)
C5—C61.494 (3)C4'—C9'1.387 (3)
C5—H51.0000C5'—C6'1.382 (3)
C6—C71.533 (3)C5'—H5'0.9500
C6—H61.0000C6'—C7'1.386 (3)
C7—C111.524 (3)C6'—H6'0.9500
C7—C81.533 (3)C7'—O1'1.361 (3)
C7—H71.0000C7'—C8'1.381 (4)
C8—C91.528 (3)C8'—C9'1.384 (3)
C8—H8A0.9900C8'—H8'0.9500
C8—H8B0.9900C9'—H9'0.9500
C9—C101.494 (3)O1'—H1'0.8400
C9—H9A0.9900O1W1—H1W10.8500
C9—H9B0.9900O1W1—H2W10.8500
C10—C141.499 (3)O1W1—H1W21.1302
C11—C121.494 (3)O1W2—H2W10.3580
C11—C131.517 (3)O1W2—H1W20.8500
C11—H111.0000O1W2—H2W20.8500
C14—H14A0.9800O1W3—H1W30.8500
C14—H14B0.9800O1W3—H2W30.8500
C5—O1—C461.06 (12)C7—C11—H11109.1
C12—O2—C6110.10 (16)O3—C12—O2121.2 (2)
C10—C1—C2128.2 (2)O3—C12—C11127.7 (2)
C10—C1—H1115.9O2—C12—C11111.07 (17)
C2—C1—H1115.9C10—C14—H14A109.5
C1—C2—C3109.84 (17)C10—C14—H14B109.5
C1—C2—H2A109.7H14A—C14—H14B109.5
C3—C2—H2A109.7C10—C14—H14C109.5
C1—C2—H2B109.7H14A—C14—H14C109.5
C3—C2—H2B109.7H14B—C14—H14C109.5
H2A—C2—H2B108.2C4—C15—H15A109.5
C4—C3—C2110.81 (16)C4—C15—H15B109.5
C4—C3—H3A109.5H15A—C15—H15B109.5
C2—C3—H3A109.5C4—C15—H15C109.5
C4—C3—H3B109.5H15A—C15—H15C109.5
C2—C3—H3B109.5H15B—C15—H15C109.5
H3A—C3—H3B108.1N1—C13—C11111.50 (19)
O1—C4—C559.43 (12)N1—C13—H13A109.3
O1—C4—C3116.76 (16)C11—C13—H13A109.3
C5—C4—C3116.55 (18)N1—C13—H13B109.3
O1—C4—C15112.73 (17)C11—C13—H13B109.3
C5—C4—C15122.83 (17)H13A—C13—H13B108.0
C3—C4—C15115.82 (17)C13—N1—C2'112.11 (18)
O1—C5—C459.51 (12)C13—N1—H1N106.4 (16)
O1—C5—C6118.33 (17)C2'—N1—H1N113.1 (16)
C4—C5—C6124.39 (16)N1—C2'—C3'112.61 (18)
O1—C5—H5114.5N1—C2'—H2'1109.1
C4—C5—H5114.5C3'—C2'—H2'1109.1
C6—C5—H5114.5N1—C2'—H2'2109.1
O2—C6—C5106.91 (15)C3'—C2'—H2'2109.1
O2—C6—C7105.23 (14)H2'1—C2'—H2'2107.8
C5—C6—C7114.15 (17)C4'—C3'—C2'112.36 (18)
O2—C6—H6110.1C4'—C3'—H3'1109.1
C5—C6—H6110.1C2'—C3'—H3'1109.1
C7—C6—H6110.1C4'—C3'—H3'2109.1
C11—C7—C6102.52 (17)C2'—C3'—H3'2109.1
C11—C7—C8111.82 (16)H3'1—C3'—H3'2107.9
C6—C7—C8117.38 (16)C5'—C4'—C9'117.9 (2)
C11—C7—H7108.2C5'—C4'—C3'121.9 (2)
C6—C7—H7108.2C9'—C4'—C3'120.2 (2)
C8—C7—H7108.2C4'—C5'—C6'121.6 (2)
C9—C8—C7116.07 (17)C4'—C5'—H5'119.2
C9—C8—H8A108.3C6'—C5'—H5'119.2
C7—C8—H8A108.3C5'—C6'—C7'120.1 (2)
C9—C8—H8B108.3C5'—C6'—H6'120.0
C7—C8—H8B108.3C7'—C6'—H6'120.0
H8A—C8—H8B107.4O1'—C7'—C8'123.0 (2)
C10—C9—C8114.82 (19)O1'—C7'—C6'118.1 (2)
C10—C9—H9A108.6C8'—C7'—C6'118.9 (2)
C8—C9—H9A108.6C7'—C8'—C9'120.3 (2)
C10—C9—H9B108.6C7'—C8'—H8'119.8
C8—C9—H9B108.6C9'—C8'—H8'119.8
H9A—C9—H9B107.5C8'—C9'—C4'121.1 (2)
C1—C10—C9120.28 (19)C8'—C9'—H9'119.4
C1—C10—C14125.2 (2)C4'—C9'—H9'119.4
C9—C10—C14114.49 (18)C7'—O1'—H1'109.5
C12—C11—C13112.47 (17)H1W1—O1W1—H2W198.2
C12—C11—C7104.54 (17)H1W1—O1W1—H1W280.6
C13—C11—C7112.35 (18)H2W1—O1W2—H2W2100.5
C12—C11—H11109.1H1W2—O1W2—H2W2101.3
C13—C11—H11109.1H1W3—O1W3—H2W3103.2
C10—C1—C2—C3108.4 (2)C8—C9—C10—C1473.6 (2)
C1—C2—C3—C449.9 (2)C6—C7—C11—C1221.76 (18)
C5—O1—C4—C3106.5 (2)C8—C7—C11—C12148.37 (17)
C5—O1—C4—C15115.80 (19)C6—C7—C11—C13144.01 (17)
C2—C3—C4—O1154.25 (17)C8—C7—C11—C1389.4 (2)
C2—C3—C4—C586.9 (2)C6—O2—C12—O3175.4 (2)
C2—C3—C4—C1569.3 (2)C6—O2—C12—C115.9 (2)
C4—O1—C5—C6115.29 (19)C13—C11—C12—O345.5 (3)
C3—C4—C5—O1106.82 (19)C7—C11—C12—O3167.7 (2)
C15—C4—C5—O198.8 (2)C13—C11—C12—O2133.00 (18)
O1—C4—C5—C6105.3 (2)C7—C11—C12—O210.8 (2)
C3—C4—C5—C6147.85 (19)C12—C11—C13—N168.5 (2)
C15—C4—C5—C66.5 (3)C7—C11—C13—N1173.84 (18)
C12—O2—C6—C5141.89 (17)C11—C13—N1—C2'169.26 (19)
C12—O2—C6—C720.2 (2)C13—N1—C2'—C3'80.1 (2)
O1—C5—C6—O248.0 (2)N1—C2'—C3'—C4'178.24 (18)
C4—C5—C6—O2118.8 (2)C2'—C3'—C4'—C5'119.0 (2)
O1—C5—C6—C7163.93 (15)C2'—C3'—C4'—C9'59.9 (3)
C4—C5—C6—C7125.3 (2)C9'—C4'—C5'—C6'0.8 (3)
O2—C6—C7—C1125.34 (18)C3'—C4'—C5'—C6'179.7 (2)
C5—C6—C7—C11142.24 (16)C4'—C5'—C6'—C7'1.3 (3)
O2—C6—C7—C8148.29 (17)C5'—C6'—C7'—O1'178.7 (2)
C5—C6—C7—C894.8 (2)C5'—C6'—C7'—C8'0.6 (3)
C11—C7—C8—C9153.28 (18)O1'—C7'—C8'—C9'179.8 (2)
C6—C7—C8—C988.7 (2)C6'—C7'—C8'—C9'0.4 (3)
C7—C8—C9—C1074.3 (2)C7'—C8'—C9'—C4'0.9 (3)
C2—C1—C10—C9169.1 (2)C5'—C4'—C9'—C8'0.3 (3)
C2—C1—C10—C149.4 (4)C3'—C4'—C9'—C8'178.7 (2)
C8—C9—C10—C1105.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.94 (3)2.22 (3)2.979 (3)137 (2)
O1—H1···O1W1i0.841.752.568 (4)164
O1—H1···O1W2i0.842.012.832 (6)166
Symmetry code: (i) x+2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC23H31NO4·H2O
Mr403.50
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)10.8307 (7), 6.9478 (5), 14.4835 (9)
β (°) 94.631 (3)
V3)1086.32 (12)
Z2
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.25 × 0.10 × 0.03
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS in APEX2; Bruker–Nonius, 2004)
Tmin, Tmax0.763, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
13335, 3532, 3420
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.07
No. of reflections3532
No. of parameters276
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.21
Absolute structureFlack (1983), 1365 Friedel pairs
Absolute structure parameter0.12 (6)

Computer programs: APEX2 (Bruker–Nonius, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.94 (3)2.22 (3)2.979 (3)137 (2)
O1'—H1'···O1W1i0.841.752.568 (4)164.4
O1'—H1'···O1W2i0.842.012.832 (6)166.3
Symmetry code: (i) x+2, y1/2, z.
 

Acknowledgements

Financial support from the Kentucky Lung Cancer Research Program is gratefully acknowleged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker–Nonius (2004). APEX2. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrooks, P. A., Jordan, C. T. & Wei, X. (2005). US Patent Appl. Publ. Cont.-Part. US Ser. No. 888 274.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. D. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. Oxford University Press.  Google Scholar
First citationHewlett, M. J., Begley, M. J., Groenewegen, W. A., Heptinstall, S., Knight, D. W., May, J., Salan, U. & Toplis, D. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 1979–1986..  CrossRef Google Scholar
First citationNasim, S., Parkin, S. & Crooks, P. A. (2007a). Acta Cryst. E63, o3922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasim, S., Parkin, S. & Crooks, P. A. (2007b). Acta Cryst. E63, o4274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds