organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(11R,13R)-13-(Tetra­lin-1-ylamino)-4,5-ep­­oxy-11,13-di­hydro­costunolide

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pcrooks@email.uky.edu

(Received 25 January 2008; accepted 30 January 2008; online 29 February 2008)

The title compound [systematic name: (12R)-4,8-dimethyl-12-[(1′R)-1′,2′,3′,4′-tetrahydro-1′-naphthyl)aminomethyl]-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one}, C25H33NO3, was formed from the reaction of (1R)-1-amino­tetra­lin with parthenolide in methano­lic solution. X-ray crystal structure analysis determined that the configuration of the new chiral center in the title compound was R.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Crooks et al. (2005[Crooks, P. A., Jordan, C. T. & Wei, X. (2005). US Patent Appl. Publ. Cont.-in-Part of US Ser. No. 888, 274.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. D. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. p. 13. Oxford University Press.]); Nasim et al. (2007a[Nasim, S., Parkin, S. & Crooks, P. A. (2007a). Acta Cryst. E63, o3922.],b[Nasim, S., Parkin, S. & Crooks, P. A. (2007b). Acta Cryst. E63, o4274.]).

[Scheme 1]

Experimental

Crystal data
  • C25H33NO3

  • Mr = 395.52

  • Orthorhombic, P 21 21 21

  • a = 8.4952 (13) Å

  • b = 13.1852 (19) Å

  • c = 18.771 (3) Å

  • V = 2102.6 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 90.0 (2) K

  • 0.30 × 0.28 × 0.18 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS in APEX2; Bruker Nonius, 2004[Bruker Nonius (2004). APEX2. Bruker Nonius AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.782, Tmax = 0.894

  • 26461 measured reflections

  • 3849 independent reflections

  • 3813 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.06

  • 3849 reflections

  • 269 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1623 Friedel pairs

  • Flack parameter: 0.06 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 1.01 (3) 2.32 (3) 2.992 (2) 123.5 (18)

Data collection: APEX2 (Bruker Nonius, 2004[Bruker Nonius (2004). APEX2. Bruker Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Due to the interesting biological activity of parthenolide, we have synthesized a series of amino analogs of parthenolide (Crooks et al., 2005). In order to confirm the configuration of the newly formed methine carbon at C-11 in these molecules, and to obtain more detailed information on the structural conformation of the molecule that may be of value in structure activity relationship studies, the X-ray structure determination of the title compound has been carried out and the results are presented below. The absolute stereochemistry of the newly formed methine at C-11 was found to be R, which is typical in structurally related C-11 aminoparthenolide analogs that result from the reaction of an secondary amino compound with parthenolide (Nasim et al., 2007a, 2007b). Bond distances and angles within the molecule were quite regular with normal bond lengths (Allen et al., 1987). A hydrogen bond is observed between N-1H and O3 of the carbonyl oxygen of the 5-membered lactone ring (Desiraju et al.,1999) (2.32 (3) A°, 2.99 (2) A°, 123.5 (18)°) (Table 1).

Related literature top

For related literature, see: Allen et al. (1987); Crooks et al. (2005); Desiraju & Steiner (1999); Nasim et al. (2007a,b).

Experimental top

The title compound was prepared utilizing the general procedure reported earlier (Nasim et al., 2007a, 2007b).

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.95Å (Csp2—H), 1.00Å (R3CH), 0.99Å (R2CH2), 0.98Å (RCH3) except for the NH hydrogen coordinates, which were refined. Uiso(H) values were set to 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom.

Computing details top

Data collection: APEX2 (Bruker Nonius, 2004); cell refinement: APEX2 (Bruker Nonius, 2004); data reduction: APEX2 (Bruker Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram, viewed down the a axis, hydrogen atoms have been omitted for clarity.
(12R)-4,8-dimethyl-12-[(1'R)-1',2',3',4'-tetrahydro-1'-naphthyl)aminomethyl]- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C25H33NO3F(000) = 856
Mr = 395.52Dx = 1.249 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9023 reflections
a = 8.4952 (13) Åθ = 4.1–68.6°
b = 13.1852 (19) ŵ = 0.64 mm1
c = 18.771 (3) ÅT = 90 K
V = 2102.6 (6) Å3Cut block, colourless
Z = 40.30 × 0.28 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
3849 independent reflections
Radiation source: fine-focus rotating anode3813 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.033
Detector resolution: 18 pixels mm-1θmax = 68.6°, θmin = 4.1°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(SADABS in APEX2; Bruker Nonius, 2004)
k = 1515
Tmin = 0.782, Tmax = 0.894l = 2222
26461 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.7419P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.34 e Å3
3849 reflectionsΔρmin = 0.22 e Å3
269 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0147 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (5)
Crystal data top
C25H33NO3V = 2102.6 (6) Å3
Mr = 395.52Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.4952 (13) ŵ = 0.64 mm1
b = 13.1852 (19) ÅT = 90 K
c = 18.771 (3) Å0.30 × 0.28 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
3849 independent reflections
Absorption correction: multi-scan
(SADABS in APEX2; Bruker Nonius, 2004)
3813 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.894Rint = 0.033
26461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110Δρmax = 0.34 e Å3
S = 1.06Δρmin = 0.22 e Å3
3849 reflectionsAbsolute structure: Flack (1983)
269 parametersAbsolute structure parameter: 0.06 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5361 (2)0.68044 (12)0.44880 (10)0.0365 (4)
H1N0.597 (3)0.6648 (19)0.4042 (13)0.044*
O10.79418 (15)0.18237 (9)0.50676 (7)0.0315 (3)
O20.76245 (16)0.38600 (10)0.45744 (7)0.0363 (3)
O30.7062 (2)0.50746 (12)0.38018 (8)0.0508 (4)
C10.5083 (2)0.23023 (14)0.67140 (10)0.0317 (4)
H10.42170.23890.64000.038*
C20.5720 (3)0.12589 (15)0.67700 (11)0.0389 (5)
H2A0.48510.07760.68620.047*
H2B0.64680.12200.71730.047*
C30.6562 (3)0.09719 (14)0.60747 (11)0.0355 (4)
H3A0.71940.03510.61520.043*
H3B0.57700.08240.57020.043*
C40.7615 (2)0.18070 (13)0.58256 (9)0.0286 (4)
C50.6906 (2)0.25699 (13)0.53651 (9)0.0259 (4)
H50.57680.24490.52600.031*
C60.7381 (2)0.36493 (13)0.53249 (10)0.0275 (4)
H60.83750.37640.55980.033*
C70.6115 (2)0.43955 (12)0.55609 (10)0.0264 (4)
H70.50660.40920.54490.032*
C80.6106 (2)0.47212 (14)0.63395 (10)0.0339 (4)
H8A0.58340.54500.63610.041*
H8B0.71860.46460.65310.041*
C90.4981 (3)0.41421 (15)0.68229 (10)0.0358 (4)
H9A0.47750.45550.72540.043*
H9B0.39670.40520.65710.043*
C100.5572 (2)0.31281 (15)0.70481 (10)0.0319 (4)
C110.6388 (2)0.52750 (13)0.50509 (10)0.0316 (4)
H110.72220.57230.52570.038*
C120.7038 (3)0.47736 (15)0.44038 (11)0.0368 (4)
C130.4960 (2)0.59112 (14)0.48985 (11)0.0341 (4)
H13A0.41810.55020.46310.041*
H13B0.44700.61210.53540.041*
C140.6724 (3)0.31561 (18)0.76475 (11)0.0470 (5)
H14A0.70630.24640.77600.070*
H14B0.62260.34600.80670.070*
H14C0.76390.35630.75090.070*
C150.9019 (2)0.20263 (16)0.62710 (11)0.0378 (5)
H15A0.96610.14120.63150.057*
H15B0.86790.22470.67450.057*
H15C0.96420.25640.60470.057*
C2'0.4037 (2)0.74860 (14)0.43624 (11)0.0334 (4)
H2'0.36480.77200.48380.040*
C3'0.4645 (2)0.84025 (14)0.39714 (10)0.0299 (4)
C4'0.5552 (2)0.90996 (15)0.43477 (11)0.0352 (4)
H4'0.57740.89750.48360.042*
C5'0.6133 (2)0.99567 (15)0.40354 (11)0.0359 (4)
H5'0.67591.04190.43010.043*
C6'0.5793 (2)1.01419 (15)0.33243 (11)0.0336 (4)
H6'0.61791.07380.31000.040*
C7'0.4899 (2)0.94620 (15)0.29450 (10)0.0329 (4)
H7'0.46760.95930.24580.040*
C8'0.4317 (2)0.85882 (14)0.32608 (10)0.0306 (4)
C9'0.3252 (2)0.79086 (16)0.28324 (10)0.0365 (4)
H9'10.37100.78070.23530.044*
H9'20.22160.82420.27730.044*
C10'0.3021 (3)0.68777 (16)0.31904 (11)0.0398 (5)
H10A0.21490.65080.29560.048*
H10B0.39910.64680.31420.048*
C11'0.2645 (2)0.70309 (14)0.39664 (10)0.0346 (4)
H11A0.23640.63710.41840.042*
H11B0.17250.74880.40120.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0365 (9)0.0270 (8)0.0461 (9)0.0004 (7)0.0010 (7)0.0058 (7)
O10.0324 (6)0.0278 (6)0.0343 (6)0.0068 (6)0.0029 (5)0.0040 (5)
O20.0362 (7)0.0304 (7)0.0421 (7)0.0045 (6)0.0123 (6)0.0074 (6)
O30.0659 (11)0.0398 (8)0.0465 (9)0.0060 (8)0.0143 (8)0.0147 (7)
C10.0326 (9)0.0326 (9)0.0299 (8)0.0051 (8)0.0050 (7)0.0005 (7)
C20.0499 (12)0.0284 (9)0.0383 (10)0.0087 (9)0.0034 (9)0.0038 (8)
C30.0433 (11)0.0207 (8)0.0424 (11)0.0012 (8)0.0013 (9)0.0006 (8)
C40.0293 (9)0.0231 (8)0.0333 (9)0.0058 (7)0.0009 (7)0.0009 (7)
C50.0229 (8)0.0237 (8)0.0311 (8)0.0018 (7)0.0010 (7)0.0026 (7)
C60.0226 (8)0.0251 (8)0.0347 (9)0.0021 (7)0.0016 (7)0.0040 (7)
C70.0246 (8)0.0195 (8)0.0350 (9)0.0003 (7)0.0022 (7)0.0006 (7)
C80.0423 (11)0.0220 (8)0.0376 (10)0.0012 (8)0.0042 (8)0.0033 (8)
C90.0395 (11)0.0324 (10)0.0355 (10)0.0075 (9)0.0057 (8)0.0070 (8)
C100.0338 (10)0.0320 (9)0.0299 (9)0.0001 (8)0.0051 (8)0.0013 (7)
C110.0308 (9)0.0213 (8)0.0427 (10)0.0030 (7)0.0009 (8)0.0039 (8)
C120.0364 (10)0.0291 (9)0.0448 (11)0.0018 (8)0.0051 (8)0.0089 (8)
C130.0346 (10)0.0239 (8)0.0438 (10)0.0001 (8)0.0017 (8)0.0043 (8)
C140.0593 (14)0.0448 (12)0.0369 (10)0.0012 (11)0.0121 (10)0.0034 (9)
C150.0315 (10)0.0373 (10)0.0444 (11)0.0078 (8)0.0088 (8)0.0016 (8)
C2'0.0320 (10)0.0286 (9)0.0395 (10)0.0020 (8)0.0002 (8)0.0009 (8)
C3'0.0257 (8)0.0277 (9)0.0364 (9)0.0022 (7)0.0014 (8)0.0005 (7)
C4'0.0334 (10)0.0326 (10)0.0395 (10)0.0022 (8)0.0060 (8)0.0041 (8)
C5'0.0299 (9)0.0312 (9)0.0466 (11)0.0040 (8)0.0008 (8)0.0013 (8)
C6'0.0263 (9)0.0292 (9)0.0454 (10)0.0008 (8)0.0033 (8)0.0070 (8)
C7'0.0300 (9)0.0350 (10)0.0338 (9)0.0037 (8)0.0022 (8)0.0041 (8)
C8'0.0257 (9)0.0290 (9)0.0372 (10)0.0047 (7)0.0033 (8)0.0031 (8)
C9'0.0335 (10)0.0414 (11)0.0346 (9)0.0054 (9)0.0026 (8)0.0099 (8)
C10'0.0389 (11)0.0366 (10)0.0439 (11)0.0079 (9)0.0013 (9)0.0101 (9)
C11'0.0334 (9)0.0290 (9)0.0415 (10)0.0010 (8)0.0005 (8)0.0021 (8)
Geometric parameters (Å, º) top
N1—C131.448 (2)C11—C121.489 (3)
N1—C2'1.459 (2)C11—C131.503 (3)
N1—H1N1.01 (3)C11—H111.0000
O1—C51.433 (2)C13—H13A0.9900
O1—C41.450 (2)C13—H13B0.9900
O2—C121.342 (2)C14—H14A0.9800
O2—C61.451 (2)C14—H14B0.9800
O3—C121.198 (2)C14—H14C0.9800
C1—C101.324 (3)C15—H15A0.9800
C1—C21.482 (3)C15—H15B0.9800
C1—H10.9500C15—H15C0.9800
C2—C31.536 (3)C2'—C3'1.505 (3)
C2—H2A0.9900C2'—C11'1.521 (3)
C2—H2B0.9900C2'—H2'1.0000
C3—C41.494 (3)C3'—C8'1.384 (3)
C3—H3A0.9900C3'—C4'1.392 (3)
C3—H3B0.9900C4'—C5'1.365 (3)
C4—C51.457 (2)C4'—H4'0.9500
C4—C151.485 (3)C5'—C6'1.387 (3)
C5—C61.481 (2)C5'—H5'0.9500
C5—H51.0000C6'—C7'1.374 (3)
C6—C71.523 (2)C6'—H6'0.9500
C6—H61.0000C7'—C8'1.387 (3)
C7—C111.522 (2)C7'—H7'0.9500
C7—C81.523 (3)C8'—C9'1.506 (3)
C7—H71.0000C9'—C10'1.529 (3)
C8—C91.523 (3)C9'—H9'10.9900
C8—H8A0.9900C9'—H9'20.9900
C8—H8B0.9900C10'—C11'1.505 (3)
C9—C101.489 (3)C10'—H10A0.9900
C9—H9A0.9900C10'—H10B0.9900
C9—H9B0.9900C11'—H11A0.9900
C10—C141.492 (3)C11'—H11B0.9900
C13—N1—C2'113.94 (16)C7—C11—H11108.4
C13—N1—H1N113.4 (14)O3—C12—O2121.07 (19)
C2'—N1—H1N113.0 (14)O3—C12—C11128.96 (19)
C5—O1—C460.70 (11)O2—C12—C11109.95 (16)
C12—O2—C6110.53 (15)N1—C13—C11111.42 (16)
C10—C1—C2127.98 (19)N1—C13—H13A109.3
C10—C1—H1116.0C11—C13—H13A109.3
C2—C1—H1116.0N1—C13—H13B109.3
C1—C2—C3109.79 (16)C11—C13—H13B109.3
C1—C2—H2A109.7H13A—C13—H13B108.0
C3—C2—H2A109.7C10—C14—H14A109.5
C1—C2—H2B109.7C10—C14—H14B109.5
C3—C2—H2B109.7H14A—C14—H14B109.5
H2A—C2—H2B108.2C10—C14—H14C109.5
C4—C3—C2111.31 (15)H14A—C14—H14C109.5
C4—C3—H3A109.4H14B—C14—H14C109.5
C2—C3—H3A109.4C4—C15—H15A109.5
C4—C3—H3B109.4C4—C15—H15B109.5
C2—C3—H3B109.4H15A—C15—H15B109.5
H3A—C3—H3B108.0C4—C15—H15C109.5
O1—C4—C559.08 (11)H15A—C15—H15C109.5
O1—C4—C15113.32 (15)H15B—C15—H15C109.5
C5—C4—C15122.12 (16)N1—C2'—C3'108.01 (15)
O1—C4—C3115.67 (15)N1—C2'—C11'115.82 (16)
C5—C4—C3116.57 (16)C3'—C2'—C11'110.19 (16)
C15—C4—C3116.63 (17)N1—C2'—H2'107.5
O1—C5—C460.22 (11)C3'—C2'—H2'107.5
O1—C5—C6118.22 (15)C11'—C2'—H2'107.5
C4—C5—C6125.54 (16)C8'—C3'—C4'118.90 (17)
O1—C5—H5114.0C8'—C3'—C2'122.89 (17)
C4—C5—H5114.0C4'—C3'—C2'118.20 (17)
C6—C5—H5114.0C5'—C4'—C3'121.92 (19)
O2—C6—C5105.81 (15)C5'—C4'—H4'119.0
O2—C6—C7105.04 (14)C3'—C4'—H4'119.0
C5—C6—C7114.46 (14)C4'—C5'—C6'118.93 (19)
O2—C6—H6110.4C4'—C5'—H5'120.5
C5—C6—H6110.4C6'—C5'—H5'120.5
C7—C6—H6110.4C7'—C6'—C5'119.91 (18)
C11—C7—C6101.64 (14)C7'—C6'—H6'120.0
C11—C7—C8112.93 (15)C5'—C6'—H6'120.0
C6—C7—C8117.69 (15)C6'—C7'—C8'121.19 (18)
C11—C7—H7108.0C6'—C7'—H7'119.4
C6—C7—H7108.0C8'—C7'—H7'119.4
C8—C7—H7108.0C3'—C8'—C7'119.15 (18)
C7—C8—C9115.68 (16)C3'—C8'—C9'122.00 (17)
C7—C8—H8A108.4C7'—C8'—C9'118.71 (17)
C9—C8—H8A108.4C8'—C9'—C10'111.81 (17)
C7—C8—H8B108.4C8'—C9'—H9'1109.3
C9—C8—H8B108.4C10'—C9'—H9'1109.3
H8A—C8—H8B107.4C8'—C9'—H9'2109.3
C10—C9—C8114.03 (16)C10'—C9'—H9'2109.3
C10—C9—H9A108.7H9'1—C9'—H9'2107.9
C8—C9—H9A108.7C11'—C10'—C9'109.47 (16)
C10—C9—H9B108.7C11'—C10'—H10A109.8
C8—C9—H9B108.7C9'—C10'—H10A109.8
H9A—C9—H9B107.6C11'—C10'—H10B109.8
C1—C10—C9119.88 (18)C9'—C10'—H10B109.8
C1—C10—C14125.72 (19)H10A—C10'—H10B108.2
C9—C10—C14114.40 (17)C10'—C11'—C2'111.16 (17)
C12—C11—C13113.08 (17)C10'—C11'—H11A109.4
C12—C11—C7103.38 (14)C2'—C11'—H11A109.4
C13—C11—C7114.96 (16)C10'—C11'—H11B109.4
C12—C11—H11108.4C2'—C11'—H11B109.4
C13—C11—H11108.4H11A—C11'—H11B108.0
C10—C1—C2—C3109.7 (2)C8—C7—C11—C1380.1 (2)
C1—C2—C3—C445.8 (2)C6—O2—C12—O3176.92 (19)
C5—O1—C4—C15114.62 (18)C6—O2—C12—C112.1 (2)
C5—O1—C4—C3106.90 (17)C13—C11—C12—O333.4 (3)
C2—C3—C4—O1155.15 (16)C7—C11—C12—O3158.4 (2)
C2—C3—C4—C588.5 (2)C13—C11—C12—O2145.45 (17)
C2—C3—C4—C1567.8 (2)C7—C11—C12—O220.5 (2)
C4—O1—C5—C6116.94 (18)C2'—N1—C13—C11176.27 (16)
C15—C4—C5—O199.73 (18)C12—C11—C13—N169.3 (2)
C3—C4—C5—O1105.36 (17)C7—C11—C13—N1172.34 (15)
O1—C4—C5—C6105.11 (19)C13—N1—C2'—C3'176.64 (16)
C15—C4—C5—C65.4 (3)C13—N1—C2'—C11'59.3 (2)
C3—C4—C5—C6149.53 (17)N1—C2'—C3'—C8'108.4 (2)
C12—O2—C6—C5138.80 (16)C11'—C2'—C3'—C8'19.0 (2)
C12—O2—C6—C717.36 (19)N1—C2'—C3'—C4'72.8 (2)
O1—C5—C6—O256.9 (2)C11'—C2'—C3'—C4'159.81 (17)
C4—C5—C6—O2128.86 (18)C8'—C3'—C4'—C5'0.3 (3)
O1—C5—C6—C7172.03 (14)C2'—C3'—C4'—C5'179.21 (18)
C4—C5—C6—C7115.99 (19)C3'—C4'—C5'—C6'0.7 (3)
O2—C6—C7—C1128.52 (17)C4'—C5'—C6'—C7'0.6 (3)
C5—C6—C7—C11144.12 (16)C5'—C6'—C7'—C8'0.3 (3)
O2—C6—C7—C8152.39 (15)C4'—C3'—C8'—C7'0.1 (3)
C5—C6—C7—C892.0 (2)C2'—C3'—C8'—C7'178.76 (17)
C11—C7—C8—C9145.45 (17)C4'—C3'—C8'—C9'175.66 (18)
C6—C7—C8—C996.5 (2)C2'—C3'—C8'—C9'3.2 (3)
C7—C8—C9—C1078.9 (2)C6'—C7'—C8'—C3'0.1 (3)
C2—C1—C10—C9168.58 (19)C6'—C7'—C8'—C9'175.83 (18)
C2—C1—C10—C1410.4 (3)C3'—C8'—C9'—C10'17.3 (3)
C8—C9—C10—C199.0 (2)C7'—C8'—C9'—C10'167.10 (17)
C8—C9—C10—C1480.1 (2)C8'—C9'—C10'—C11'47.4 (2)
C6—C7—C11—C1229.12 (18)C9'—C10'—C11'—C2'66.1 (2)
C8—C7—C11—C12156.16 (16)N1—C2'—C11'—C10'72.9 (2)
C6—C7—C11—C13152.84 (16)C3'—C2'—C11'—C10'50.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O31.01 (3)2.32 (3)2.992 (2)123.5 (18)

Experimental details

Crystal data
Chemical formulaC25H33NO3
Mr395.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)8.4952 (13), 13.1852 (19), 18.771 (3)
V3)2102.6 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.30 × 0.28 × 0.18
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS in APEX2; Bruker Nonius, 2004)
Tmin, Tmax0.782, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
26461, 3849, 3813
Rint0.033
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.06
No. of reflections3849
No. of parameters269
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.22
Absolute structureFlack (1983)
Absolute structure parameter0.06 (5)

Computer programs: APEX2 (Bruker Nonius, 2004), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O31.01 (3)2.32 (3)2.992 (2)123.5 (18)
 

Acknowledgements

Financial support from the Kentucky Lung Cancer Research Program is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker Nonius (2004). APEX2. Bruker Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrooks, P. A., Jordan, C. T. & Wei, X. (2005). US Patent Appl. Publ. Cont.-in-Part of US Ser. No. 888, 274.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. D. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. p. 13. Oxford University Press.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNasim, S., Parkin, S. & Crooks, P. A. (2007a). Acta Cryst. E63, o3922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasim, S., Parkin, S. & Crooks, P. A. (2007b). Acta Cryst. E63, o4274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds