metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N-Bis[2-(tri­methyl­silylamino)eth­yl]-N′-(tri­methyl­silyl)ethane-1,2-diamin­ato(3–)-κ4N}methyl­zirconium(IV)

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA, and bDepartment of Chemistry, University of Vermont, Burlington, VT 05405, USA
*Correspondence e-mail: rory.waterman@uvm.edu

(Received 6 February 2008; accepted 11 February 2008; online 15 February 2008)

The title compound, [Zr(CH3)(C15H39N4Si3)], is a unique example of a triamido­amine-supported zirconium–methyl complex that crystallized as a monomer with trigonal–bipyramidal geometry at zirconium, featuring a Zr—C bond of 2.2963 (16) Å.

Related literature

For recent applications of (N3N)ZrMe in catalysis, see: Waterman (2007[Waterman, R. (2007). Organometallics, 26, 2492-2494.]); Roering et al. (2007[Roering, A. J., MacMillan, S. N., Tanski, J. M. & Waterman, R. (2007). Inorg. Chem. 46, 6855-6857.], 2008[Roering, A. J., Davidson, J. J., MacMillan, S. N., Tanski, J. M. & Waterman, R. (2008). Dalton Trans. In the press.]). For examples of structurally characterized triamido­amine-supported zirconium complexes, see: Duan et al. (1995[Duan, Z., Naiini, A. A., Lee, J.-H. & Verkade, J. G. (1995). Inorg. Chem. 34, 5477-5482.]); Morton et al. (1999[Morton, C., Munslow, I. J., Sanders, C. J., Alcock, N. W. & Scott, P. (1999). Organometallics, 18, 4608-4613.], 2000[Morton, C., Gillespie, K. M., Sanders, C. J. & Scott, P. (2000). J. Organomet. Chem. 606, 141-146.]); MacMillan et al. (2007[MacMillan, S. N., Tanski, J. M. & Waterman, R. (2007). Chem. Commun. pp. 4172-4174..]). For related literature, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Parkin (1992[Parkin, G. (1992). Acc. Chem. Res. 25, 455-460.]).

[Scheme 1]

Experimental

Crystal data
  • [Zr(CH3)(C15H39N4Si3)]

  • Mr = 466.03

  • Orthorhombic, P b c a

  • a = 15.6018 (7) Å

  • b = 18.0682 (8) Å

  • c = 18.3745 (8) Å

  • V = 5179.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 125 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.914

  • 68275 measured reflections

  • 6973 independent reflections

  • 5714 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.04

  • 6973 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple derivatives of triamidoamine-supported zirconium have recently been prepared, and these complexes have been found to be effective pre-catalysts for dehydrocoupling involving phosphines (Roering et al., 2007; Waterman, 2007) and arsines (Roering et al., 2008). Reaction of (N3N)ZrCl with MeLi in Et2O afforded (N3N)ZrMe (I, N3N = N(CH2CH2NSiMe3)33–)) in 82% yield as colorless crystals (Waterman, 2007). Complex I is highly lipophilic and exhibits reasonable thermal stability despite a low melting temperature (Mp = 87–91°C). Upon heating in benzene solution, methane is evolved, and the triamidolamine ligand is metalated at the trimethylsilyl functionality—a key step in dehydrocoupling catalysis (Waterman, 2007). Whereas zirconium complexes with methyl ligands are commonplace, those supported by triamidoamine ligands were previously unknown.

Complex I was crystallized from cold pentane solution and exhibits distorted trigonal bipyramidal geometry at zirconium. The τ5-parameter for the complex was calculated as 1.1 (Addison et al., 1984), though greater than 1, it is consistent with a trigonal bipyramidal geometry rather than square-pyramidal. The value greater than unity is attributed to the fact that the amido nitrogen atoms are not co-planar with Zr as expected for a trigonal pyramid, a feature that artificially increases the α angle in the τ5-parameter calculation.

The three amido ligands orient in a roughly C3-symmetric fashion about the Zr–C bonding axis with an average Zr—N bond length of 2.0714 (13) Å. The bond to the axial nitrogen appears to be effected by the relatively strong trans-directing methide ligand with Zr—N(4) = 2.538 (1) Å. This bond length is slightly longer than that observed for (N3N)Zr(PHPh) with Zr—N(4) = 2.526 (2) Å (Roering et al. 2007) and considerably longer than that seen for arsenido derivatives (N3N)ZrAsPh2, Zr—N(4) = 2.516 (2) Å, and (N3N)ZrAsHMes, Zr—N(4) = 2.502 (2) Å (Roering et al., 2008).

For the methide ligand, the Zr—C bond length (2.2963 (16) Å) of I is slightly shorter than the most closely related complex structurally characterized complex (N3N*)ZrCH2Ph (N3N* = N(CH2CH2NSiMe2tBu)33–), which displays Zr—C 2.3243 (18) Å (Morton et al., 1999). Of the ca 315 complexes featuring a Zr—CH3 bond, the Zr—C bond of I fits neatly into the range of reported Zr—C bond lengths of 2.046 to 2.805 Å.

The Hirshfeld Test Difference for Zr—C(16) is 6.71 su. This value is most likely the result of a small amount of contamination by the (N3N)ZrCl precursor. This is an interesting observation given the high analytical purity of I and the inability to observe any (N3N)ZrCl in benzene-d6 solutions of I by 1H NMR spectroscopy. However, residual electron density was observed along the Zr—C vector, but this peak could not be refined as a chloride disorder. Contamination of crystals by trace quantities of chloride derivatives is known, and due caution must be taken in evaluating data (Parkin, 1992). While this test does not significantly detract from the quality of this structure and solution and correlation between the structure and spectroscopic assignment, it does indicate that contamination of product complexes with (N3N)ZrCl is possible. This observation suggests that synthetic strategies for (N3N)ZrX derivatives that circumvent the use of (N3N)ZrCl are optimal for achieving highly pure compounds for catalytic applications.

Related literature top

For recent applications of (N3N)ZrMe in catalysis, see: Waterman (2007); Roering et al. (2007, 2008). For examples of structurally characterized triamidoamine-supported zirconium complexes, see: Duan et al. (1995); Morton et al. (1999, 2000); and MacMillan et al. (2007).

For related literature, see: Addison et al. (1984); Parkin (1992).

Experimental top

Methyl complex (N3N)ZrMe (I) was prepared according to the literature procedure (Waterman, 2007). Dissolving complex I (ca 800 mg) in minimal pentane (2 ml), then filtering and cooling the resulting colorless solution to -30 °C for extended periods (ca 1–2 weeks) afforded colorless, X-ray quality crystals.

Refinement top

Hydrogen atoms on carbon were included in calculated positions and were refined using a riding model [C—H = 0.98 (CH3), 0.99 Å (CH2); Uiso = 1.5 Ueq (CH3), 1.2 Ueq (CH2)]. The Hirshfeld test difference value Zr—C(16) = 6.71 su indicates slight contamination with the chloro precursor. The slighly low Ueq value for Si(1) is likely the result of the terminal the atom residing in a trimethylsilyl substituent.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex I, with displacement ellipsoids shown at the 50% probability level. H atoms except those on C(16)have been omitted for clarity.
{N,N-Bis[2-(trimethylsilylamino)ethyl]-N'-(trimethylsilyl)ethane-1,2- diaminato(3-)-κ4N}methylzirconium(IV) top
Crystal data top
[Zr(CH3)(C15H39N4Si3)]Dx = 1.195 Mg m3
Mr = 466.03Melting point: 362 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9832 reflections
a = 15.6018 (7) Åθ = 2.5–30.2°
b = 18.0682 (8) ŵ = 0.57 mm1
c = 18.3745 (8) ÅT = 125 K
V = 5179.7 (4) Å3Block, colorless
Z = 80.24 × 0.20 × 0.16 mm
F(000) = 1984
Data collection top
Bruker SMART CCD area-detector
diffractometer
6973 independent reflections
Radiation source: fine-focus sealed tube5714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 29.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2121
Tmin = 0.875, Tmax = 0.914k = 2424
68275 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0241P)2 + 2.7021P]
where P = (Fo2 + 2Fc2)/3
6973 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zr(CH3)(C15H39N4Si3)]V = 5179.7 (4) Å3
Mr = 466.03Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.6018 (7) ŵ = 0.57 mm1
b = 18.0682 (8) ÅT = 125 K
c = 18.3745 (8) Å0.24 × 0.20 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5714 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.914Rint = 0.033
68275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
6973 reflectionsΔρmin = 0.29 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. EXTI refined to 0 and was removed from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr0.628126 (8)0.214931 (8)0.623919 (7)0.02366 (4)
N10.62324 (8)0.32650 (7)0.59830 (7)0.0296 (3)
N20.67984 (8)0.15023 (7)0.54191 (7)0.0302 (3)
N30.68857 (8)0.19705 (7)0.72277 (7)0.0293 (3)
N40.78205 (8)0.25715 (8)0.60724 (7)0.0294 (3)
Si10.55541 (3)0.39089 (2)0.63723 (2)0.02935 (9)
Si20.63047 (3)0.11014 (2)0.46778 (2)0.02709 (9)
Si30.66444 (3)0.12547 (3)0.78173 (3)0.03368 (10)
C10.69404 (11)0.35295 (10)0.55145 (10)0.0402 (4)
H1A0.68810.40680.54280.048*
H1B0.69220.32730.50390.048*
C20.77345 (10)0.13734 (10)0.54823 (10)0.0377 (4)
H2A0.79370.10660.50710.045*
H2B0.78640.11100.59420.045*
C30.76119 (10)0.24758 (10)0.73870 (9)0.0343 (3)
H3A0.78850.23350.78530.041*
H3B0.74020.29910.74300.041*
C40.77852 (10)0.33693 (9)0.58941 (10)0.0376 (4)
H4A0.82700.35030.55720.045*
H4B0.78300.36670.63450.045*
C50.81823 (10)0.21178 (10)0.54734 (9)0.0380 (4)
H5A0.88070.20510.55440.046*
H5B0.80880.23670.50000.046*
C60.82595 (10)0.24200 (10)0.67714 (9)0.0348 (4)
H6A0.87260.27830.68470.042*
H6B0.85140.19180.67620.042*
C70.46795 (15)0.41750 (14)0.57399 (13)0.0659 (7)
H7A0.49270.43710.52890.099*
H7B0.43210.45550.59680.099*
H7C0.43290.37390.56280.099*
C80.61459 (15)0.47570 (12)0.66494 (16)0.0670 (7)
H8A0.63590.50120.62150.101*
H8B0.66300.46190.69610.101*
H8C0.57600.50860.69180.101*
C90.50645 (14)0.35016 (11)0.72057 (10)0.0486 (5)
H9A0.46160.31490.70660.073*
H9B0.48130.38970.75020.073*
H9C0.55070.32450.74880.073*
C100.69439 (13)0.12628 (12)0.38323 (9)0.0491 (5)
H10A0.75100.10340.38850.074*
H10B0.70110.17960.37540.074*
H10C0.66460.10430.34150.074*
C110.52293 (11)0.15334 (11)0.45402 (10)0.0430 (4)
H11A0.48470.13880.49390.064*
H11B0.49880.13650.40760.064*
H11C0.52880.20730.45330.064*
C120.62003 (13)0.00839 (10)0.48219 (12)0.0458 (4)
H12A0.67710.01340.48830.069*
H12B0.59170.01400.44000.069*
H12C0.58580.00090.52590.069*
C130.76108 (14)0.09490 (13)0.83365 (13)0.0587 (6)
H13A0.80740.08310.79960.088*
H13B0.74690.05080.86230.088*
H13C0.77960.13470.86630.088*
C140.62506 (14)0.04485 (11)0.72743 (12)0.0524 (5)
H14A0.66610.03380.68850.079*
H14B0.56920.05690.70610.079*
H14C0.61920.00160.75920.079*
C150.58017 (14)0.15179 (12)0.84950 (11)0.0493 (5)
H15A0.60060.19350.87880.074*
H15B0.56820.10950.88130.074*
H15C0.52770.16610.82380.074*
C160.48882 (11)0.17738 (10)0.64014 (10)0.0399 (4)
H16A0.48210.12680.62190.060*
H16B0.45040.21060.61340.060*
H16C0.47460.17880.69210.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr0.01895 (7)0.02612 (7)0.02593 (7)0.00195 (5)0.00175 (5)0.00244 (5)
N10.0233 (6)0.0322 (7)0.0333 (6)0.0023 (5)0.0047 (5)0.0056 (5)
N20.0207 (6)0.0368 (7)0.0331 (7)0.0001 (5)0.0010 (5)0.0091 (6)
N30.0277 (6)0.0310 (6)0.0293 (6)0.0040 (5)0.0004 (5)0.0010 (5)
N40.0201 (6)0.0367 (7)0.0314 (6)0.0039 (5)0.0022 (5)0.0038 (5)
Si10.0265 (2)0.0259 (2)0.0356 (2)0.00213 (16)0.00132 (17)0.00063 (17)
Si20.02662 (19)0.0296 (2)0.02508 (19)0.00250 (16)0.00016 (16)0.00074 (16)
Si30.0355 (2)0.0320 (2)0.0335 (2)0.00130 (18)0.00282 (19)0.00533 (18)
C10.0315 (8)0.0440 (9)0.0450 (10)0.0025 (7)0.0093 (7)0.0153 (8)
C20.0243 (7)0.0475 (10)0.0412 (9)0.0053 (7)0.0011 (6)0.0145 (8)
C30.0352 (8)0.0383 (8)0.0295 (8)0.0074 (7)0.0037 (6)0.0029 (7)
C40.0264 (8)0.0383 (9)0.0482 (10)0.0090 (7)0.0090 (7)0.0055 (8)
C50.0206 (7)0.0563 (11)0.0372 (9)0.0022 (7)0.0053 (6)0.0089 (8)
C60.0233 (7)0.0430 (9)0.0380 (9)0.0065 (7)0.0058 (6)0.0052 (7)
C70.0610 (14)0.0767 (16)0.0600 (13)0.0338 (12)0.0199 (11)0.0094 (12)
C80.0627 (14)0.0414 (11)0.0969 (19)0.0193 (10)0.0106 (13)0.0183 (12)
C90.0580 (12)0.0409 (10)0.0470 (11)0.0056 (9)0.0205 (9)0.0002 (8)
C100.0489 (11)0.0676 (13)0.0307 (9)0.0012 (10)0.0073 (8)0.0052 (9)
C110.0326 (9)0.0530 (11)0.0433 (10)0.0031 (8)0.0063 (7)0.0083 (8)
C120.0477 (11)0.0303 (8)0.0595 (12)0.0051 (8)0.0075 (9)0.0054 (8)
C130.0523 (12)0.0595 (13)0.0644 (13)0.0087 (10)0.0095 (10)0.0215 (11)
C140.0650 (13)0.0348 (9)0.0573 (12)0.0100 (9)0.0060 (10)0.0016 (9)
C150.0521 (12)0.0534 (11)0.0425 (10)0.0007 (9)0.0142 (9)0.0079 (9)
C160.0290 (8)0.0441 (10)0.0465 (10)0.0095 (7)0.0061 (7)0.0078 (8)
Geometric parameters (Å, º) top
Zr—N22.0709 (12)C5—H5A0.9900
Zr—N12.0715 (13)C5—H5B0.9900
Zr—N32.0719 (13)C6—H6A0.9900
Zr—C162.2963 (16)C6—H6B0.9900
Zr—N42.5383 (12)C7—H7A0.9800
N1—C11.4796 (19)C7—H7B0.9800
N1—Si11.7278 (14)C7—H7C0.9800
N2—C21.4834 (19)C8—H8A0.9800
N2—Si21.7242 (13)C8—H8B0.9800
N3—C31.484 (2)C8—H8C0.9800
N3—Si31.7286 (13)C9—H9A0.9800
N4—C41.479 (2)C9—H9B0.9800
N4—C61.481 (2)C9—H9C0.9800
N4—C51.484 (2)C10—H10A0.9800
Si1—C71.856 (2)C10—H10B0.9800
Si1—C81.860 (2)C10—H10C0.9800
Si1—C91.8628 (18)C11—H11A0.9800
Si2—C121.8646 (18)C11—H11B0.9800
Si2—C111.8678 (17)C11—H11C0.9800
Si2—C101.8690 (18)C12—H12A0.9800
Si3—C131.868 (2)C12—H12B0.9800
Si3—C141.870 (2)C12—H12C0.9800
Si3—C151.8723 (19)C13—H13A0.9800
C1—C41.519 (2)C13—H13B0.9800
C1—H1A0.9900C13—H13C0.9800
C1—H1B0.9900C14—H14A0.9800
C2—C51.516 (2)C14—H14B0.9800
C2—H2A0.9900C14—H14C0.9800
C2—H2B0.9900C15—H15A0.9800
C3—C61.520 (2)C15—H15B0.9800
C3—H3A0.9900C15—H15C0.9800
C3—H3B0.9900C16—H16A0.9800
C4—H4A0.9900C16—H16B0.9800
C4—H4B0.9900C16—H16C0.9800
N2—Zr—N1113.48 (5)N4—C5—H5B110.1
N2—Zr—N3111.87 (5)C2—C5—H5B110.1
N1—Zr—N3111.57 (5)H5A—C5—H5B108.4
N2—Zr—C16107.24 (6)N4—C6—C3109.00 (13)
N1—Zr—C16106.40 (6)N4—C6—H6A109.9
N3—Zr—C16105.72 (6)C3—C6—H6A109.9
N2—Zr—N473.33 (5)N4—C6—H6B109.9
N1—Zr—N473.43 (5)C3—C6—H6B109.9
N3—Zr—N473.86 (5)H6A—C6—H6B108.3
C16—Zr—N4179.41 (5)Si1—C7—H7A109.5
C1—N1—Si1118.72 (11)Si1—C7—H7B109.5
C1—N1—Zr114.78 (10)H7A—C7—H7B109.5
Si1—N1—Zr125.71 (7)Si1—C7—H7C109.5
C2—N2—Si2115.83 (10)H7A—C7—H7C109.5
C2—N2—Zr114.53 (10)H7B—C7—H7C109.5
Si2—N2—Zr129.64 (7)Si1—C8—H8A109.5
C3—N3—Si3120.19 (10)Si1—C8—H8B109.5
C3—N3—Zr115.11 (10)H8A—C8—H8B109.5
Si3—N3—Zr124.54 (7)Si1—C8—H8C109.5
C4—N4—C6112.92 (13)H8A—C8—H8C109.5
C4—N4—C5112.84 (13)H8B—C8—H8C109.5
C6—N4—C5111.41 (13)Si1—C9—H9A109.5
C4—N4—Zr106.52 (9)Si1—C9—H9B109.5
C6—N4—Zr106.10 (9)H9A—C9—H9B109.5
C5—N4—Zr106.46 (9)Si1—C9—H9C109.5
N1—Si1—C7111.45 (9)H9A—C9—H9C109.5
N1—Si1—C8111.34 (9)H9B—C9—H9C109.5
C7—Si1—C8108.85 (12)Si2—C10—H10A109.5
N1—Si1—C9108.99 (8)Si2—C10—H10B109.5
C7—Si1—C9108.40 (11)H10A—C10—H10B109.5
C8—Si1—C9107.70 (11)Si2—C10—H10C109.5
N2—Si2—C12109.94 (8)H10A—C10—H10C109.5
N2—Si2—C11109.44 (8)H10B—C10—H10C109.5
C12—Si2—C11110.65 (9)Si2—C11—H11A109.5
N2—Si2—C10110.66 (8)Si2—C11—H11B109.5
C12—Si2—C10108.57 (10)H11A—C11—H11B109.5
C11—Si2—C10107.55 (9)Si2—C11—H11C109.5
N3—Si3—C13111.45 (9)H11A—C11—H11C109.5
N3—Si3—C14108.66 (8)H11B—C11—H11C109.5
C13—Si3—C14107.91 (11)Si2—C12—H12A109.5
N3—Si3—C15112.32 (8)Si2—C12—H12B109.5
C13—Si3—C15107.59 (10)H12A—C12—H12B109.5
C14—Si3—C15108.79 (10)Si2—C12—H12C109.5
N1—C1—C4108.61 (13)H12A—C12—H12C109.5
N1—C1—H1A110.0H12B—C12—H12C109.5
C4—C1—H1A110.0Si3—C13—H13A109.5
N1—C1—H1B110.0Si3—C13—H13B109.5
C4—C1—H1B110.0H13A—C13—H13B109.5
H1A—C1—H1B108.3Si3—C13—H13C109.5
N2—C2—C5108.29 (14)H13A—C13—H13C109.5
N2—C2—H2A110.0H13B—C13—H13C109.5
C5—C2—H2A110.0Si3—C14—H14A109.5
N2—C2—H2B110.0Si3—C14—H14B109.5
C5—C2—H2B110.0H14A—C14—H14B109.5
H2A—C2—H2B108.4Si3—C14—H14C109.5
N3—C3—C6108.65 (13)H14A—C14—H14C109.5
N3—C3—H3A110.0H14B—C14—H14C109.5
C6—C3—H3A110.0Si3—C15—H15A109.5
N3—C3—H3B110.0Si3—C15—H15B109.5
C6—C3—H3B110.0H15A—C15—H15B109.5
H3A—C3—H3B108.3Si3—C15—H15C109.5
N4—C4—C1108.64 (13)H15A—C15—H15C109.5
N4—C4—H4A110.0H15B—C15—H15C109.5
C1—C4—H4A110.0Zr—C16—H16A109.5
N4—C4—H4B110.0Zr—C16—H16B109.5
C1—C4—H4B110.0H16A—C16—H16B109.5
H4A—C4—H4B108.3Zr—C16—H16C109.5
N4—C5—C2107.87 (13)H16A—C16—H16C109.5
N4—C5—H5A110.1H16B—C16—H16C109.5
C2—C5—H5A110.1
N2—Zr—N1—C132.96 (13)C1—N1—Si1—C837.01 (16)
N3—Zr—N1—C194.52 (12)Zr—N1—Si1—C8132.28 (12)
C16—Zr—N1—C1150.64 (12)C1—N1—Si1—C9155.67 (13)
N4—Zr—N1—C129.95 (11)Zr—N1—Si1—C913.62 (12)
N2—Zr—N1—Si1157.39 (8)C2—N2—Si2—C1274.34 (14)
N3—Zr—N1—Si175.14 (10)Zr—N2—Si2—C12106.18 (11)
C16—Zr—N1—Si139.70 (10)C2—N2—Si2—C11163.93 (12)
N4—Zr—N1—Si1139.70 (10)Zr—N2—Si2—C1115.55 (12)
N1—Zr—N2—C292.84 (12)C2—N2—Si2—C1045.59 (15)
N3—Zr—N2—C234.49 (13)Zr—N2—Si2—C10133.89 (11)
C16—Zr—N2—C2149.97 (12)C3—N3—Si3—C1326.69 (15)
N4—Zr—N2—C229.87 (11)Zr—N3—Si3—C13148.55 (10)
N1—Zr—N2—Si286.65 (10)C3—N3—Si3—C14145.46 (13)
N3—Zr—N2—Si2146.03 (9)Zr—N3—Si3—C1429.77 (12)
C16—Zr—N2—Si230.54 (12)C3—N3—Si3—C1594.13 (14)
N4—Zr—N2—Si2149.62 (11)Zr—N3—Si3—C1590.64 (11)
N2—Zr—N3—C392.41 (11)Si1—N1—C1—C4112.38 (14)
N1—Zr—N3—C335.93 (12)Zr—N1—C1—C458.05 (17)
C16—Zr—N3—C3151.18 (11)Si2—N2—C2—C5120.48 (13)
N4—Zr—N3—C328.37 (10)Zr—N2—C2—C559.08 (16)
N2—Zr—N3—Si383.04 (9)Si3—N3—C3—C6119.29 (13)
N1—Zr—N3—Si3148.62 (8)Zr—N3—C3—C656.37 (16)
C16—Zr—N3—Si333.37 (10)C6—N4—C4—C1144.45 (14)
N4—Zr—N3—Si3147.08 (9)C5—N4—C4—C188.09 (15)
N2—Zr—N4—C4121.87 (11)Zr—N4—C4—C128.38 (15)
N1—Zr—N4—C40.34 (10)N1—C1—C4—N454.78 (18)
N3—Zr—N4—C4118.70 (11)C4—N4—C5—C2146.42 (14)
N2—Zr—N4—C6117.57 (11)C6—N4—C5—C285.33 (15)
N1—Zr—N4—C6120.91 (11)Zr—N4—C5—C229.91 (15)
N3—Zr—N4—C61.87 (10)N2—C2—C5—N456.44 (17)
N2—Zr—N4—C51.21 (10)C4—N4—C6—C386.62 (16)
N1—Zr—N4—C5120.31 (11)C5—N4—C6—C3145.17 (14)
N3—Zr—N4—C5120.65 (11)Zr—N4—C6—C329.71 (15)
C1—N1—Si1—C784.74 (16)N3—C3—C6—N454.96 (18)
Zr—N1—Si1—C7105.97 (12)

Experimental details

Crystal data
Chemical formula[Zr(CH3)(C15H39N4Si3)]
Mr466.03
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)125
a, b, c (Å)15.6018 (7), 18.0682 (8), 18.3745 (8)
V3)5179.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.875, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
68275, 6973, 5714
Rint0.033
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.04
No. of reflections6973
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Footnotes

Current address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Acknowledgements

This work was supported by the University of Vermont and the donors of the American Chemical Society Petroleum Research Fund (grant No. 46669-G3 to RW). X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, Z., Naiini, A. A., Lee, J.-H. & Verkade, J. G. (1995). Inorg. Chem. 34, 5477–5482.  CrossRef CAS Web of Science Google Scholar
First citationMacMillan, S. N., Tanski, J. M. & Waterman, R. (2007). Chem. Commun. pp. 4172–4174.CrossRef Google Scholar
First citationMorton, C., Gillespie, K. M., Sanders, C. J. & Scott, P. (2000). J. Organomet. Chem. 606, 141–146.  Web of Science CrossRef CAS Google Scholar
First citationMorton, C., Munslow, I. J., Sanders, C. J., Alcock, N. W. & Scott, P. (1999). Organometallics, 18, 4608–4613.  Web of Science CSD CrossRef CAS Google Scholar
First citationParkin, G. (1992). Acc. Chem. Res. 25, 455–460.  CrossRef CAS Web of Science Google Scholar
First citationRoering, A. J., Davidson, J. J., MacMillan, S. N., Tanski, J. M. & Waterman, R. (2008). Dalton Trans. In the press.  Google Scholar
First citationRoering, A. J., MacMillan, S. N., Tanski, J. M. & Waterman, R. (2007). Inorg. Chem. 46, 6855–6857.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaterman, R. (2007). Organometallics, 26, 2492–2494.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds