organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Iodo-2-methyl­aniline

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 17 January 2008; accepted 10 February 2008; online 15 February 2008)

In the mol­ecule of the title compound, C7H8IN, the methyl C, I and N atoms lie in the benzene ring plane. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules in a stacked arrangement along the a axis.

Related literature

For related literature, see: Kajigaeshi et al. (1988[Kajigaeshi, S., Kakinami, T., Yamasaki, H., Fujisaki, S. & Okamoto, T. (1988). Bull. Chem. Soc. Jpn, 61, 600-602.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8IN

  • Mr = 233.04

  • Orthorhombic, P 21 21 21

  • a = 5.5910 (11) Å

  • b = 8.9410 (18) Å

  • c = 15.674 (3) Å

  • V = 783.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.00 mm−1

  • T = 294 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.487, Tmax = 0.670

  • 917 measured reflections

  • 917 independent reflections

  • 737 reflections with I > 2σ(I)

  • Rint = 0.012

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.151

  • S = 1.04

  • 917 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.96 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with no Friedel pairs

  • Flack parameter: −0.29 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0B⋯Ni 0.86 2.54 3.397 (15) 174
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON-10M (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, (I), contains amino and halogen groups, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymer, organometallic chemistry etc. (Kajigaeshi et al., 1988). We report herein its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The atoms I, N and C7 lie in the benzene ring plane.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules stacked along the a axis, (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Kajigaeshi et al. (1988). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared by the literature method (Kajigaeshi et al., 1988). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in hexane (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x= 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON10M (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
4-Iodo-2-methylaniline top
Crystal data top
C7H8INDx = 1.976 Mg m3
Mr = 233.04Melting point: 360 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.5910 (11) Åθ = 10–14°
b = 8.9410 (18) ŵ = 4.00 mm1
c = 15.674 (3) ÅT = 294 K
V = 783.5 (3) Å3Block, purple
Z = 40.20 × 0.10 × 0.10 mm
F(000) = 440
Data collection top
Enraf–Nonius CAD-4
diffractometer
737 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 26.0°, θmin = 2.6°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.487, Tmax = 0.670l = 019
917 measured reflections3 standard reflections every 120 min
917 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.1P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
917 reflectionsΔρmax = 0.51 e Å3
82 parametersΔρmin = 0.96 e Å3
0 restraintsAbsolute structure: Flack (1983), with no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.29 (13)
Crystal data top
C7H8INV = 783.5 (3) Å3
Mr = 233.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5910 (11) ŵ = 4.00 mm1
b = 8.9410 (18) ÅT = 294 K
c = 15.674 (3) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
737 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.012
Tmin = 0.487, Tmax = 0.6703 standard reflections every 120 min
917 measured reflections intensity decay: none
917 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.151Δρmax = 0.51 e Å3
S = 1.04Δρmin = 0.96 e Å3
917 reflectionsAbsolute structure: Flack (1983), with no Friedel pairs
82 parametersAbsolute structure parameter: 0.29 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.01067 (18)0.20097 (9)0.23728 (5)0.0696 (4)
N0.407 (2)0.6567 (10)0.0309 (8)0.063 (3)
H0A0.33350.67110.07840.076*
H0B0.53260.70810.01880.076*
C10.1534 (18)0.3484 (11)0.1464 (7)0.044 (2)
C20.360 (2)0.4273 (12)0.1643 (8)0.053 (3)
H2A0.44250.41370.21520.063*
C30.439 (2)0.5276 (13)0.1030 (7)0.054 (3)
H3A0.57720.58250.11390.064*
C40.322 (2)0.5491 (11)0.0269 (7)0.042 (2)
C50.122 (2)0.4658 (11)0.0088 (7)0.045 (2)
C60.028 (2)0.3671 (11)0.0701 (7)0.051 (3)
H6A0.11430.31580.06010.062*
C70.011 (2)0.4852 (13)0.0736 (7)0.059 (3)
H7A0.14800.42070.07410.089*
H7B0.09240.45990.12040.089*
H7C0.06150.58730.07910.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.0908 (7)0.0662 (5)0.0517 (5)0.0067 (5)0.0050 (5)0.0104 (3)
N0.061 (6)0.051 (5)0.078 (7)0.004 (5)0.007 (6)0.012 (5)
C10.048 (6)0.044 (5)0.038 (5)0.002 (5)0.011 (5)0.001 (4)
C20.056 (7)0.052 (6)0.050 (6)0.005 (5)0.005 (6)0.005 (5)
C30.041 (6)0.055 (7)0.064 (7)0.001 (5)0.001 (5)0.010 (6)
C40.040 (6)0.043 (6)0.043 (5)0.006 (4)0.009 (5)0.002 (4)
C50.058 (7)0.036 (5)0.040 (5)0.005 (5)0.002 (5)0.001 (4)
C60.056 (7)0.044 (5)0.054 (6)0.005 (6)0.001 (6)0.006 (4)
C70.063 (7)0.065 (6)0.050 (5)0.013 (9)0.009 (8)0.006 (5)
Geometric parameters (Å, º) top
I—C12.099 (10)C4—C51.374 (16)
N—H0A0.8600C4—N1.403 (13)
N—H0B0.8600C5—C61.408 (15)
C1—C21.383 (15)C6—H6A0.9300
C1—C61.397 (15)C7—C51.500 (15)
C2—C31.386 (16)C7—H7A0.9600
C2—H2A0.9300C7—H7B0.9600
C3—C41.375 (16)C7—H7C0.9600
C3—H3A0.9300
C4—N—H0A120.0C3—C4—N119.7 (11)
C4—N—H0B120.0C4—C5—C6120.3 (10)
H0A—N—H0B120.0C4—C5—C7121.2 (10)
C2—C1—C6122.2 (10)C6—C5—C7118.3 (11)
C2—C1—I120.0 (8)C1—C6—C5118.1 (10)
C6—C1—I117.7 (8)C1—C6—H6A121.0
C1—C2—C3117.2 (10)C5—C6—H6A121.0
C1—C2—H2A121.4C5—C7—H7A109.5
C3—C2—H2A121.4C5—C7—H7B109.5
C4—C3—C2122.7 (10)H7A—C7—H7B109.5
C4—C3—H3A118.6C5—C7—H7C109.5
C2—C3—H3A118.6H7A—C7—H7C109.5
C5—C4—C3119.4 (10)H7B—C7—H7C109.5
C5—C4—N120.9 (11)
C6—C1—C2—C30.2 (16)C3—C4—C5—C64.6 (16)
I—C1—C2—C3177.3 (8)N—C4—C5—C6174.8 (9)
C2—C1—C6—C52.5 (16)C3—C4—C5—C7179.8 (10)
I—C1—C6—C5180.0 (7)N—C4—C5—C70.8 (15)
C1—C2—C3—C40.5 (17)C4—C5—C6—C14.9 (16)
C2—C3—C4—C51.8 (17)C7—C5—C6—C1179.4 (10)
C2—C3—C4—N177.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0B···Ni0.862.543.397 (15)174
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC7H8IN
Mr233.04
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)5.5910 (11), 8.9410 (18), 15.674 (3)
V3)783.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.00
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.487, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
917, 917, 737
Rint0.012
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.151, 1.04
No. of reflections917
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.96
Absolute structureFlack (1983), with no Friedel pairs
Absolute structure parameter0.29 (13)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON10M (Spek, 2003), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0B···Ni0.862.543.397 (15)174.00
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKajigaeshi, S., Kakinami, T., Yamasaki, H., Fujisaki, S. & Okamoto, T. (1988). Bull. Chem. Soc. Jpn, 61, 600–602.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds