metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[(S)-2-hy­droxy­propion­amide-κ2O,O′]manganese(II)

aLaboratoire de Cristallographie et RMN Biologiques, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris Descartes, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France, and bUniversité de Paris XI, Faculté des Sciences Pharmaceutiques et Biologiques, Laboratoire de Chimie Thérapeutique BioCIS, UPRES-A 8076 CNRS, 5 Rue J. B. Clément, 92296 Châtenay-Malabry Cedex, France
*Correspondence e-mail: lemoine@pharmacie.univ-paris5.fr

(Received 17 December 2007; accepted 8 February 2008; online 13 February 2008)

In the title compound, [MnCl2(C3H7NO2)2], the MnII ion is bound to two Cl atoms and to four O atoms from two lacta­mide mol­ecules which act as bidentate ligands, giving rise to a highly distorted octa­hedral coordination geometry. The axial positions are occupied by one Cl atom and one O (hydr­oxy) atom. The values of the cis bond angles at the Mn atom are in the range 72.33 (5)–100.17 (6)°. Of the two possible coordination modes (N,O- or O,O-bidentate) in metal complexes with lacta­mide or its derivatives described in the literature, the title compound exhibits the O,O-bidentate mode. In the crystal structure, monomeric manganese(II) complexes are linked by several N—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For related literature, see: Bekaert et al. (2005[Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2005). Acta Cryst. C61, m76-m77.], 2007[Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2007). Acta Cryst. E63, o3187-o3189.]); Chen et al. (2006[Chen, L., Wang, X.-W., Chen, F.-P., Chen, Y. & Chen, J.-Z. (2006). Acta Cryst. E62, m1743-m1745.]); Girma et al. (2005[Girma, K. B., Lorentz, V., Blaurock, S. & Edelmann, F. T. (2005). Z. Anorg. Allg. Chem. 631, 2763-2769.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C3H7NO2)2]

  • Mr = 304.03

  • Monoclinic, P 21

  • a = 6.312 (2) Å

  • b = 11.718 (3) Å

  • c = 8.268 (2) Å

  • β = 99.47 (1)°

  • V = 603.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 (2) K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3659 measured reflections

  • 1836 independent reflections

  • 1803 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.11

  • 1836 reflections

  • 161 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.92 (4) 2.40 (4) 3.310 (2) 170 (3)
N1—H1B⋯Cl2ii 0.80 (3) 2.60 (4) 3.360 (2) 159 (3)
O2—H2⋯Cl1iii 0.89 (4) 2.26 (4) 3.1250 (17) 164 (3)
O7—H7⋯O1iv 0.86 (4) 1.83 (4) 2.676 (2) 167 (3)
N6—H6A⋯Cl2v 0.80 (4) 2.65 (4) 3.439 (2) 168 (3)
N6—H6B⋯Cl2vi 0.87 (4) 2.54 (4) 3.409 (3) 172 (4)
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) x+1, y, z; (v) [-x+1, y+{\script{1\over 2}}, -z]; (vi) [-x, y+{\script{1\over 2}}, -z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal-containing proteins have been studied in relation to severe diseases. Alzheimer's and mad cow diseases imply metal-protein interactions and metalloproteases are implied in cancer dispersion and angiotensin converting enzyme (ACE) in blood pressure control. For these reasons, amide-metal complexes have attracted much interest (lactamide = 2-hydroxypropionamide). Recently, we have been engaged in the synthesis and structural characterization of the cationic complexes [Zn(lactamide)3]2+ (Bekaert et al., 2005) and [B(lactamide)2]+ (Bekaert et al., 2007). Moreover, manganese is known to participate in a variety of biological reactions. We therefore studied and now report a new dichloromanganese(II) complex with lactamide ligands. Compound (1) (Fig. 1) contains one monomeric octahedral manganese complex, [Mn(C3H7NO2)Cl2]. Manganese is surrounded by two bidentate lactamide ligands each coordinating via the carbonyl O atom O1 (or O6) and the hydroxy atom O2 (or O7) and two Cl ligands. The complex exhibits a highly distorted octahedral geometry around the MnII ion with the apical positions occupied by O2 and Cl2 aoms (O2—Mn—Cl2: 167.63 (4) °). The Mn atom lies 0.270 (1) Å out of the basal plane (Cl1/O1/O2/O6). The degree of deviation from an ideal octahedron is appreciable, with the cis angles of the octahedron ranging from 72.33 (5) to 100.17 (6) °. The two equatorial Mn—O bond lengths for oxygen amide atoms are 2.196 (1) and 2.185 (2) Å for O1 and O6, respectively, being close to those reported for [Mn(O-acrylamide)4Cl2] with a similar coordination of MnII [2.186 (1) Å] (Girma et al., 2005). Among the Mn—O (hydroxy) distances the equatorial Mn—O7 [2.174 (2) Å], is close to precedent values but very different from the axial Mn—O2 bond length [2.247 (2) Å]. The Mn—Cl bond distances [2.4535 (7) and 2.4786 (7) Å] are in good agreement with those found in similar octahedral MnII complexes like e.g. in [chloridobis(1,10- phenanthroline)(trichloroacetato)manganese(II)] [2.4374 (2) Å] (Chen et al., 2006). Among the two possible coordination modes (N,O or O,O) in metal complexes with lactamide or its derivatives described in the literature, the title compound presents the O,O mode as in the before cited [Zn(lactamide)3]2+ and [B(lactamide)2]+ complexes. The packing is charaterized by numerous interactions that can be considered as hydrogen bonds since they correspond to H–A contacts significantly shorter than the sum of the van der Waals radii (Table 1). In particular, [Mn(lactamide)2Cl2] complexes are connected by N—H···Cl, N—H···O and O—H···O hydrogen bonds, generating a three dimensional network (Figures 1 and 2).

Related literature top

For related literature, see: Bekaert et al. (2005, 2007); Chen et al. (2006); Girma et al. (2005).

Experimental top

Enantiomerically pure (S)-lactamide ((S)-2-hydroxypropionamide, 2.22 g, 25 mmol) is dissolved in 20 ml of hot ethanoic acid and manganese(II) dichloride (1.26 g, 10 mmol) is added to this solution. The solution is kept at room temperature for 72 h. Pink crystals of the title compound slowly appear in the solution, whereupon crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms except those bonded to methyl groups were located in a difference map and refined and a common displacement parameter. For methyl groups H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96Å with Uiso(H) = 1.5 times Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular view of the complex showing the atomic numbering and some N—H···Cl, O—H···Cl and O—H···O hydrogen bonds as dotted lines. Displacement ellipsoids are displayed at the 50% probability level. Symmetry code: a: (x - 1, y, z), b: (x, y, 1 + z), c: (1 - x, 1/2 + y, 1 - z), d: (1 + x, y, z), e: (1 - x, 1/2 + y, -z), f: (-x, 1/2 + y, -z), g: (x, y, z - 1), h: (-x, y - 1/2, -z) and i: (1 - x, y - 1/2, -z).
[Figure 2] Fig. 2. Stereoscopic view of molecular the stacking including hydrogen bonds.
Dichloridobis[(S)-2-hydroxypropionamide-κ2O,O']manganese(II) top
Crystal data top
[MnCl2(C3H7NO2)2]F(000) = 310
Mr = 304.03Dx = 1.674 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.312 (2) Åθ = 3.0–8.9°
b = 11.718 (3) ŵ = 1.53 mm1
c = 8.268 (2) ÅT = 293 K
β = 99.47 (1)°Parallelepiped, pink
V = 603.2 (3) Å30.18 × 0.16 × 0.12 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.5°
Graphite monochromatorh = 88
ω–2θ scansk = 016
3659 measured reflectionsl = 1111
1836 independent reflections3 standard reflections every 60 min
1803 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
1836 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
[MnCl2(C3H7NO2)2]V = 603.2 (3) Å3
Mr = 304.03Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.312 (2) ŵ = 1.53 mm1
b = 11.718 (3) ÅT = 293 K
c = 8.268 (2) Å0.18 × 0.16 × 0.12 mm
β = 99.47 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
3659 measured reflections3 standard reflections every 60 min
1836 independent reflections intensity decay: none
1803 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0221 restraint
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.35 e Å3
1836 reflectionsΔρmin = 0.51 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.28185 (4)0.57573 (2)0.28850 (3)0.02305 (8)
Cl10.43848 (9)0.40435 (4)0.43841 (7)0.03790 (12)
Cl20.13344 (8)0.49119 (5)0.02244 (5)0.03331 (11)
O10.0161 (2)0.56907 (16)0.39299 (14)0.0286 (3)
N10.1127 (4)0.5206 (3)0.6322 (2)0.0513 (7)
H1A0.228 (6)0.480 (3)0.576 (4)0.041 (3)*
H1B0.079 (6)0.526 (3)0.729 (4)0.041 (3)*
C10.0131 (3)0.5736 (2)0.54632 (19)0.0287 (3)
O20.3440 (2)0.66403 (14)0.53298 (18)0.0333 (3)
H20.406 (6)0.730 (3)0.563 (4)0.041 (3)*
C20.1925 (3)0.6459 (2)0.6381 (2)0.0310 (4)
H200.253 (5)0.609 (3)0.728 (4)0.041 (3)*
C30.1005 (7)0.7558 (4)0.6897 (6)0.0699 (11)
H3A0.21410.80230.74690.105*
H3B0.00160.73960.76070.105*
H3C0.03040.79580.59440.105*
O60.2428 (2)0.74635 (14)0.1810 (2)0.0332 (3)
O70.5940 (2)0.63077 (16)0.2395 (2)0.0414 (4)
H70.726 (6)0.617 (3)0.278 (4)0.041 (3)*
N60.3807 (4)0.89164 (17)0.0554 (3)0.0392 (4)
H6A0.483 (6)0.919 (4)0.025 (4)0.041 (3)*
H6B0.255 (6)0.924 (4)0.036 (4)0.041 (3)*
C60.3966 (3)0.79133 (17)0.1305 (2)0.0277 (3)
C70.6136 (3)0.73241 (18)0.1480 (2)0.0297 (4)
H700.715 (6)0.786 (4)0.211 (4)0.041 (3)*
C80.6730 (4)0.7018 (2)0.0168 (3)0.0399 (5)
H8A0.81050.66470.00060.060*
H8B0.67950.77000.08020.060*
H8C0.56650.65130.07410.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02205 (12)0.02285 (12)0.02441 (12)0.00065 (10)0.00426 (8)0.00154 (9)
Cl10.0368 (2)0.0242 (2)0.0493 (3)0.00502 (18)0.0032 (2)0.00568 (18)
Cl20.0347 (2)0.0378 (2)0.02582 (17)0.00258 (19)0.00027 (15)0.00370 (18)
O10.0222 (5)0.0419 (7)0.0209 (5)0.0006 (6)0.0014 (4)0.0020 (6)
N10.0488 (11)0.0796 (18)0.0257 (7)0.0334 (12)0.0060 (7)0.0035 (9)
C10.0253 (7)0.0362 (9)0.0238 (7)0.0043 (9)0.0018 (6)0.0018 (8)
O20.0348 (7)0.0298 (7)0.0379 (7)0.0101 (6)0.0134 (6)0.0101 (6)
C20.0313 (8)0.0385 (9)0.0225 (6)0.0089 (8)0.0026 (6)0.0010 (7)
C30.070 (2)0.0620 (19)0.089 (2)0.0148 (18)0.046 (2)0.0384 (19)
O60.0284 (6)0.0280 (6)0.0442 (7)0.0033 (6)0.0094 (6)0.0096 (6)
O70.0202 (6)0.0455 (9)0.0578 (9)0.0047 (6)0.0043 (6)0.0309 (8)
N60.0410 (10)0.0281 (8)0.0509 (10)0.0063 (8)0.0147 (8)0.0128 (8)
C60.0295 (8)0.0233 (8)0.0299 (7)0.0013 (6)0.0041 (7)0.0022 (6)
C70.0240 (7)0.0279 (9)0.0363 (8)0.0020 (7)0.0020 (7)0.0081 (7)
C80.0421 (11)0.0343 (10)0.0466 (11)0.0121 (9)0.0172 (9)0.0065 (9)
Geometric parameters (Å, º) top
Mn1—O72.1739 (16)C3—H3A0.9600
Mn1—O62.1853 (17)C3—H3B0.9600
Mn1—O12.1964 (14)C3—H3C0.9600
Mn1—O22.2471 (15)O6—C61.236 (3)
Mn1—Cl22.4535 (7)O7—C71.427 (2)
Mn1—Cl12.4786 (7)O7—H70.86 (4)
O1—C11.252 (2)N6—C61.326 (3)
N1—C11.307 (3)N6—H6A0.80 (4)
N1—H1A0.92 (4)N6—H6B0.87 (4)
N1—H1B0.80 (3)C6—C71.519 (3)
C1—C21.515 (3)C7—C81.514 (3)
O2—C21.410 (2)C7—H700.98 (4)
O2—H20.89 (4)C8—H8A0.9600
C2—C31.503 (4)C8—H8B0.9600
C2—H200.89 (3)C8—H8C0.9600
O7—Mn1—O672.40 (6)C1—C2—H20109 (2)
O7—Mn1—O1160.90 (7)C2—C3—H3A109.5
O6—Mn1—O198.39 (6)C2—C3—H3B109.5
O7—Mn1—O290.10 (7)H3A—C3—H3B109.5
O6—Mn1—O286.32 (7)C2—C3—H3C109.5
O1—Mn1—O272.33 (5)H3A—C3—H3C109.5
O7—Mn1—Cl2100.17 (6)H3B—C3—H3C109.5
O6—Mn1—Cl290.23 (5)C6—O6—Mn1119.04 (14)
O1—Mn1—Cl296.49 (4)C7—O7—Mn1120.43 (12)
O2—Mn1—Cl2167.63 (4)C7—O7—H7101 (2)
O7—Mn1—Cl191.97 (5)Mn1—O7—H7137 (2)
O6—Mn1—Cl1162.47 (5)C6—N6—H6A120 (3)
O1—Mn1—Cl194.10 (5)C6—N6—H6B118 (3)
O2—Mn1—Cl185.82 (5)H6A—N6—H6B122 (4)
Cl2—Mn1—Cl1100.56 (3)O6—C6—N6122.2 (2)
C1—O1—Mn1113.83 (11)O6—C6—C7121.32 (18)
C1—N1—H1A118 (2)N6—C6—C7116.43 (19)
C1—N1—H1B115 (3)O7—C7—C8109.57 (18)
H1A—N1—H1B127 (3)O7—C7—C6105.93 (15)
O1—C1—N1121.9 (2)C8—C7—C6112.02 (17)
O1—C1—C2120.30 (17)O7—C7—H70111 (2)
N1—C1—C2117.71 (16)C8—C7—H70113.3 (18)
C2—O2—Mn1116.74 (12)C6—C7—H70105 (2)
C2—O2—H2106 (2)C7—C8—H8A109.5
Mn1—O2—H2131 (2)C7—C8—H8B109.5
O2—C2—C3112.3 (2)H8A—C8—H8B109.5
O2—C2—C1107.58 (15)C7—C8—H8C109.5
C3—C2—C1109.2 (2)H8A—C8—H8C109.5
O2—C2—H20110 (2)H8B—C8—H8C109.5
C3—C2—H20108 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (4)2.40 (4)3.310 (2)170 (3)
N1—H1B···Cl2ii0.80 (3)2.60 (4)3.360 (2)159 (3)
O2—H2···Cl1iii0.89 (4)2.26 (4)3.1250 (17)164 (3)
O7—H7···O1iv0.86 (4)1.83 (4)2.676 (2)167 (3)
N6—H6A···Cl2v0.80 (4)2.65 (4)3.439 (2)168 (3)
N6—H6B···Cl2vi0.87 (4)2.54 (4)3.409 (3)172 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1, y, z; (v) x+1, y+1/2, z; (vi) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C3H7NO2)2]
Mr304.03
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.312 (2), 11.718 (3), 8.268 (2)
β (°) 99.47 (1)
V3)603.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3659, 1836, 1803
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.11
No. of reflections1836
No. of parameters161
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.51

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (4)2.40 (4)3.310 (2)170 (3)
N1—H1B···Cl2ii0.80 (3)2.60 (4)3.360 (2)159 (3)
O2—H2···Cl1iii0.89 (4)2.26 (4)3.1250 (17)164 (3)
O7—H7···O1iv0.86 (4)1.83 (4)2.676 (2)167 (3)
N6—H6A···Cl2v0.80 (4)2.65 (4)3.439 (2)168 (3)
N6—H6B···Cl2vi0.87 (4)2.54 (4)3.409 (3)172 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1, y, z; (v) x+1, y+1/2, z; (vi) x, y+1/2, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2005). Acta Cryst. C61, m76–m77.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2007). Acta Cryst. E63, o3187–o3189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, L., Wang, X.-W., Chen, F.-P., Chen, Y. & Chen, J.-Z. (2006). Acta Cryst. E62, m1743–m1745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGirma, K. B., Lorentz, V., Blaurock, S. & Edelmann, F. T. (2005). Z. Anorg. Allg. Chem. 631, 2763–2769.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds