organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Hy­droxy­phenyl­diazen­yl)­benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhangchaozhi@seu.edu.cn

(Received 1 December 2007; accepted 18 February 2008; online 22 February 2008)

The molecule of the title compound, C13H9N3O, is achiral but forms a chiral arrangement in the crystal structure. The mol­ecule adopts an E configuration with respect to the N=N bond and is almost planar, with an r.m.s. deviation of 0.0439 Å from the plane through all atoms in the mol­ecule. The dihedral angle between the two benzene rings is 2.2 (2)°. In the crystal structure, inter­molecular O—H⋯N hydrogen bonding generates a chain.

Related literature

For the preparation of tetra­zole derivatives from nitrile compounds, see: Dunica et al. (1991[Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem., 56, 2395-2400.]); Wittenberger & Donner (1993[Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem., 58, 4139-4141.]). For the general chemistry of tetra­zole compounds, see: Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]). For a similar structure, see: Harada et al. (1997[Harada, J., Ogawa, K. & Tomoda, S. (1997). Acta Cryst. B53, 662-672.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O

  • Mr = 223.23

  • Monoclinic, C c

  • a = 6.5307 (13) Å

  • b = 10.747 (2) Å

  • c = 15.851 (3) Å

  • β = 93.54 (3)°

  • V = 1110.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.18 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.781, Tmax = 1 (expected range = 0.778–0.996)

  • 5599 measured reflections

  • 2532 independent reflections

  • 1296 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.145

  • S = 0.97

  • 1278 reflections

  • 154 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.85 2.01 2.817 (5) 159
Symmetry code: (i) [x+2, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitrile compounds are the precursor of tetrazole derivatives (Dunica, et al., 1991; Wittenberger, et al., 1993) and can be used for the design of noncentrosymmetric bulk materials (Xiong, et al.(2002)). We report here the crystal structure of the title compound, 4-(4-hydroxyphenylazo)benzonitrile, (I) (Fig. 1).

In I, the N=N double bond [1.257 (4) Å] is in the range found in other similar azo complexes with a trans-configuration (Harada, et al., 1997). The torsion angle C7 - N2 - N3 - C8 is -179.30 (0.32)°. The dihedral angle between the two benzene rings is 2.18 (1/5) °. The crystal structure involves O—H···N hydrogen bond resulting in the formation of a chain.

Related literature top

For the preparation of tetrazole derivatives from nitrile compounds, see: Dunica et al. (1991); Wittenberger & Donner (1993). For the general chemistry of tetrazole compounds, see: Xiong et al. (2002). For a similar structure, see: Harada et al. (1997).

Experimental top

A solution of 4-cyanoaniline (0.71 g, 6 mmol) in a solution of hydrochloric acid (6 ml, 4M) was added to a solution of sodium nitrite (0.42 g, 6.1 mmol) in 2 ml water, and the mixture was stirred for 4 h under N2 atmosphere at 273–278 K. Then urea (0.01 g, 0.2 mmol) was added to decompose excessive nitrous acid, and the mixture was further stirred for 30 min. The solution of the diazonium salt was added to a aqueous phenol (0.62 g, 6.6 mmol), sodium carbonate (3 g), baking soda (0.2 g) and ice (15 g) at 273–278 K. The mixture was stirred for 7 h. After the reaction solution was neutralized with a solution of hydrochoric acid (13.6 ml, 3 M), the mixture was filtrated. A yellow block-like crystals (1.27 g, 5.7 mmol, 95%), which is suitable for X-ray analysis, were obtained by recrystallization from ethyl acetate (18 ml).

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),orUiso(H) = 1.2Ueq(O). In the absence of significant anomalous scattering effects the Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.
4-(4-Hydroxyphenyldiazenyl)benzonitrile top
Crystal data top
C13H9N3OF(000) = 464
Mr = 223.23Dx = 1.335 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4352 reflections
a = 6.5307 (13) Åθ = 3.7–27.7°
b = 10.747 (2) ŵ = 0.09 mm1
c = 15.851 (3) ÅT = 293 K
β = 93.54 (3)°BLOCK, yellow
V = 1110.4 (4) Å30.18 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2532 independent reflections
Radiation source: fine-focus sealed tube1296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.7°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.781, Tmax = 1l = 2020
5599 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0762P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1278 reflectionsΔρmax = 0.17 e Å3
154 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: indeterminate
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H9N3OV = 1110.4 (4) Å3
Mr = 223.23Z = 4
Monoclinic, CcMo Kα radiation
a = 6.5307 (13) ŵ = 0.09 mm1
b = 10.747 (2) ÅT = 293 K
c = 15.851 (3) Å0.18 × 0.05 × 0.05 mm
β = 93.54 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2532 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1296 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 1Rint = 0.073
5599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 0.98Δρmax = 0.17 e Å3
1278 reflectionsΔρmin = 0.19 e Å3
154 parametersAbsolute structure: indeterminate
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.2824 (5)0.0455 (4)0.1896 (2)0.0497 (10)
N20.1650 (5)0.1302 (4)0.1608 (2)0.0526 (11)
C80.4581 (6)0.0892 (5)0.2376 (3)0.0447 (11)
O10.9855 (5)0.1997 (4)0.3729 (2)0.0717 (11)
H1A1.06180.13720.38480.108*
C30.3689 (6)0.0230 (5)0.0211 (3)0.0493 (12)
C70.0130 (6)0.0862 (4)0.1136 (3)0.0457 (11)
C120.7767 (7)0.0358 (5)0.3110 (3)0.0502 (11)
H12A0.87090.02420.33030.060*
C40.5570 (7)0.0106 (5)0.0251 (3)0.0572 (13)
C60.0538 (7)0.0375 (5)0.0957 (3)0.0543 (13)
H6A0.03850.09880.11460.065*
C20.3273 (7)0.1461 (5)0.0391 (3)0.0583 (14)
H2B0.41880.20750.01970.070*
C50.2315 (6)0.0695 (5)0.0497 (3)0.0565 (14)
H5A0.26000.15260.03770.068*
C90.4922 (6)0.2126 (4)0.2580 (3)0.0577 (13)
H9A0.39590.27250.24070.069*
C110.8129 (7)0.1589 (4)0.3289 (3)0.0513 (12)
C130.6011 (7)0.0010 (5)0.2644 (3)0.0519 (13)
H13A0.57880.08230.25110.062*
C100.6682 (7)0.2471 (5)0.3040 (3)0.0622 (15)
H10A0.68980.33020.31830.075*
N10.7085 (7)0.0361 (5)0.0604 (3)0.0712 (12)
C10.1502 (7)0.1783 (5)0.0860 (3)0.0580 (14)
H1B0.12280.26130.09900.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.041 (2)0.055 (3)0.051 (2)0.000 (2)0.0098 (18)0.0033 (19)
N20.043 (2)0.054 (3)0.059 (3)0.002 (2)0.0175 (19)0.001 (2)
C80.031 (2)0.051 (3)0.051 (3)0.0005 (19)0.008 (2)0.000 (2)
O10.055 (2)0.071 (3)0.084 (3)0.0087 (18)0.0356 (19)0.014 (2)
C30.035 (2)0.070 (4)0.041 (2)0.005 (2)0.0080 (19)0.000 (2)
C70.042 (3)0.055 (3)0.039 (3)0.002 (2)0.010 (2)0.003 (2)
C120.039 (3)0.055 (3)0.055 (3)0.008 (2)0.012 (2)0.003 (2)
C40.046 (3)0.072 (4)0.052 (3)0.006 (3)0.006 (2)0.001 (2)
C60.045 (3)0.053 (3)0.063 (3)0.007 (2)0.017 (2)0.004 (3)
C20.054 (3)0.057 (3)0.061 (3)0.006 (2)0.019 (2)0.003 (2)
C50.053 (3)0.054 (3)0.060 (3)0.000 (2)0.009 (2)0.012 (2)
C90.045 (3)0.049 (3)0.076 (4)0.007 (2)0.023 (2)0.001 (3)
C110.046 (3)0.057 (3)0.049 (3)0.003 (2)0.010 (2)0.006 (2)
C130.045 (3)0.049 (3)0.061 (3)0.008 (2)0.007 (2)0.007 (2)
C100.055 (3)0.050 (3)0.078 (4)0.005 (2)0.021 (3)0.004 (3)
N10.048 (2)0.091 (3)0.072 (3)0.013 (2)0.017 (2)0.007 (2)
C10.051 (3)0.049 (3)0.071 (4)0.004 (2)0.021 (3)0.008 (2)
Geometric parameters (Å, º) top
N3—N21.258 (4)C12—H12A0.9300
N3—C81.417 (5)C4—N11.140 (6)
N2—C71.424 (5)C6—C51.375 (7)
C8—C131.380 (6)C6—H6A0.9300
C8—C91.380 (6)C2—C11.380 (6)
O1—C111.361 (5)C2—H2B0.9300
O1—H1A0.8501C5—H5A0.9300
C3—C21.377 (7)C9—C101.373 (6)
C3—C51.395 (7)C9—H9A0.9300
C3—C41.437 (6)C11—C101.379 (7)
C7—C61.382 (6)C13—H13A0.9300
C7—C11.388 (6)C10—H10A0.9300
C12—C111.371 (7)C1—H1B0.9300
C12—C131.377 (7)
N2—N3—C8114.2 (3)C3—C2—H2B120.0
N3—N2—C7114.2 (3)C1—C2—H2B120.0
C13—C8—C9119.4 (4)C6—C5—C3119.9 (4)
C13—C8—N3116.6 (4)C6—C5—H5A120.0
C9—C8—N3124.0 (4)C3—C5—H5A120.0
C11—O1—H1A108.4C10—C9—C8120.1 (4)
C2—C3—C5120.1 (4)C10—C9—H9A119.9
C2—C3—C4119.9 (4)C8—C9—H9A119.9
C5—C3—C4119.9 (5)O1—C11—C12122.9 (4)
C6—C7—C1120.6 (4)O1—C11—C10117.2 (4)
C6—C7—N2124.6 (4)C12—C11—C10119.9 (4)
C1—C7—N2114.8 (4)C12—C13—C8120.3 (5)
C11—C12—C13120.0 (4)C12—C13—H13A119.8
C11—C12—H12A120.0C8—C13—H13A119.8
C13—C12—H12A120.0C9—C10—C11120.2 (4)
N1—C4—C3178.5 (6)C9—C10—H10A119.9
C5—C6—C7119.7 (4)C11—C10—H10A119.9
C5—C6—H6A120.2C2—C1—C7119.6 (5)
C7—C6—H6A120.2C2—C1—H1B120.2
C3—C2—C1120.0 (4)C7—C1—H1B120.2
C7—N2—N3—C8179.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.852.012.817 (5)159
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9N3O
Mr223.23
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)6.5307 (13), 10.747 (2), 15.851 (3)
β (°) 93.54 (3)
V3)1110.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.781, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
5599, 2532, 1296
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.145, 0.98
No. of reflections1278
No. of parameters154
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19
Absolute structureIndeterminate

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.852.012.817 (5)159.4
Symmetry code: (i) x+2, y, z+1/2.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Dr Chao Zhi Zhang.

References

First citationDunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem., 56, 2395-2400.  Google Scholar
First citationHarada, J., Ogawa, K. & Tomoda, S. (1997). Acta Cryst. B53, 662–672.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem., 58, 4139-4141.  CrossRef CAS Web of Science Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds