organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-1-Phenyl­ethanaminium (S)-4-chloro­mandelate

aDepartment of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China, bDepartment of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada, and cDepartment of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
*Correspondence e-mail: mjenning@uwo.ca

(Received 17 January 2008; accepted 31 January 2008; online 6 February 2008)

The absolute configuration of the title complex, C8H12N+·C8H6ClO3 or [R-C6H5C(H)CH3NH3][S-4-ClC6H4C(H)(OH)CO2], has been confirmed by the structure determination. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds form a two-dimensional network perpendicular to the c axis.

Related literature

For background information and the crystal structure of the R,R diastereomer of the title compound, see: He et al. (2007[He, Q., Jennings, M. C., Rohani, S., Zhu, J. & Gomaa, H. (2007). Acta Cryst. E63, o4199.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·C8H6ClO3

  • Mr = 307.76

  • Monoclinic, P 21

  • a = 10.4091 (7) Å

  • b = 5.7635 (4) Å

  • c = 13.2544 (10) Å

  • β = 96.831 (4)°

  • V = 789.52 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 (2) K

  • 0.45 × 0.15 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.787, Tmax = 0.984

  • 7943 measured reflections

  • 3431 independent reflections

  • 2881 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.05

  • 3431 reflections

  • 192 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1436 Friedel pairs

  • Flack parameter: −0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O9i 0.84 2.26 2.939 (2) 139
O9—H9A⋯O11i 0.84 2.09 2.826 (2) 146
N13—H13A⋯O12ii 0.91 1.89 2.798 (2) 172
N13—H13B⋯O11 0.91 1.83 2.731 (2) 169
N13—H13C⋯O12iii 0.91 1.88 2.779 (2) 171
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y-1, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

In our previous work, phenylethylamine (PEA) has been proven to be an efficient resolving agent for resolution of racemic 4-chloromandelic acid. In order to further investigate the chiral recognition mechanism, the single-crystal structure of the corresponding more soluble salt, (R)-Phenylethylammonium (S)-4-chloromandelate, is reported here for comparison with that of the less soluble salt (R)-Phenylethylammonium (R)-4-chloromandelate (He et al., 2007).

The title complex consists of an ion pair; an amine cation and a carboxylate anion (see Fig. 1). The absolute stereochemistry of each ion has been confirmed by the structure determination [absolute structure parameter -0.03 (8); (Flack, 1983)]. All three H atoms of the –NH3 group and the H atom of the O—H group act as hydrogen bond donors in intermolecular O—H···O and N—H···O hydrogen bonds, forming a two-dimensional network perpendicular to the c axis. The hydrogen bond motif in the title compound is different to that observed in the room temperature structure of the R,R diastereomer (He et al., 2007).

Related literature top

For background information and the crystal structure of the R,R diastereomer of the title compound, see: He et al. (2007).

Experimental top

To a solution (S)-4-chloromandelate (2.0 g, 0.01 mol) in 10 ml 2-propanol, (1.3 mL, 0.01 mol), (R)-Phenylethylammonium, was added gradually. A white crystalline solid appeared. The crystals were collected and washed with 2-propanol twice to give the title compound (1.85 g), yield 56%. Single crystals were grown from a concentrated methanol solution of the title compound by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically and constrained as riding atoms with; C—H = 1.00Å and Uiso(H) = 1.2Ueq(C) for methyne H atoms, C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, O—H = 0.84Å and Uiso(H) = 1.5Ueq(C) for hydroxyl H atoms and N—H = 0.91Å and Uiso(H) = 1.5Ueq(C) for amine H atoms.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids and the atom labelling scheme.
(R)-1-Phenylethanaminium (S)-4-chloromandelate top
Crystal data top
C8H12N+·C8H6ClO3F(000) = 324
Mr = 307.76Dx = 1.295 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11634 reflections
a = 10.4091 (7) Åθ = 2.0–27.5°
b = 5.7635 (4) ŵ = 0.25 mm1
c = 13.2544 (10) ÅT = 150 K
β = 96.831 (4)°Plate, colourless
V = 789.52 (10) Å30.45 × 0.15 × 0.08 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3431 independent reflections
Radiation source: fine-focus sealed tube2881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1313
Tmin = 0.787, Tmax = 0.984k = 77
7943 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1172P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3431 reflectionsΔρmax = 0.26 e Å3
192 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 1436 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C8H12N+·C8H6ClO3V = 789.52 (10) Å3
Mr = 307.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4091 (7) ŵ = 0.25 mm1
b = 5.7635 (4) ÅT = 150 K
c = 13.2544 (10) Å0.45 × 0.15 × 0.08 mm
β = 96.831 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3431 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2881 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.984Rint = 0.072
7943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.30 e Å3
3431 reflectionsAbsolute structure: Flack (1983), 1436 Fridel pairs
192 parametersAbsolute structure parameter: 0.03 (8)
1 restraint
Special details top

Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995). M.p. 140.8–142.5 K. The specific rotation was [α]25D = +50.5° (c=1, C1H3OH), determined using a Perkin Elmer Model 341 Digital Polarimeter; 1H-NMR (d6-DMSO/TMS): δ 1.424 (d, 3H, CH3), 4.300 (m, 1H, CHNH2), 4.536 (s, 1H, CHOH), 7.268–7.457 (m, 9H, C6H5 and C6H4Cl) measured using an INOVA 400 MHz NMR (Varian).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62566 (7)0.61666 (16)1.01588 (5)0.0611 (3)
C20.6271 (2)0.5894 (5)0.88508 (17)0.0393 (6)
C30.5788 (3)0.7663 (5)0.82206 (19)0.0435 (6)
H3A0.54080.89900.84900.052*
C40.5863 (2)0.7484 (4)0.71887 (18)0.0368 (5)
H4A0.55290.87020.67510.044*
C50.64141 (18)0.5567 (4)0.67818 (16)0.0260 (4)
C60.6887 (2)0.3804 (4)0.74326 (19)0.0359 (5)
H6A0.72670.24730.71650.043*
C70.6815 (2)0.3952 (5)0.84688 (19)0.0422 (6)
H7A0.71370.27300.89090.051*
C80.64285 (18)0.5435 (3)0.56394 (15)0.0246 (4)
H8A0.65740.70330.53820.030*
O90.52152 (12)0.4619 (3)0.51580 (11)0.0287 (3)
H9A0.47010.57400.50530.043*
C100.74941 (19)0.3868 (4)0.53386 (15)0.0249 (4)
O110.72224 (14)0.1839 (3)0.50678 (13)0.0345 (4)
O120.86102 (13)0.4771 (3)0.53936 (11)0.0299 (3)
N130.87681 (16)0.1239 (3)0.42117 (14)0.0269 (4)
H13A0.86570.25870.45480.040*
H13B0.83320.00760.44870.040*
H13C0.96250.08850.42670.040*
C140.6876 (2)0.2471 (5)0.30409 (19)0.0395 (6)
H14A0.68980.40750.32880.059*
H14B0.64800.24300.23320.059*
H14C0.63660.15170.34580.059*
C150.8256 (2)0.1521 (4)0.31099 (16)0.0296 (5)
H15A0.82230.00450.27830.035*
C160.91365 (19)0.3052 (4)0.25701 (17)0.0278 (5)
C170.9388 (2)0.2491 (4)0.15998 (17)0.0348 (5)
H17A0.90410.11030.12920.042*
C181.0142 (2)0.3926 (5)0.10662 (18)0.0425 (6)
H18A1.02930.35360.03940.051*
C191.0672 (2)0.5923 (5)0.15193 (19)0.0400 (6)
H19A1.11940.69030.11600.048*
C201.0443 (2)0.6496 (4)0.24955 (19)0.0376 (6)
H20A1.08150.78590.28100.045*
C210.9671 (2)0.5080 (4)0.30114 (17)0.0325 (5)
H21A0.95020.54950.36770.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0659 (5)0.0910 (7)0.0280 (3)0.0131 (4)0.0120 (3)0.0052 (4)
C20.0348 (12)0.0566 (15)0.0273 (11)0.0126 (12)0.0076 (9)0.0033 (12)
C30.0474 (15)0.0465 (15)0.0389 (14)0.0067 (12)0.0141 (11)0.0070 (13)
C40.0438 (13)0.0333 (12)0.0342 (12)0.0085 (11)0.0089 (10)0.0005 (10)
C50.0202 (9)0.0275 (11)0.0311 (10)0.0025 (8)0.0058 (8)0.0028 (9)
C60.0376 (12)0.0329 (11)0.0383 (13)0.0040 (10)0.0094 (10)0.0050 (11)
C70.0415 (13)0.0485 (15)0.0366 (13)0.0003 (12)0.0048 (10)0.0083 (12)
C80.0202 (9)0.0239 (10)0.0299 (11)0.0023 (8)0.0035 (8)0.0004 (8)
O90.0199 (7)0.0278 (8)0.0376 (9)0.0015 (6)0.0000 (6)0.0031 (7)
C100.0223 (9)0.0273 (11)0.0256 (10)0.0011 (8)0.0052 (8)0.0004 (9)
O110.0290 (8)0.0286 (8)0.0474 (10)0.0002 (6)0.0104 (7)0.0071 (7)
O120.0208 (7)0.0323 (8)0.0373 (8)0.0001 (6)0.0067 (6)0.0026 (7)
N130.0233 (8)0.0258 (9)0.0325 (9)0.0003 (7)0.0066 (7)0.0027 (8)
C140.0272 (11)0.0549 (15)0.0361 (13)0.0034 (11)0.0029 (9)0.0099 (12)
C150.0290 (11)0.0321 (12)0.0284 (11)0.0066 (9)0.0063 (9)0.0001 (9)
C160.0226 (10)0.0298 (11)0.0314 (11)0.0001 (8)0.0051 (8)0.0043 (9)
C170.0373 (12)0.0359 (12)0.0320 (12)0.0035 (10)0.0070 (9)0.0021 (10)
C180.0429 (13)0.0526 (16)0.0344 (12)0.0052 (12)0.0145 (10)0.0043 (12)
C190.0304 (11)0.0468 (15)0.0442 (14)0.0054 (10)0.0105 (10)0.0116 (12)
C200.0338 (12)0.0358 (13)0.0432 (14)0.0078 (10)0.0040 (10)0.0038 (11)
C210.0340 (11)0.0343 (12)0.0305 (12)0.0038 (10)0.0087 (9)0.0003 (10)
Geometric parameters (Å, º) top
Cl1—C21.743 (2)N13—H13B0.9100
C2—C31.375 (4)N13—H13C0.9100
C2—C71.378 (4)C14—C151.530 (3)
C3—C41.383 (3)C14—H14A0.9800
C3—H3A0.9500C14—H14B0.9800
C4—C51.384 (3)C14—H14C0.9800
C4—H4A0.9500C15—C161.512 (3)
C5—C61.385 (3)C15—H15A1.0000
C5—C81.518 (3)C16—C171.381 (3)
C6—C71.387 (3)C16—C211.393 (3)
C6—H6A0.9500C17—C181.390 (3)
C7—H7A0.9500C17—H17A0.9500
C8—O91.425 (2)C18—C191.382 (4)
C8—C101.520 (3)C18—H18A0.9500
C8—H8A1.0000C19—C201.383 (3)
O9—H9A0.8400C19—H19A0.9500
C10—O111.246 (3)C20—C211.382 (3)
C10—O121.267 (2)C20—H20A0.9500
N13—C151.503 (3)C21—H21A0.9500
N13—H13A0.9100
C3—C2—C7121.1 (2)H13A—N13—H13C109.5
C3—C2—Cl1119.5 (2)H13B—N13—H13C109.5
C7—C2—Cl1119.4 (2)C15—C14—H14A109.5
C2—C3—C4119.1 (2)C15—C14—H14B109.5
C2—C3—H3A120.5H14A—C14—H14B109.5
C4—C3—H3A120.5C15—C14—H14C109.5
C3—C4—C5121.3 (2)H14A—C14—H14C109.5
C3—C4—H4A119.3H14B—C14—H14C109.5
C5—C4—H4A119.3N13—C15—C16110.97 (17)
C4—C5—C6118.5 (2)N13—C15—C14108.59 (18)
C4—C5—C8118.86 (19)C16—C15—C14112.37 (19)
C6—C5—C8122.64 (19)N13—C15—H15A108.3
C5—C6—C7121.0 (2)C16—C15—H15A108.3
C5—C6—H6A119.5C14—C15—H15A108.3
C7—C6—H6A119.5C17—C16—C21118.5 (2)
C2—C7—C6119.1 (2)C17—C16—C15119.8 (2)
C2—C7—H7A120.4C21—C16—C15121.69 (19)
C6—C7—H7A120.4C16—C17—C18121.0 (2)
O9—C8—C5110.47 (15)C16—C17—H17A119.5
O9—C8—C10108.78 (16)C18—C17—H17A119.5
C5—C8—C10112.68 (16)C19—C18—C17119.6 (2)
O9—C8—H8A108.3C19—C18—H18A120.2
C5—C8—H8A108.3C17—C18—H18A120.2
C10—C8—H8A108.3C18—C19—C20120.1 (2)
C8—O9—H9A109.5C18—C19—H19A120.0
O11—C10—O12125.27 (19)C20—C19—H19A120.0
O11—C10—C8119.05 (17)C21—C20—C19119.8 (2)
O12—C10—C8115.68 (18)C21—C20—H20A120.1
C15—N13—H13A109.5C19—C20—H20A120.1
C15—N13—H13B109.5C20—C21—C16121.0 (2)
H13A—N13—H13B109.5C20—C21—H21A119.5
C15—N13—H13C109.5C16—C21—H21A119.5
C7—C2—C3—C40.5 (4)C5—C8—C10—O1198.5 (2)
Cl1—C2—C3—C4176.8 (2)O9—C8—C10—O12155.95 (17)
C2—C3—C4—C50.1 (4)C5—C8—C10—O1281.2 (2)
C3—C4—C5—C60.4 (3)N13—C15—C16—C17139.6 (2)
C3—C4—C5—C8178.0 (2)C14—C15—C16—C1798.6 (2)
C4—C5—C6—C70.2 (3)N13—C15—C16—C2142.8 (3)
C8—C5—C6—C7177.7 (2)C14—C15—C16—C2179.0 (3)
C3—C2—C7—C60.8 (4)C21—C16—C17—C180.9 (3)
Cl1—C2—C7—C6176.52 (19)C15—C16—C17—C18176.8 (2)
C5—C6—C7—C20.4 (3)C16—C17—C18—C191.3 (4)
C4—C5—C8—O981.8 (2)C17—C18—C19—C200.5 (4)
C6—C5—C8—O995.7 (2)C18—C19—C20—C210.8 (3)
C4—C5—C8—C10156.32 (19)C19—C20—C21—C161.2 (3)
C6—C5—C8—C1026.2 (3)C17—C16—C21—C200.4 (3)
O9—C8—C10—O1124.4 (3)C15—C16—C21—C20178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O9i0.842.262.939 (2)139
O9—H9A···O11i0.842.092.826 (2)146
N13—H13A···O12ii0.911.892.798 (2)172
N13—H13B···O110.911.832.731 (2)169
N13—H13C···O12iii0.911.882.779 (2)171
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1, z; (iii) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H12N+·C8H6ClO3
Mr307.76
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)10.4091 (7), 5.7635 (4), 13.2544 (10)
β (°) 96.831 (4)
V3)789.52 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.45 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.787, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7943, 3431, 2881
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.05
No. of reflections3431
No. of parameters192
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.30
Absolute structureFlack (1983), 1436 Fridel pairs
Absolute structure parameter0.03 (8)

Computer programs: COLLECT (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O9i0.842.262.939 (2)139
O9—H9A···O11i0.842.092.826 (2)146.3
N13—H13A···O12ii0.911.892.798 (2)171.8
N13—H13B···O110.911.832.731 (2)169.0
N13—H13C···O12iii0.911.882.779 (2)170.7
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1, z; (iii) x+2, y1/2, z+1.
 

Acknowledgements

This work was supported by Ningbo Natural Science Fund (grant Nos. 2005B100085).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, Q., Jennings, M. C., Rohani, S., Zhu, J. & Gomaa, H. (2007). Acta Cryst. E63, o4199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds