metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m440-m441

catena-Poly[[bis­­[2-(2,3-di­methyl­anilino)benzoato-κO]cadmium(II)]-di-μ-3-pyridylmethanol-κ2N:O;κ2O:N]

aDepartment of Inorganic Chemistry, Slovak, Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia, and bFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: jan.moncol@stuba.sk

(Received 22 January 2008; accepted 28 January 2008; online 6 February 2008)

In the crystal structure of the title compound, [Cd(C15H14NO2)2(C6H7NO)2]n, the Cd atom displays a distorted octa­hedral geometry, including two pyridine N atoms and two hydroxyl O from four symmetry-related 3-pyridylmethanol (3-pyme) ligands and two carboxylate O atoms from mefenamate [2-(2,3-dimethyl­anilino)benzoate] anions. The Cd atoms are connected via the bridging 3-pyme ligands into chains, that extend in the a-axis direction. The Cd atom is located on a center of inversion, whereas the 3-pyme ligands and the mefenamate anions occupy general positions.

Related literature

For related literature, see: Cini (2000[Cini, R. (2000). Comments Inorg. Chem. 22, 151-186.]); Lörinc et al. (2004[Lörinc, Š., Koman, M., Melník, M., Moncoł, J. & Ondrušová, D. (2004). Acta Cryst. E60, m590-m592.]); Moncol et al. (2006[Moncol, J., Segľa, P., Mikloš, D., Mazúr, M., Melník, M., Głowiak, T., Valko, M. & Koman, M. (2006). Polyhedron, 25, 1561-1566.]); Valach et al. (1997[Valach, F., Tokarčík, M., Kubinec, P., Melník, M. & Macášková, Ľ. (1997). Polyhedron, 16, 1461-1464.]); Weder et al. (2002[Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95-126.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C15H14NO2)2(C6H7NO)2]

  • Mr = 811.20

  • Triclinic, [P \overline 1]

  • a = 6.829 (2) Å

  • b = 7.765 (2) Å

  • c = 16.930 (4) Å

  • α = 79.25 (3)°

  • β = 85.31 (3)°

  • γ = 86.71 (3)°

  • V = 878.2 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 100 (2) K

  • 0.15 × 0.08 × 0.02 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.915, Tmax = 0.985

  • 16779 measured reflections

  • 6275 independent reflections

  • 5024 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.087

  • S = 1.01

  • 6275 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd—O2 2.2475 (17)
Cd—O3i 2.3400 (17)
Cd—N2 2.348 (2)
O2—Cd—O3i 91.10 (6)
O2—Cd—N2 89.76 (7)
O3i—Cd—N2 94.51 (7)
Symmetry code: (i) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.91 1.97 2.696 (3) 135
O3—H3O⋯O1ii 0.84 1.78 2.600 (2) 164
Symmetry code: (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). KM-4 CCD/Xcalibur Software (including CrysAlis CCD and CrysAlis RED). Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). KM-4 CCD/Xcalibur Software (including CrysAlis CCD and CrysAlis RED). Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The importance of metal complexes with non-steroidal anti-inflammatory drugs (NSAIDs) as ligands has been stressed in several review papers (Cini, 2000; Weder et al., 2002). One of these NSAIDs are fenamates, which are derivatives of N-phenylantranilic acid and 2-phenylaminonicotinic acid (mefenamic acid, niflumic acid, tolfenamic acid, flufenamic acid). As part of our efforts to investigate metal(II) complexes based on fenamates, we describe the X-ray characterization of the title compound.

The CdII atom are in a distorted octahedral coordination formed by two carboxyl O atoms of mefenamate anions [Cd–O2 = 2.2475 (17) Å], two pyridine N atoms of 3-pyridylmethanol ligands (3-pyme) [Cd–N2 = 2.348 (2) Å] and two hydroxyl O atoms of adjacent 3-pyridylmethanol ligands [Cd–O3 = 2.3400 (17) Å] /Fig. 1). Each of the Cd atoms is connected via two symmetry related 3-pyridylmethanol into chains, that elongated in the direction of the crystallographic a axis.

The uncoordinated O atom of the carboxylate group of the mefenamate anion forms an intramolecular N–H···O hydrogen bonds to the amine H atoms as well as as intermolecular O–H···O hydrogen bonds to the hydroxyl H atoms of the 3-pyridylmethanol ligand, creating six-membered rings (Table 2).

The crystal structure of (I) can be compared with those of polymeric copper(II) carboxylate complexes [Cu(RCO2)2(3-pyme)2]n, which forms either coordination polymers with two bridging 3-pyme ligands between two CuII atoms or two-dimensional coordination polymer with only one bridging 3-pyme ligand between two CuII atoms (Moncol et al., 2006). [Cu(niflumate)2(3-pyme)2]n for example is one-dimensional coordination polymer, (Valach et al., 1997), while [Cu(flufenamate)2(3-pyme)2]n is two-dimensional coordination polymer (Lörinc et al., 2004).

Related literature top

For related literature, see: Cini (2000); Lörinc et al. (2004); Moncol et al. (2006); Valach et al. (1997); Weder et al. (2002).

Experimental top

The title complex was prepared by adding 3-pyridylmethanol (5 cm3) to a solution of Cd(mefenamato)2.H2O (1.25 mmol) in methanol (20 cm3). The fine white microcrystals which are formed by slow evaporation of the solvent on standing for a few days at room temperature were separated, washed with ethanol and dried in vacuo, yield 85%. The Anal. Calc.: C, 62.18; H, 5.22; N, 6.91; Cd, 13.86; Found: C, 61.82; H, 5.31; N, 7.00; Cd, 13.45. IR (KBr) cm-1: 3279 ν(N–H); 1610 νas(COO-); 1385 νs(COO-); 1056 ν(C–O)3-pyme; 643 δ(py)3-pyme.

Refinement top

All H atoms were placed in calculated positions (O–H allowed to rotate but not to tip and later fixed at the optimized position) and were refined isotropic with Uiso(H) = 1.2 Uiso(parent atom) using a riding model with C–H = 0.95, 0.99 and 0.98 Å, O–H = 0.84 Å and (N–H = 0.91 Å, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), with the atom numbering scheme and thermal ellipsoids drawn at the 30% probability level. Symmetry codes: i = x + 1, y, z, ii = x - 1, y, z.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Symmetry codes: ii = x - 1, y, z.
catena-Poly[[bis[2-(2,3-dimethylanilino)benzoato-κO]cadmium(II)]-di-µ- 3-pyridylmethanol-κ2N:O;κ2O:N] top
Crystal data top
[Cd(C15H14NO2)2(C6H7NO)2]Z = 1
Mr = 811.20F(000) = 418
Triclinic, P1Dx = 1.534 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.829 (2) ÅCell parameters from 9193 reflections
b = 7.765 (2) Åθ = 4–32°
c = 16.930 (4) ŵ = 0.68 mm1
α = 79.25 (3)°T = 100 K
β = 85.31 (3)°Plate, colourless
γ = 86.71 (3)°0.15 × 0.08 × 0.02 mm
V = 878.2 (4) Å3
Data collection top
Kuma KM-4 CCD
diffractometer
6275 independent reflections
Radiation source: fine-focus sealed tube5024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 32.5°, θmin = 4.6°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 109
Tmin = 0.915, Tmax = 0.985k = 1111
16779 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0274P)2]
where P = (Fo2 + 2Fc2)/3
6275 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Cd(C15H14NO2)2(C6H7NO)2]γ = 86.71 (3)°
Mr = 811.20V = 878.2 (4) Å3
Triclinic, P1Z = 1
a = 6.829 (2) ÅMo Kα radiation
b = 7.765 (2) ŵ = 0.68 mm1
c = 16.930 (4) ÅT = 100 K
α = 79.25 (3)°0.15 × 0.08 × 0.02 mm
β = 85.31 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
6275 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
5024 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.985Rint = 0.063
16779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.01Δρmax = 1.29 e Å3
6275 reflectionsΔρmin = 0.99 e Å3
243 parameters
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.50000.50000.50000.01174 (8)
N10.7197 (3)0.2022 (3)0.20406 (12)0.0165 (5)
N20.2681 (3)0.7076 (2)0.43955 (11)0.0116 (4)
O10.5810 (2)0.2645 (2)0.35027 (10)0.0179 (4)
O20.6740 (2)0.5163 (2)0.38047 (9)0.0142 (4)
O30.3074 (2)0.7089 (2)0.53597 (9)0.0139 (4)
C10.6931 (3)0.3927 (3)0.34046 (14)0.0130 (5)
C20.8654 (3)0.3967 (3)0.27859 (14)0.0116 (5)
C31.0243 (3)0.4955 (3)0.28732 (15)0.0158 (5)
H31.01590.56270.32900.019*
C41.1945 (4)0.4974 (3)0.23628 (15)0.0176 (5)
H41.30220.56400.24330.021*
C51.2045 (4)0.4011 (3)0.17537 (15)0.0178 (6)
H51.32080.40080.14050.021*
C61.0488 (3)0.3050 (3)0.16404 (14)0.0148 (5)
H61.05830.24180.12090.018*
C70.8761 (3)0.2994 (3)0.21548 (14)0.0127 (5)
C80.7302 (3)0.0801 (3)0.14937 (15)0.0151 (5)
C90.7325 (3)0.1415 (3)0.06625 (15)0.0154 (5)
C100.7413 (3)0.0186 (3)0.01387 (15)0.0144 (5)
C110.7457 (3)0.1599 (3)0.04723 (15)0.0175 (5)
H110.75220.24320.01240.021*
C120.7409 (4)0.2189 (3)0.12952 (16)0.0193 (6)
H120.74230.34110.15070.023*
C130.7341 (3)0.0990 (3)0.18106 (15)0.0175 (5)
H130.73210.13880.23770.021*
C140.7222 (4)0.3341 (3)0.03169 (15)0.0175 (5)
H14A0.69920.40090.07560.026*
H14B0.61420.36000.00400.026*
H14C0.84650.36730.00100.026*
C150.7481 (4)0.0776 (4)0.07602 (15)0.0188 (6)
H15A0.88410.09990.09700.028*
H15B0.66630.18550.08900.028*
H15C0.69830.01410.10070.028*
C210.2568 (3)0.8672 (3)0.48322 (15)0.0130 (5)
H21A0.25780.96330.51440.016*
H21B0.35550.89870.44260.016*
C220.0558 (3)0.8469 (3)0.44113 (14)0.0119 (5)
C230.0057 (4)0.9524 (3)0.36745 (15)0.0164 (5)
H230.09841.03720.34280.020*
C240.1808 (3)0.9330 (3)0.33008 (15)0.0176 (5)
H240.21691.00350.27940.021*
C250.3126 (3)0.8097 (3)0.36774 (14)0.0145 (5)
H250.43990.79640.34190.017*
C260.0861 (3)0.7263 (3)0.47475 (14)0.0116 (5)
H260.05310.65320.52510.014*
H1N0.63400.17640.24820.014*
H3O0.37910.72670.57660.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01022 (13)0.01148 (13)0.01335 (14)0.00098 (10)0.00044 (9)0.00282 (10)
N10.0151 (10)0.0236 (12)0.0118 (11)0.0023 (9)0.0033 (8)0.0071 (9)
N20.0111 (9)0.0112 (10)0.0129 (10)0.0010 (8)0.0005 (8)0.0036 (8)
O10.0177 (9)0.0199 (9)0.0169 (9)0.0040 (8)0.0039 (7)0.0068 (8)
O20.0170 (8)0.0127 (8)0.0124 (9)0.0014 (7)0.0046 (7)0.0041 (7)
O30.0138 (8)0.0140 (9)0.0142 (9)0.0035 (7)0.0045 (7)0.0045 (7)
C10.0142 (11)0.0138 (12)0.0097 (12)0.0040 (10)0.0026 (9)0.0003 (10)
C20.0127 (11)0.0110 (11)0.0095 (11)0.0022 (9)0.0006 (9)0.0008 (9)
C30.0185 (12)0.0152 (12)0.0136 (13)0.0013 (10)0.0017 (10)0.0025 (10)
C40.0165 (12)0.0196 (13)0.0164 (13)0.0033 (10)0.0010 (10)0.0027 (11)
C50.0140 (12)0.0219 (14)0.0143 (13)0.0017 (10)0.0061 (10)0.0007 (11)
C60.0171 (12)0.0165 (12)0.0101 (12)0.0041 (10)0.0000 (9)0.0031 (10)
C70.0134 (11)0.0116 (12)0.0126 (12)0.0008 (9)0.0007 (9)0.0017 (10)
C80.0089 (11)0.0211 (13)0.0154 (13)0.0000 (10)0.0009 (9)0.0048 (11)
C90.0095 (11)0.0168 (13)0.0192 (13)0.0011 (9)0.0003 (9)0.0025 (11)
C100.0071 (11)0.0196 (13)0.0167 (13)0.0022 (9)0.0010 (9)0.0044 (11)
C110.0141 (12)0.0232 (14)0.0171 (13)0.0024 (10)0.0001 (10)0.0084 (11)
C120.0179 (13)0.0156 (13)0.0236 (14)0.0018 (10)0.0015 (11)0.0009 (11)
C130.0159 (12)0.0208 (14)0.0155 (13)0.0022 (10)0.0012 (10)0.0023 (11)
C140.0191 (13)0.0173 (13)0.0162 (13)0.0013 (10)0.0006 (10)0.0042 (11)
C150.0166 (12)0.0224 (14)0.0176 (13)0.0029 (11)0.0003 (10)0.0055 (11)
C210.0113 (11)0.0102 (11)0.0172 (13)0.0003 (9)0.0009 (9)0.0023 (10)
C220.0116 (11)0.0108 (11)0.0143 (12)0.0020 (9)0.0006 (9)0.0045 (10)
C230.0168 (12)0.0144 (12)0.0174 (13)0.0011 (10)0.0033 (10)0.0009 (11)
C240.0177 (12)0.0189 (13)0.0135 (13)0.0018 (10)0.0006 (10)0.0032 (11)
C250.0147 (12)0.0163 (13)0.0124 (12)0.0036 (10)0.0032 (9)0.0030 (10)
C260.0133 (11)0.0116 (12)0.0094 (11)0.0019 (9)0.0024 (9)0.0018 (9)
Geometric parameters (Å, º) top
Cd—O2i2.2475 (17)C8—C91.398 (3)
Cd—O22.2475 (17)C9—C101.415 (3)
Cd—O3ii2.3400 (17)C9—C141.501 (3)
Cd—O3iii2.3400 (17)C10—C111.396 (3)
Cd—N22.348 (2)C10—C151.503 (3)
Cd—N2i2.348 (2)C11—C121.381 (3)
N1—C71.389 (3)C11—H110.9500
N1—C81.439 (3)C12—C131.386 (4)
N1—H1N0.91C12—H120.9500
N2—C251.344 (3)C13—H130.9500
N2—C261.346 (3)C14—H14A0.9800
O1—C11.269 (3)C14—H14B0.9800
O2—C11.269 (3)C14—H14C0.9800
O3—C211.420 (3)C15—H15A0.9800
O3—Cdiv2.3400 (17)C15—H15B0.9800
O3—H3O0.84C15—H15C0.9800
C1—C21.507 (3)C21—C221.508 (3)
C2—C31.397 (3)C21—H21A0.9900
C2—C71.414 (3)C21—H21B0.9900
C3—C41.389 (3)C22—C231.387 (3)
C3—H30.9500C22—C261.388 (3)
C4—C51.378 (4)C23—C241.388 (3)
C4—H40.9500C23—H230.9500
C5—C61.379 (3)C24—C251.379 (3)
C5—H50.9500C24—H240.9500
C6—C71.405 (3)C25—H250.9500
C6—H60.9500C26—H260.9500
C8—C131.394 (3)
O2i—Cd—O2180.000 (1)C8—C9—C10119.0 (2)
O2i—Cd—O3ii91.10 (6)C8—C9—C14121.6 (2)
O2—Cd—O3ii88.90 (6)C10—C9—C14119.5 (2)
O2i—Cd—O3iii88.90 (6)C11—C10—C9118.7 (2)
O2—Cd—O3iii91.10 (6)C11—C10—C15120.2 (2)
O3ii—Cd—O3iii180.00 (5)C9—C10—C15121.1 (2)
O2i—Cd—N290.24 (7)C12—C11—C10121.8 (2)
O2—Cd—N289.76 (7)C12—C11—H11119.1
O3ii—Cd—N285.49 (7)C10—C11—H11119.1
O3iii—Cd—N294.51 (7)C11—C12—C13119.8 (2)
O2i—Cd—N2i89.76 (7)C11—C12—H12120.1
O2—Cd—N2i90.24 (7)C13—C12—H12120.1
O3ii—Cd—N2i94.51 (7)C12—C13—C8119.6 (2)
O3iii—Cd—N2i85.49 (7)C12—C13—H13120.2
N2—Cd—N2i180.00 (9)C8—C13—H13120.2
C7—N1—C8124.02 (19)C9—C14—H14A109.5
C7—N1—H1N114.1C9—C14—H14B109.5
C8—N1—H1N115.4H14A—C14—H14B109.5
C25—N2—C26118.0 (2)C9—C14—H14C109.5
C25—N2—Cd120.73 (15)H14A—C14—H14C109.5
C26—N2—Cd121.31 (15)H14B—C14—H14C109.5
C1—O2—Cd124.12 (15)C10—C15—H15A109.5
C21—O3—Cdiv123.21 (14)C10—C15—H15B109.5
C21—O3—H3O112.5H15A—C15—H15B109.5
Cdiv—O3—H3O96.9C10—C15—H15C109.5
O2—C1—O1124.7 (2)H15A—C15—H15C109.5
O2—C1—C2117.3 (2)H15B—C15—H15C109.5
O1—C1—C2117.9 (2)O3—C21—C22110.59 (18)
C3—C2—C7119.4 (2)O3—C21—H21A109.5
C3—C2—C1117.5 (2)C22—C21—H21A109.5
C7—C2—C1123.1 (2)O3—C21—H21B109.5
C4—C3—C2121.4 (2)C22—C21—H21B109.5
C4—C3—H3119.3H21A—C21—H21B108.1
C2—C3—H3119.3C23—C22—C26117.8 (2)
C5—C4—C3118.9 (2)C23—C22—C21120.4 (2)
C5—C4—H4120.6C26—C22—C21121.9 (2)
C3—C4—H4120.6C22—C23—C24119.5 (2)
C4—C5—C6121.2 (2)C22—C23—H23120.2
C4—C5—H5119.4C24—C23—H23120.2
C6—C5—H5119.4C25—C24—C23118.9 (2)
C5—C6—C7120.9 (2)C25—C24—H24120.6
C5—C6—H6119.5C23—C24—H24120.6
C7—C6—H6119.5N2—C25—C24122.6 (2)
N1—C7—C6120.8 (2)N2—C25—H25118.7
N1—C7—C2121.0 (2)C24—C25—H25118.7
C6—C7—C2118.2 (2)N2—C26—C22123.3 (2)
C13—C8—C9121.2 (2)N2—C26—H26118.4
C13—C8—N1118.7 (2)C22—C26—H26118.4
C9—C8—N1120.1 (2)
O2i—Cd—N2—C25162.39 (18)C1—C2—C7—C6176.3 (2)
O2—Cd—N2—C2517.61 (18)C7—N1—C8—C13106.9 (3)
O3ii—Cd—N2—C25106.52 (18)C7—N1—C8—C974.3 (3)
O3iii—Cd—N2—C2573.48 (18)C13—C8—C9—C100.7 (3)
O2i—Cd—N2—C2618.75 (17)N1—C8—C9—C10179.5 (2)
O2—Cd—N2—C26161.25 (17)C13—C8—C9—C14178.1 (2)
O3ii—Cd—N2—C2672.33 (17)N1—C8—C9—C140.7 (3)
O3iii—Cd—N2—C26107.67 (17)C8—C9—C10—C110.5 (3)
O3ii—Cd—O2—C126.22 (17)C14—C9—C10—C11178.4 (2)
O3iii—Cd—O2—C1153.78 (17)C8—C9—C10—C15178.8 (2)
N2—Cd—O2—C1111.71 (18)C14—C9—C10—C152.3 (3)
N2i—Cd—O2—C168.29 (18)C9—C10—C11—C120.3 (4)
Cd—O2—C1—O119.1 (3)C15—C10—C11—C12179.6 (2)
Cd—O2—C1—C2159.04 (14)C10—C11—C12—C130.9 (4)
O2—C1—C2—C321.1 (3)C11—C12—C13—C80.6 (4)
O1—C1—C2—C3157.2 (2)C9—C8—C13—C120.1 (4)
O2—C1—C2—C7162.0 (2)N1—C8—C13—C12178.9 (2)
O1—C1—C2—C719.8 (3)Cdiv—O3—C21—C2296.45 (19)
C7—C2—C3—C41.3 (4)O3—C21—C22—C23155.3 (2)
C1—C2—C3—C4175.7 (2)O3—C21—C22—C2626.0 (3)
C2—C3—C4—C50.8 (4)C26—C22—C23—C240.6 (4)
C3—C4—C5—C60.6 (4)C21—C22—C23—C24179.3 (2)
C4—C5—C6—C71.4 (4)C22—C23—C24—C250.6 (4)
C8—N1—C7—C610.3 (3)C26—N2—C25—C241.0 (4)
C8—N1—C7—C2170.3 (2)Cd—N2—C25—C24179.88 (18)
C5—C6—C7—N1179.8 (2)C23—C24—C25—N20.2 (4)
C5—C6—C7—C20.8 (3)C25—N2—C26—C221.0 (3)
C3—C2—C7—N1178.9 (2)Cd—N2—C26—C22179.84 (17)
C1—C2—C7—N14.2 (3)C23—C22—C26—N20.2 (4)
C3—C2—C7—C60.6 (3)C21—C22—C26—N2178.5 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.911.972.696 (3)135
O3—H3O···O1ii0.841.782.600 (2)164
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C15H14NO2)2(C6H7NO)2]
Mr811.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.829 (2), 7.765 (2), 16.930 (4)
α, β, γ (°)79.25 (3), 85.31 (3), 86.71 (3)
V3)878.2 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.15 × 0.08 × 0.02
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.915, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16779, 6275, 5024
Rint0.063
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.087, 1.01
No. of reflections6275
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.99

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Cd—O22.2475 (17)Cd—N22.348 (2)
Cd—O3i2.3400 (17)
O2—Cd—O3i91.10 (6)O3i—Cd—N294.51 (7)
O2—Cd—N289.76 (7)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.911.972.696 (3)135.2
O3—H3O···O1ii0.841.782.600 (2)163.8
Symmetry code: (ii) x, y+1, z+1.
 

Acknowledgements

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (1/4454/07 and 1/0353/08).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCini, R. (2000). Comments Inorg. Chem. 22, 151–186.  Web of Science CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLörinc, Š., Koman, M., Melník, M., Moncoł, J. & Ondrušová, D. (2004). Acta Cryst. E60, m590–m592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoncol, J., Segľa, P., Mikloš, D., Mazúr, M., Melník, M., Głowiak, T., Valko, M. & Koman, M. (2006). Polyhedron, 25, 1561–1566.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). KM-4 CCD/Xcalibur Software (including CrysAlis CCD and CrysAlis RED). Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValach, F., Tokarčík, M., Kubinec, P., Melník, M. & Macášková, Ľ. (1997). Polyhedron, 16, 1461–1464.  CSD CrossRef CAS Web of Science Google Scholar
First citationWeder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m440-m441
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds