organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o627-o628

4-(Di­methyl­amino)pyridinium 4-toluene­sulfonate

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 18 February 2008; accepted 20 February 2008; online 27 February 2008)

In the title compound, C7H11N2+·C7H7O3S, the cation is protonated at the N atom of the heterocyclic ring. The dimethyl­amino group lies close to the pyridinium ring plane with a dihedral angle between the pyridinium and the dimethyl­amine CNC planes of 3.82 (17)°. The N—C bond linking the dimethyl­amino substituent to the pyridinium ring is characteristically short [1.3360 (19) Å], suggesting some delocalization in the cation. In the crystal structure, N—H⋯O hydrogen bonds link individual pairs of cations and anions. The structure is further stabilized by an extensive series of C—H⋯O hydrogen bonds, augmented by ππ [centroid–centroid distance between adjacent pyridinium rings = 3.5807 (10) Å] and C—H⋯π inter­actions, giving a network structure.

Related literature

For the preparation and uses of the title compound, see: Haynes & Indorato (1984[Haynes, R. K. & Indorato, C. (1984). Aust. J. Chem. 37, 1183-94.]); Moore, & Stupp (1990[Moore, J. S. & Stupp, S. I. (1990). Macromolecules, 23, 65-70.]). For structures having the 4-(dimethyl­amino)pyridinium cation, see for example: Chao et al. (1977[Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820-1823.]); Mayr-Stein & Bolte (2000[Mayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19-e20.]); Sluka et al. (2003[Sluka, R., Nečas, M. & Černík, M. (2003). Acta Cryst. E59, o190-o192.]). For structures of salts of the 4-toluene­sulfonate anion with pyridinium or similar cations, see for example: Koshima et al. (2001[Koshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des. 1, 467-471.], 2004[Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807-811.]); Biradha & Mahata (2005[Biradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49-51.]). For details of the Cambridge structural database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11N2+·C7H7O3S

  • Mr = 294.36

  • Monoclinic, P 21 /n

  • a = 8.9878 (7) Å

  • b = 17.5897 (12) Å

  • c = 9.8202 (6) Å

  • β = 111.429 (3)°

  • V = 1445.18 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 91 (2) K

  • 0.43 × 0.07 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 0.991

  • 22414 measured reflections

  • 3792 independent reflections

  • 3087 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.05

  • 3792 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3 0.95 2.40 3.201 (2) 142
N1—H1⋯O3i 0.81 (2) 1.92 (2) 2.7160 (18) 171 (2)
C12—H12⋯O2i 0.95 2.64 3.376 (2) 135
C7—H7A⋯O2ii 0.98 2.62 3.553 (3) 160
C13—H13C⋯O1ii 0.98 2.56 3.408 (2) 145
C6—H6⋯O1iii 0.95 2.63 3.490 (2) 151
C9—H9⋯O1iii 0.95 2.44 3.350 (2) 160
C13—H13A⋯O2iii 0.98 2.56 3.502 (2) 161
C14—H14A⋯O3iv 0.98 2.67 3.541 (2) 148
C11—H11⋯Cg2v 0.95 2.72 3.5883 (18) 152
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg2 is the centroids of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound (I) was first reported and characterized as a side product by Haynes and Indorato (1984). However, it is better known under the acronym DPTS following the work of Moore and Stupp (1990) for its role as a convenient provider of stoichiometric quantities of anhydrous p-toluenesulfonic acid (PTSA) and 4-(dimethylamino)pyridine (DMAP) for the catalytic synthesis of polyesters at room temperature. Our interest in the synthesis of organometallic polyesters required the synthesis of DPTS and its structure is reported here, Fig 1.

The asymmetric unit of (I), C7H11N2+, C7H7O3S-, consists of a 4-(dimethylamino)pyridinium cation and a 4-toluenesulfonate anion. In common with other DMAPH+ cations (Chao et al., 1977; Mayr-Stein & Bolte, 2000; Sluka et al., 2003), protonation is at the N1 atom of the pyridinium ring. Bond distances and angles in both the cation and anion are normal (Allen et al., 1987) and those in the anion are comparable to those in other 4-toluenesulfonate salts (Koshima et al., 2001, 2004; Biradha & Mahata 2005). The N2—C10 bond linking the dimethylamino substituent to the pyridinium ring is short, 1.3360 (19)Å suggesting some delocalization in the cation. The fact that the dimethylamino group lies close to the plane of the pyridinium ring, with a dihedral between the pyridinium and the dimethylamine C13N2C14 planes of 3.82 (17)°, supports this observation as does the fact that the C10N2C13C14 system is reasonably planar with an r.m.s. deviation of 0.006 Å. A search of the Cambridge structural database (Allen, 2002) reveals 47 similar structures incorporating the 4-(dimethylamino)pyridinium cation for which the mean corresponding N—C distance is 1.34 (1) Å.

In the crystal structure N—H···O hydrogen bonds link individual pairs of cations and anions and the structure is further stabilized by an extensive network of C—H···O hydrogen bonds, Fig. 2, Table 1. In addition π···π stacking beween adjacent pyridinium rings (Cg1···Cg1 = 3.5807 (10) Å), Fig. 3, and C11—H11···Cg2 interactions also contribute to the crystal packing. (Cg1 & Cg2 are the centroids of the N1, C8···C12 and C1···C6 rings respectively).

Related literature top

For the preparation and uses of the title compound, see: Haynes & Indorato (1984); Moore, & Stupp (1990). For structures having the 4-(dimethylamino)pyridinium cation, see for example: Chao et al. (1977); Mayr-Stein & Bolte (2000); Sluka et al. (2003. For structures of salts of the 4-toluenesulfonate anion with pyridinium or similar cations, see for example: Koshima et al. (2001, 2004); Biradha & Mahata (2005). For related literature, see: Allen (2002).

Experimental top

The title compound was prepared according to the method of Moore and Stupp (1990) with X-ray quality crystals grown from 1,2-dichloroethane.

Refinement top

The H1 atom involved in N—H···O hydrogen bonding was located in a difference Fourier map and was freely refined with an isotropic displacement parameter. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The highest residual electron density peak is located at 0.76 Å from H2.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of (I) with hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. π···π stacking (dotted lines) between adjacent pyridinium rings of (I). The red circles represent pyridinium ring centroids separated by 3.5807 (10) Å. Additional hydrogen bonding interactions are shown as dashed lines.
4-(Dimethylamino)pyridinium 4-toluenesulfonate top
Crystal data top
C7H11N2+·C7H7O3SF(000) = 624
Mr = 294.36Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5199 reflections
a = 8.9878 (7) Åθ = 2.3–28.4°
b = 17.5897 (12) ŵ = 0.23 mm1
c = 9.8202 (6) ÅT = 91 K
β = 111.429 (3)°Block, colourless
V = 1445.18 (17) Å30.43 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3792 independent reflections
Radiation source: fine-focus sealed tube3087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 28.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1211
Tmin = 0.860, Tmax = 0.991k = 2323
22414 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.7048P]
where P = (Fo2 + 2Fc2)/3
3792 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C7H11N2+·C7H7O3SV = 1445.18 (17) Å3
Mr = 294.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9878 (7) ŵ = 0.23 mm1
b = 17.5897 (12) ÅT = 91 K
c = 9.8202 (6) Å0.43 × 0.07 × 0.04 mm
β = 111.429 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3087 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.991Rint = 0.037
22414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.11 e Å3
3792 reflectionsΔρmin = 0.41 e Å3
188 parameters
Special details top

Experimental. As the crystals were weakly diffracting data was collected using 55 sec exposures per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62942 (4)0.40655 (2)0.30685 (4)0.02071 (12)
O10.65251 (15)0.46441 (8)0.41760 (13)0.0300 (3)
O20.76431 (14)0.35591 (8)0.33293 (14)0.0305 (3)
O30.57456 (14)0.43952 (7)0.15893 (12)0.0253 (3)
C10.46612 (19)0.35035 (9)0.30817 (17)0.0218 (3)
C20.4183 (2)0.28743 (10)0.21659 (18)0.0262 (3)
H20.47730.27240.15820.031*
C30.2834 (2)0.24663 (10)0.2110 (2)0.0320 (4)
H30.25030.20400.14770.038*
C40.1961 (2)0.26748 (11)0.2972 (2)0.0338 (4)
C50.2470 (2)0.32962 (12)0.3887 (2)0.0336 (4)
H50.18930.34400.44870.040*
C60.3805 (2)0.37166 (11)0.39512 (18)0.0275 (4)
H60.41290.41450.45810.033*
C70.0465 (3)0.22552 (14)0.2912 (3)0.0531 (6)
H7A0.04050.26200.27570.080*
H7B0.06740.19850.38350.080*
H7C0.01600.18890.21030.080*
N10.24038 (18)0.56935 (9)0.00587 (17)0.0267 (3)
H10.301 (3)0.5637 (13)0.037 (2)0.036 (6)*
C80.2816 (2)0.54668 (9)0.14560 (19)0.0250 (3)
H80.38480.52560.19480.030*
C90.17879 (18)0.55323 (9)0.21827 (17)0.0207 (3)
H90.21050.53730.31730.025*
C100.02343 (18)0.58410 (8)0.14474 (16)0.0172 (3)
C110.0123 (2)0.60940 (9)0.00116 (17)0.0211 (3)
H110.11290.63220.05370.025*
C120.0971 (2)0.60106 (10)0.06569 (18)0.0254 (3)
H120.07170.61800.16340.031*
N20.08300 (16)0.58856 (8)0.21026 (14)0.0206 (3)
C130.0458 (2)0.55874 (11)0.35772 (17)0.0280 (4)
H13A0.03030.59270.42860.042*
H13B0.00130.50800.36470.042*
H13C0.14410.55560.37890.042*
C140.2376 (2)0.62548 (12)0.13823 (19)0.0296 (4)
H14A0.29490.60030.04470.044*
H14B0.22100.67910.12080.044*
H14C0.30080.62180.20090.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01460 (19)0.0296 (2)0.01777 (19)0.00256 (14)0.00579 (14)0.00122 (14)
O10.0244 (6)0.0395 (7)0.0268 (6)0.0059 (5)0.0103 (5)0.0087 (5)
O20.0181 (6)0.0409 (7)0.0314 (6)0.0095 (5)0.0077 (5)0.0044 (5)
O30.0191 (6)0.0375 (7)0.0220 (6)0.0038 (5)0.0107 (4)0.0071 (5)
C10.0185 (7)0.0270 (8)0.0187 (7)0.0030 (6)0.0052 (6)0.0067 (6)
C20.0254 (8)0.0247 (8)0.0262 (8)0.0076 (7)0.0069 (6)0.0069 (6)
C30.0305 (9)0.0217 (8)0.0368 (10)0.0022 (7)0.0040 (8)0.0065 (7)
C40.0253 (9)0.0304 (9)0.0448 (11)0.0019 (7)0.0118 (8)0.0155 (8)
C50.0282 (9)0.0409 (11)0.0368 (10)0.0026 (8)0.0181 (8)0.0090 (8)
C60.0244 (8)0.0359 (10)0.0235 (8)0.0010 (7)0.0102 (7)0.0030 (7)
C70.0366 (12)0.0412 (12)0.0846 (19)0.0004 (9)0.0258 (12)0.0119 (12)
N10.0268 (7)0.0282 (8)0.0331 (8)0.0029 (6)0.0205 (6)0.0057 (6)
C80.0209 (8)0.0213 (8)0.0347 (9)0.0010 (6)0.0126 (7)0.0004 (7)
C90.0189 (7)0.0191 (7)0.0229 (7)0.0016 (6)0.0064 (6)0.0018 (6)
C100.0183 (7)0.0161 (7)0.0172 (7)0.0013 (5)0.0067 (5)0.0020 (5)
C110.0224 (8)0.0230 (8)0.0176 (7)0.0009 (6)0.0070 (6)0.0008 (6)
C120.0295 (9)0.0285 (9)0.0208 (7)0.0042 (7)0.0121 (6)0.0021 (6)
N20.0173 (6)0.0286 (7)0.0164 (6)0.0026 (5)0.0067 (5)0.0020 (5)
C130.0232 (8)0.0437 (10)0.0184 (7)0.0004 (7)0.0093 (6)0.0057 (7)
C140.0185 (8)0.0445 (10)0.0259 (8)0.0094 (7)0.0082 (6)0.0047 (7)
Geometric parameters (Å, º) top
S1—O11.4481 (13)N1—C81.344 (2)
S1—O21.4499 (12)N1—H10.81 (2)
S1—O31.4718 (11)C8—C91.363 (2)
S1—C11.7735 (17)C8—H80.9500
C1—C21.391 (2)C9—C101.425 (2)
C1—C61.394 (2)C9—H90.9500
C2—C31.392 (3)C10—N21.3360 (19)
C2—H20.9500C10—C111.420 (2)
C3—C41.397 (3)C11—C121.359 (2)
C3—H30.9500C11—H110.9500
C4—C51.382 (3)C12—H120.9500
C4—C71.515 (3)N2—C131.4595 (19)
C5—C61.391 (3)N2—C141.461 (2)
C5—H50.9500C13—H13A0.9800
C6—H60.9500C13—H13B0.9800
C7—H7A0.9800C13—H13C0.9800
C7—H7B0.9800C14—H14A0.9800
C7—H7C0.9800C14—H14B0.9800
N1—C121.342 (2)C14—H14C0.9800
O1—S1—O2114.71 (8)C8—N1—H1120.4 (16)
O1—S1—O3111.64 (8)N1—C8—C9121.48 (16)
O2—S1—O3111.92 (7)N1—C8—H8119.3
O1—S1—C1106.15 (8)C9—C8—H8119.3
O2—S1—C1107.29 (8)C8—C9—C10119.56 (15)
O3—S1—C1104.31 (7)C8—C9—H9120.2
C2—C1—C6120.03 (16)C10—C9—H9120.2
C2—C1—S1119.99 (13)N2—C10—C11121.97 (14)
C6—C1—S1119.89 (14)N2—C10—C9121.33 (14)
C1—C2—C3119.64 (16)C11—C10—C9116.70 (14)
C1—C2—H2120.2C12—C11—C10120.08 (15)
C3—C2—H2120.2C12—C11—H11120.0
C2—C3—C4120.97 (18)C10—C11—H11120.0
C2—C3—H3119.5N1—C12—C11121.34 (15)
C4—C3—H3119.5N1—C12—H12119.3
C5—C4—C3118.39 (17)C11—C12—H12119.3
C5—C4—C7119.3 (2)C10—N2—C13120.79 (13)
C3—C4—C7122.3 (2)C10—N2—C14120.98 (13)
C4—C5—C6121.65 (17)C13—N2—C14118.20 (13)
C4—C5—H5119.2N2—C13—H13A109.5
C6—C5—H5119.2N2—C13—H13B109.5
C5—C6—C1119.31 (17)H13A—C13—H13B109.5
C5—C6—H6120.3N2—C13—H13C109.5
C1—C6—H6120.3H13A—C13—H13C109.5
C4—C7—H7A109.5H13B—C13—H13C109.5
C4—C7—H7B109.5N2—C14—H14A109.5
H7A—C7—H7B109.5N2—C14—H14B109.5
C4—C7—H7C109.5H14A—C14—H14B109.5
H7A—C7—H7C109.5N2—C14—H14C109.5
H7B—C7—H7C109.5H14A—C14—H14C109.5
C12—N1—C8120.78 (14)H14B—C14—H14C109.5
C12—N1—H1118.9 (16)
O1—S1—C1—C2177.44 (13)C2—C1—C6—C50.3 (2)
O2—S1—C1—C254.35 (14)S1—C1—C6—C5176.27 (13)
O3—S1—C1—C264.53 (14)C12—N1—C8—C91.7 (3)
O1—S1—C1—C66.04 (15)N1—C8—C9—C100.6 (2)
O2—S1—C1—C6129.12 (14)C8—C9—C10—N2177.23 (15)
O3—S1—C1—C6112.00 (14)C8—C9—C10—C112.5 (2)
C6—C1—C2—C30.8 (2)N2—C10—C11—C12177.39 (15)
S1—C1—C2—C3175.68 (12)C9—C10—C11—C122.3 (2)
C1—C2—C3—C40.6 (3)C8—N1—C12—C111.8 (3)
C2—C3—C4—C50.2 (3)C10—C11—C12—N10.2 (3)
C2—C3—C4—C7178.49 (18)C11—C10—N2—C13176.99 (15)
C3—C4—C5—C60.8 (3)C9—C10—N2—C132.7 (2)
C7—C4—C5—C6177.93 (19)C11—C10—N2—C144.9 (2)
C4—C5—C6—C10.6 (3)C9—C10—N2—C14175.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O30.952.403.201 (2)142
N1—H1···O3i0.81 (2)1.92 (2)2.7160 (18)171 (2)
C12—H12···O2i0.952.643.376 (2)135
C7—H7A···O2ii0.982.623.553 (3)160
C13—H13C···O1ii0.982.563.408 (2)145
C6—H6···O1iii0.952.633.490 (2)151
C9—H9···O1iii0.952.443.350 (2)160
C13—H13A···O2iii0.982.563.502 (2)161
C14—H14A···O3iv0.982.673.541 (2)148
C11—H11···Cg2v0.952.723.5883 (18)152
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H11N2+·C7H7O3S
Mr294.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)91
a, b, c (Å)8.9878 (7), 17.5897 (12), 9.8202 (6)
β (°) 111.429 (3)
V3)1445.18 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.43 × 0.07 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.860, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
22414, 3792, 3087
Rint0.037
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.05
No. of reflections3792
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 0.41

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O30.952.403.201 (2)141.7
N1—H1···O3i0.81 (2)1.92 (2)2.7160 (18)171 (2)
C12—H12···O2i0.952.643.376 (2)135.2
C7—H7A···O2ii0.982.623.553 (3)160.1
C13—H13C···O1ii0.982.563.408 (2)144.5
C6—H6···O1iii0.952.633.490 (2)151.4
C9—H9···O1iii0.952.443.350 (2)160.3
C13—H13A···O2iii0.982.563.502 (2)161.4
C14—H14A···O3iv0.982.673.541 (2)148.0
C11—H11···Cg2v0.952.723.5883 (18)152.0
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the New Zealand Foundation for Research Science and Technology for a Postdoctoral Fellowship to CJM and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBiradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820–1823.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHaynes, R. K. & Indorato, C. (1984). Aust. J. Chem. 37, 1183–94.  CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKoshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des. 1, 467–471.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807–811.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19–e20.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, J. S. & Stupp, S. I. (1990). Macromolecules, 23, 65–70.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluka, R., Nečas, M. & Černík, M. (2003). Acta Cryst. E59, o190–o192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o627-o628
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds