organic compounds
4-(Dimethylamino)pyridinium 4-toluenesulfonate
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
In the title compound, C7H11N2+·C7H7O3S−, the cation is protonated at the N atom of the heterocyclic ring. The dimethylamino group lies close to the pyridinium ring plane with a dihedral angle between the pyridinium and the dimethylamine CNC planes of 3.82 (17)°. The N—C bond linking the dimethylamino substituent to the pyridinium ring is characteristically short [1.3360 (19) Å], suggesting some delocalization in the cation. In the N—H⋯O hydrogen bonds link individual pairs of cations and anions. The structure is further stabilized by an extensive series of C—H⋯O hydrogen bonds, augmented by π–π [centroid–centroid distance between adjacent pyridinium rings = 3.5807 (10) Å] and C—H⋯π interactions, giving a network structure.
Related literature
For the preparation and uses of the title compound, see: Haynes & Indorato (1984); Moore, & Stupp (1990). For structures having the 4-(dimethylamino)pyridinium cation, see for example: Chao et al. (1977); Mayr-Stein & Bolte (2000); Sluka et al. (2003). For structures of salts of the 4-toluenesulfonate anion with pyridinium or similar cations, see for example: Koshima et al. (2001, 2004); Biradha & Mahata (2005). For details of the Cambridge structural database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808004856/ng2425sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004856/ng2425Isup2.hkl
The title compound was prepared according to the method of Moore and Stupp (1990) with X-ray quality crystals grown from 1,2-dichloroethane.
The H1 atom involved in N—H···O hydrogen bonding was located in a difference Fourier map and was freely refined with an isotropic displacement parameter. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The highest residual electron density peak is located at 0.76 Å from H2.
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).Fig. 1. The asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. Crystal packing of (I) with hydrogen bonds drawn as dashed lines. | |
Fig. 3. π···π stacking (dotted lines) between adjacent pyridinium rings of (I). The red circles represent pyridinium ring centroids separated by 3.5807 (10) Å. Additional hydrogen bonding interactions are shown as dashed lines. |
C7H11N2+·C7H7O3S− | F(000) = 624 |
Mr = 294.36 | Dx = 1.353 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5199 reflections |
a = 8.9878 (7) Å | θ = 2.3–28.4° |
b = 17.5897 (12) Å | µ = 0.23 mm−1 |
c = 9.8202 (6) Å | T = 91 K |
β = 111.429 (3)° | Block, colourless |
V = 1445.18 (17) Å3 | 0.43 × 0.07 × 0.04 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 3792 independent reflections |
Radiation source: fine-focus sealed tube | 3087 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 28.9°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −12→11 |
Tmin = 0.860, Tmax = 0.991 | k = −23→23 |
22414 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0662P)2 + 0.7048P] where P = (Fo2 + 2Fc2)/3 |
3792 reflections | (Δ/σ)max = 0.001 |
188 parameters | Δρmax = 1.11 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
C7H11N2+·C7H7O3S− | V = 1445.18 (17) Å3 |
Mr = 294.36 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.9878 (7) Å | µ = 0.23 mm−1 |
b = 17.5897 (12) Å | T = 91 K |
c = 9.8202 (6) Å | 0.43 × 0.07 × 0.04 mm |
β = 111.429 (3)° |
Bruker APEXII CCD area-detector diffractometer | 3792 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 3087 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 0.991 | Rint = 0.037 |
22414 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 1.11 e Å−3 |
3792 reflections | Δρmin = −0.41 e Å−3 |
188 parameters |
Experimental. As the crystals were weakly diffracting data was collected using 55 sec exposures per frame. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.62942 (4) | 0.40655 (2) | 0.30685 (4) | 0.02071 (12) | |
O1 | 0.65251 (15) | 0.46441 (8) | 0.41760 (13) | 0.0300 (3) | |
O2 | 0.76431 (14) | 0.35591 (8) | 0.33293 (14) | 0.0305 (3) | |
O3 | 0.57456 (14) | 0.43952 (7) | 0.15893 (12) | 0.0253 (3) | |
C1 | 0.46612 (19) | 0.35035 (9) | 0.30817 (17) | 0.0218 (3) | |
C2 | 0.4183 (2) | 0.28743 (10) | 0.21659 (18) | 0.0262 (3) | |
H2 | 0.4773 | 0.2724 | 0.1582 | 0.031* | |
C3 | 0.2834 (2) | 0.24663 (10) | 0.2110 (2) | 0.0320 (4) | |
H3 | 0.2503 | 0.2040 | 0.1477 | 0.038* | |
C4 | 0.1961 (2) | 0.26748 (11) | 0.2972 (2) | 0.0338 (4) | |
C5 | 0.2470 (2) | 0.32962 (12) | 0.3887 (2) | 0.0336 (4) | |
H5 | 0.1893 | 0.3440 | 0.4487 | 0.040* | |
C6 | 0.3805 (2) | 0.37166 (11) | 0.39512 (18) | 0.0275 (4) | |
H6 | 0.4129 | 0.4145 | 0.4581 | 0.033* | |
C7 | 0.0465 (3) | 0.22552 (14) | 0.2912 (3) | 0.0531 (6) | |
H7A | −0.0405 | 0.2620 | 0.2757 | 0.080* | |
H7B | 0.0674 | 0.1985 | 0.3835 | 0.080* | |
H7C | 0.0160 | 0.1889 | 0.2103 | 0.080* | |
N1 | 0.24038 (18) | 0.56935 (9) | 0.00587 (17) | 0.0267 (3) | |
H1 | 0.301 (3) | 0.5637 (13) | −0.037 (2) | 0.036 (6)* | |
C8 | 0.2816 (2) | 0.54668 (9) | 0.14560 (19) | 0.0250 (3) | |
H8 | 0.3848 | 0.5256 | 0.1948 | 0.030* | |
C9 | 0.17879 (18) | 0.55323 (9) | 0.21827 (17) | 0.0207 (3) | |
H9 | 0.2105 | 0.5373 | 0.3173 | 0.025* | |
C10 | 0.02343 (18) | 0.58410 (8) | 0.14474 (16) | 0.0172 (3) | |
C11 | −0.0123 (2) | 0.60940 (9) | −0.00116 (17) | 0.0211 (3) | |
H11 | −0.1129 | 0.6322 | −0.0537 | 0.025* | |
C12 | 0.0971 (2) | 0.60106 (10) | −0.06569 (18) | 0.0254 (3) | |
H12 | 0.0717 | 0.6180 | −0.1634 | 0.031* | |
N2 | −0.08300 (16) | 0.58856 (8) | 0.21026 (14) | 0.0206 (3) | |
C13 | −0.0458 (2) | 0.55874 (11) | 0.35772 (17) | 0.0280 (4) | |
H13A | 0.0303 | 0.5927 | 0.4286 | 0.042* | |
H13B | 0.0013 | 0.5080 | 0.3647 | 0.042* | |
H13C | −0.1441 | 0.5556 | 0.3789 | 0.042* | |
C14 | −0.2376 (2) | 0.62548 (12) | 0.13823 (19) | 0.0296 (4) | |
H14A | −0.2949 | 0.6003 | 0.0447 | 0.044* | |
H14B | −0.2210 | 0.6791 | 0.1208 | 0.044* | |
H14C | −0.3008 | 0.6218 | 0.2009 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01460 (19) | 0.0296 (2) | 0.01777 (19) | 0.00256 (14) | 0.00579 (14) | 0.00122 (14) |
O1 | 0.0244 (6) | 0.0395 (7) | 0.0268 (6) | −0.0059 (5) | 0.0103 (5) | −0.0087 (5) |
O2 | 0.0181 (6) | 0.0409 (7) | 0.0314 (6) | 0.0095 (5) | 0.0077 (5) | 0.0044 (5) |
O3 | 0.0191 (6) | 0.0375 (7) | 0.0220 (6) | 0.0038 (5) | 0.0107 (4) | 0.0071 (5) |
C1 | 0.0185 (7) | 0.0270 (8) | 0.0187 (7) | 0.0030 (6) | 0.0052 (6) | 0.0067 (6) |
C2 | 0.0254 (8) | 0.0247 (8) | 0.0262 (8) | 0.0076 (7) | 0.0069 (6) | 0.0069 (6) |
C3 | 0.0305 (9) | 0.0217 (8) | 0.0368 (10) | 0.0022 (7) | 0.0040 (8) | 0.0065 (7) |
C4 | 0.0253 (9) | 0.0304 (9) | 0.0448 (11) | 0.0019 (7) | 0.0118 (8) | 0.0155 (8) |
C5 | 0.0282 (9) | 0.0409 (11) | 0.0368 (10) | 0.0026 (8) | 0.0181 (8) | 0.0090 (8) |
C6 | 0.0244 (8) | 0.0359 (10) | 0.0235 (8) | 0.0010 (7) | 0.0102 (7) | 0.0030 (7) |
C7 | 0.0366 (12) | 0.0412 (12) | 0.0846 (19) | 0.0004 (9) | 0.0258 (12) | 0.0119 (12) |
N1 | 0.0268 (7) | 0.0282 (8) | 0.0331 (8) | −0.0029 (6) | 0.0205 (6) | −0.0057 (6) |
C8 | 0.0209 (8) | 0.0213 (8) | 0.0347 (9) | 0.0010 (6) | 0.0126 (7) | −0.0004 (7) |
C9 | 0.0189 (7) | 0.0191 (7) | 0.0229 (7) | 0.0016 (6) | 0.0064 (6) | 0.0018 (6) |
C10 | 0.0183 (7) | 0.0161 (7) | 0.0172 (7) | −0.0013 (5) | 0.0067 (5) | −0.0020 (5) |
C11 | 0.0224 (8) | 0.0230 (8) | 0.0176 (7) | 0.0009 (6) | 0.0070 (6) | 0.0008 (6) |
C12 | 0.0295 (9) | 0.0285 (9) | 0.0208 (7) | −0.0042 (7) | 0.0121 (6) | −0.0021 (6) |
N2 | 0.0173 (6) | 0.0286 (7) | 0.0164 (6) | 0.0026 (5) | 0.0067 (5) | 0.0020 (5) |
C13 | 0.0232 (8) | 0.0437 (10) | 0.0184 (7) | 0.0004 (7) | 0.0093 (6) | 0.0057 (7) |
C14 | 0.0185 (8) | 0.0445 (10) | 0.0259 (8) | 0.0094 (7) | 0.0082 (6) | 0.0047 (7) |
S1—O1 | 1.4481 (13) | N1—C8 | 1.344 (2) |
S1—O2 | 1.4499 (12) | N1—H1 | 0.81 (2) |
S1—O3 | 1.4718 (11) | C8—C9 | 1.363 (2) |
S1—C1 | 1.7735 (17) | C8—H8 | 0.9500 |
C1—C2 | 1.391 (2) | C9—C10 | 1.425 (2) |
C1—C6 | 1.394 (2) | C9—H9 | 0.9500 |
C2—C3 | 1.392 (3) | C10—N2 | 1.3360 (19) |
C2—H2 | 0.9500 | C10—C11 | 1.420 (2) |
C3—C4 | 1.397 (3) | C11—C12 | 1.359 (2) |
C3—H3 | 0.9500 | C11—H11 | 0.9500 |
C4—C5 | 1.382 (3) | C12—H12 | 0.9500 |
C4—C7 | 1.515 (3) | N2—C13 | 1.4595 (19) |
C5—C6 | 1.391 (3) | N2—C14 | 1.461 (2) |
C5—H5 | 0.9500 | C13—H13A | 0.9800 |
C6—H6 | 0.9500 | C13—H13B | 0.9800 |
C7—H7A | 0.9800 | C13—H13C | 0.9800 |
C7—H7B | 0.9800 | C14—H14A | 0.9800 |
C7—H7C | 0.9800 | C14—H14B | 0.9800 |
N1—C12 | 1.342 (2) | C14—H14C | 0.9800 |
O1—S1—O2 | 114.71 (8) | C8—N1—H1 | 120.4 (16) |
O1—S1—O3 | 111.64 (8) | N1—C8—C9 | 121.48 (16) |
O2—S1—O3 | 111.92 (7) | N1—C8—H8 | 119.3 |
O1—S1—C1 | 106.15 (8) | C9—C8—H8 | 119.3 |
O2—S1—C1 | 107.29 (8) | C8—C9—C10 | 119.56 (15) |
O3—S1—C1 | 104.31 (7) | C8—C9—H9 | 120.2 |
C2—C1—C6 | 120.03 (16) | C10—C9—H9 | 120.2 |
C2—C1—S1 | 119.99 (13) | N2—C10—C11 | 121.97 (14) |
C6—C1—S1 | 119.89 (14) | N2—C10—C9 | 121.33 (14) |
C1—C2—C3 | 119.64 (16) | C11—C10—C9 | 116.70 (14) |
C1—C2—H2 | 120.2 | C12—C11—C10 | 120.08 (15) |
C3—C2—H2 | 120.2 | C12—C11—H11 | 120.0 |
C2—C3—C4 | 120.97 (18) | C10—C11—H11 | 120.0 |
C2—C3—H3 | 119.5 | N1—C12—C11 | 121.34 (15) |
C4—C3—H3 | 119.5 | N1—C12—H12 | 119.3 |
C5—C4—C3 | 118.39 (17) | C11—C12—H12 | 119.3 |
C5—C4—C7 | 119.3 (2) | C10—N2—C13 | 120.79 (13) |
C3—C4—C7 | 122.3 (2) | C10—N2—C14 | 120.98 (13) |
C4—C5—C6 | 121.65 (17) | C13—N2—C14 | 118.20 (13) |
C4—C5—H5 | 119.2 | N2—C13—H13A | 109.5 |
C6—C5—H5 | 119.2 | N2—C13—H13B | 109.5 |
C5—C6—C1 | 119.31 (17) | H13A—C13—H13B | 109.5 |
C5—C6—H6 | 120.3 | N2—C13—H13C | 109.5 |
C1—C6—H6 | 120.3 | H13A—C13—H13C | 109.5 |
C4—C7—H7A | 109.5 | H13B—C13—H13C | 109.5 |
C4—C7—H7B | 109.5 | N2—C14—H14A | 109.5 |
H7A—C7—H7B | 109.5 | N2—C14—H14B | 109.5 |
C4—C7—H7C | 109.5 | H14A—C14—H14B | 109.5 |
H7A—C7—H7C | 109.5 | N2—C14—H14C | 109.5 |
H7B—C7—H7C | 109.5 | H14A—C14—H14C | 109.5 |
C12—N1—C8 | 120.78 (14) | H14B—C14—H14C | 109.5 |
C12—N1—H1 | 118.9 (16) | ||
O1—S1—C1—C2 | −177.44 (13) | C2—C1—C6—C5 | −0.3 (2) |
O2—S1—C1—C2 | −54.35 (14) | S1—C1—C6—C5 | 176.27 (13) |
O3—S1—C1—C2 | 64.53 (14) | C12—N1—C8—C9 | 1.7 (3) |
O1—S1—C1—C6 | 6.04 (15) | N1—C8—C9—C10 | 0.6 (2) |
O2—S1—C1—C6 | 129.12 (14) | C8—C9—C10—N2 | 177.23 (15) |
O3—S1—C1—C6 | −112.00 (14) | C8—C9—C10—C11 | −2.5 (2) |
C6—C1—C2—C3 | 0.8 (2) | N2—C10—C11—C12 | −177.39 (15) |
S1—C1—C2—C3 | −175.68 (12) | C9—C10—C11—C12 | 2.3 (2) |
C1—C2—C3—C4 | −0.6 (3) | C8—N1—C12—C11 | −1.8 (3) |
C2—C3—C4—C5 | −0.2 (3) | C10—C11—C12—N1 | −0.2 (3) |
C2—C3—C4—C7 | 178.49 (18) | C11—C10—N2—C13 | 176.99 (15) |
C3—C4—C5—C6 | 0.8 (3) | C9—C10—N2—C13 | −2.7 (2) |
C7—C4—C5—C6 | −177.93 (19) | C11—C10—N2—C14 | −4.9 (2) |
C4—C5—C6—C1 | −0.6 (3) | C9—C10—N2—C14 | 175.34 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3 | 0.95 | 2.40 | 3.201 (2) | 142 |
N1—H1···O3i | 0.81 (2) | 1.92 (2) | 2.7160 (18) | 171 (2) |
C12—H12···O2i | 0.95 | 2.64 | 3.376 (2) | 135 |
C7—H7A···O2ii | 0.98 | 2.62 | 3.553 (3) | 160 |
C13—H13C···O1ii | 0.98 | 2.56 | 3.408 (2) | 145 |
C6—H6···O1iii | 0.95 | 2.63 | 3.490 (2) | 151 |
C9—H9···O1iii | 0.95 | 2.44 | 3.350 (2) | 160 |
C13—H13A···O2iii | 0.98 | 2.56 | 3.502 (2) | 161 |
C14—H14A···O3iv | 0.98 | 2.67 | 3.541 (2) | 148 |
C11—H11···Cg2v | 0.95 | 2.72 | 3.5883 (18) | 152 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z; (v) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H11N2+·C7H7O3S− |
Mr | 294.36 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 91 |
a, b, c (Å) | 8.9878 (7), 17.5897 (12), 9.8202 (6) |
β (°) | 111.429 (3) |
V (Å3) | 1445.18 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.43 × 0.07 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.860, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22414, 3792, 3087 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.680 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.125, 1.05 |
No. of reflections | 3792 |
No. of parameters | 188 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.11, −0.41 |
Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3 | 0.95 | 2.40 | 3.201 (2) | 141.7 |
N1—H1···O3i | 0.81 (2) | 1.92 (2) | 2.7160 (18) | 171 (2) |
C12—H12···O2i | 0.95 | 2.64 | 3.376 (2) | 135.2 |
C7—H7A···O2ii | 0.98 | 2.62 | 3.553 (3) | 160.1 |
C13—H13C···O1ii | 0.98 | 2.56 | 3.408 (2) | 144.5 |
C6—H6···O1iii | 0.95 | 2.63 | 3.490 (2) | 151.4 |
C9—H9···O1iii | 0.95 | 2.44 | 3.350 (2) | 160.3 |
C13—H13A···O2iii | 0.98 | 2.56 | 3.502 (2) | 161.4 |
C14—H14A···O3iv | 0.98 | 2.67 | 3.541 (2) | 148.0 |
C11—H11···Cg2v | 0.95 | 2.72 | 3.5883 (18) | 152.0 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z; (v) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We thank the New Zealand Foundation for Research Science and Technology for a Postdoctoral Fellowship to CJM and the University of Otago for the purchase of the diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Biradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49–51. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820–1823. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Haynes, R. K. & Indorato, C. (1984). Aust. J. Chem. 37, 1183–94. CrossRef CAS Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Koshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des. 1, 467–471. Web of Science CSD CrossRef CAS Google Scholar
Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807–811. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19–e20. CSD CrossRef CAS IUCr Journals Google Scholar
Moore, J. S. & Stupp, S. I. (1990). Macromolecules, 23, 65–70. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sluka, R., Nečas, M. & Černík, M. (2003). Acta Cryst. E59, o190–o192. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I) was first reported and characterized as a side product by Haynes and Indorato (1984). However, it is better known under the acronym DPTS following the work of Moore and Stupp (1990) for its role as a convenient provider of stoichiometric quantities of anhydrous p-toluenesulfonic acid (PTSA) and 4-(dimethylamino)pyridine (DMAP) for the catalytic synthesis of polyesters at room temperature. Our interest in the synthesis of organometallic polyesters required the synthesis of DPTS and its structure is reported here, Fig 1.
The asymmetric unit of (I), C7H11N2+, C7H7O3S-, consists of a 4-(dimethylamino)pyridinium cation and a 4-toluenesulfonate anion. In common with other DMAPH+ cations (Chao et al., 1977; Mayr-Stein & Bolte, 2000; Sluka et al., 2003), protonation is at the N1 atom of the pyridinium ring. Bond distances and angles in both the cation and anion are normal (Allen et al., 1987) and those in the anion are comparable to those in other 4-toluenesulfonate salts (Koshima et al., 2001, 2004; Biradha & Mahata 2005). The N2—C10 bond linking the dimethylamino substituent to the pyridinium ring is short, 1.3360 (19)Å suggesting some delocalization in the cation. The fact that the dimethylamino group lies close to the plane of the pyridinium ring, with a dihedral between the pyridinium and the dimethylamine C13N2C14 planes of 3.82 (17)°, supports this observation as does the fact that the C10N2C13C14 system is reasonably planar with an r.m.s. deviation of 0.006 Å. A search of the Cambridge structural database (Allen, 2002) reveals 47 similar structures incorporating the 4-(dimethylamino)pyridinium cation for which the mean corresponding N—C distance is 1.34 (1) Å.
In the crystal structure N—H···O hydrogen bonds link individual pairs of cations and anions and the structure is further stabilized by an extensive network of C—H···O hydrogen bonds, Fig. 2, Table 1. In addition π···π stacking beween adjacent pyridinium rings (Cg1···Cg1 = 3.5807 (10) Å), Fig. 3, and C11—H11···Cg2 interactions also contribute to the crystal packing. (Cg1 & Cg2 are the centroids of the N1, C8···C12 and C1···C6 rings respectively).