metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m500-m501

Di­aqua­(2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-3-ide-4-carboxyl­ato-κ2N3,O4)(1,10-phenanthroline-κ2N,N′)manganese(II)

aDepartment of Chemistry, Taishan University, 271021 Tai'an, Shandong, People's Republic of China, bShan Dong Institute of Supervision & Inspection of Product Quality, 250100 Ji'nan, Shandong, People's Republic of China, and cDepartment of Materials and Chemical Engineering, Taishan University, 271021 Tai'an, Shandong, People's Republic of China
*Correspondence e-mail: duanwenzeng@163.com

(Received 27 December 2007; accepted 25 February 2008; online 29 February 2008)

The title compound, [Mn(C5H2N2O4)(C12H8N2)(H2O)2], was synthesized by the reaction of manganese(II) acetate and orotic acid in the presence of 1,10-phenanthroline. The crystal structure exhibits inter­molecular N—H⋯O and O—H⋯O hydrogen bonds . The Mn coordination environment consists of an N3O3 donor set in an octa­hedral geometry.

Related literature

For biochemical processes, see: Mukhopadhyay et al., (2004[Mukhopadhyay, S., Mandal, S. K., Bhaduri, S. & Armstrong, W. H. (2004). Chem. Rev. 104, 3981-4026.]); Ren et al., (2005[Ren, Y. W., Li, J., Wu, A. Z., Li, S. N. & Zhang, F. X. (2005). Acta Chimica Sinica, 63, 919-923.]). For bioinorganic and pharmaceutical studies, see: Lieberman et al., (1955[Lieberman, I., Kornberg, A. & Simms, E. S. (1955). J. Biol. Chem. 215, 403-415.]). For coordination chemistry and other aspects, see: Darensbourg et al., (1998[Darensbourg, D. J., Draper, J. D., Larkins, D. L., Frost, B. J. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 2538-2546.]). For complexes of the orotate ligand, see: Hambley et al., (1995[Hambley, T. W., Christopherson, R. I. & Zvargulis, E. S. (1995). Inorg. Chem. 34, 6550-6552.]); Nepveu et al., (1995[Nepveu, F., Gaultier, N., Korber, N., Jaud, J. & Castan, P. (1995). J. Chem. Soc. Dalton Trans. 1, pp. 4005-4012.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H2N2O4)(C12H8N2)(H2O)2]

  • Mr = 425.26

  • Triclinic, [P \overline 1]

  • a = 8.3173 (2) Å

  • b = 8.9875 (2) Å

  • c = 11.9509 (3) Å

  • α = 78.2780 (10)°

  • β = 82.9100 (10)°

  • γ = 74.7440 (10)°

  • V = 841.58 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.921

  • 9718 measured reflections

  • 2950 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.05

  • 2950 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.1231 (15)
Mn1—O6 2.1439 (15)
Mn1—O5 2.1852 (16)
Mn1—N1 2.2686 (16)
Mn1—N3 2.2880 (18)
Mn1—N4 2.2979 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 1.97 2.831 (2) 177
O5—H5A⋯O4ii 0.85 2.00 2.829 (2) 164
O5—H5B⋯O3iii 0.85 1.95 2.769 (2) 162
O6—H6A⋯O2iv 0.85 1.79 2.627 (2) 170
O6—H6B⋯O3 0.85 1.92 2.675 (2) 147
Symmetry codes: (i) -x+1, -y-1, -z+2; (ii) -x+1, -y, -z+2; (iii) -x, -y, -z+2; (iv) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Manganese is an important element in organisms and involved in many biochemical processes (Mukhopadhyay et al., 2004 and Ren et al., 2005). It may be observed in the active parts of many enzymes. Orotic acid (2, 6-dioxo-1, 2, 3, 6-tetrahydropyrimidine-4- carboxylic acid), an important pyrimidine derivative as the effective precursor in the biosynthesis of pyrimidine base of nucleic acids in living organisms, plays an important role in bioinorganic chemistry and pharmaceutical studies (Lieberman et al., 1955), material science, coordination chemistry and other aspects (Darensbourg et al., 1998). Many complexes of the orotate ligand have been reported (Hambley et al., 1995).

In the title compound (Fig, 1), Mn(C12H8N2)(C5H2N2O4)(H2O)2, the Mn(II) ion is coordinated by N and O atoms from the orotate (2, 6-dioxo-1, 2, 3, 6-tetrahydropyrimidine- 4-carboxylate) ligand. The bond lengths and angles are in good agreement with reported values (Nepveu et al., 1995). In the crystal structure, the molecule with its two coordinated water molecules is linked into infinite chains by O—H···O and N—H···O hydrogen bonds.

Related literature top

For biochemical processes, see: Mukhopadhyay et al., (2004); Ren et al., (2005). For bioinorganic and pharmaceutical studies, see: Lieberman et al., (1955). For coordination chemistry and other aspects, see: Darensbourg et al., (1998). For complexes of the orotate ligand, see: Hambley et al., (1995); Nepveu et al., (1995).

Experimental top

Orotic acid (0.0012 mol), 1, 10-phenanthroline (0.0012 mol) and Mn(CH3COO)2.2H2O (0.0012 mol, 0.294 g) in 120 ml of water were stirred at 373 K for 24 h; the pH of the solution was adjusted to 6 using a dilute aqueous solution of ammonia. After evaporation of the solution for two weeks, colorless block-like crystals were isolated by filtration. Analysis, calculated for C17H14N4O6Mn: C 48.01, H 3.32, N 13.17; found: C 48.00, H 3.30, N 13.16. Crystals suitable for single-crystal X-ray analysis were selected directly from the sample.

Refinement top

All H atoms were initially located in a difference Fourier map, but placed in idealized positions (C—H 0.93 Å, N—H 0.86 Å), with Uiso(H) = 1.2Ueq(C). The O—H bond lengths were constrained to 0.85Å and the isotropic thermal parameters of the H atoms bonded to water were refined.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted.
Diaqua(2,6-dioxo-1,2,3,6-tetrahydropyrimidin-3-ide-4-carboxylato-\k2N3,O4)(1,10-phenanthroline-κ2N,N')manganese(II) top
Crystal data top
[Mn(C5H2N2O4)(C12H8N2)(H2O)2]Z = 2
Mr = 425.26F(000) = 434
Triclinic, P1Dx = 1.678 Mg m3
a = 8.3173 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9875 (2) ÅCell parameters from 3161 reflections
c = 11.9509 (3) Åθ = 2.4–24.5°
α = 78.278 (1)°µ = 0.83 mm1
β = 82.910 (1)°T = 293 K
γ = 74.744 (1)°Block, colorless
V = 841.58 (3) Å30.15 × 0.12 × 0.10 mm
Data collection top
Bruker SMART
diffractometer
2950 independent reflections
Radiation source: fine-focus sealed tube2539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.886, Tmax = 0.922k = 1010
9718 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.4894P]
where P = (Fo2 + 2Fc2)/3
2950 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Mn(C5H2N2O4)(C12H8N2)(H2O)2]γ = 74.744 (1)°
Mr = 425.26V = 841.58 (3) Å3
Triclinic, P1Z = 2
a = 8.3173 (2) ÅMo Kα radiation
b = 8.9875 (2) ŵ = 0.83 mm1
c = 11.9509 (3) ÅT = 293 K
α = 78.278 (1)°0.15 × 0.12 × 0.10 mm
β = 82.910 (1)°
Data collection top
Bruker SMART
diffractometer
2950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2539 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.922Rint = 0.027
9718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2950 reflectionsΔρmin = 0.22 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.11775 (4)0.19441 (4)0.78756 (3)0.03047 (11)
N10.2989 (2)0.03517 (19)0.85359 (15)0.0276 (4)
N20.3993 (2)0.29802 (19)0.93896 (15)0.0305 (4)
H20.37860.38840.96360.037*
N30.0891 (2)0.3718 (2)0.68697 (16)0.0336 (4)
N40.1453 (2)0.1395 (2)0.60556 (16)0.0358 (4)
O10.35761 (18)0.24240 (17)0.75978 (15)0.0416 (4)
O20.62451 (19)0.16456 (19)0.79231 (17)0.0532 (5)
O30.13026 (17)0.20586 (16)0.89654 (13)0.0335 (4)
O40.66615 (18)0.40215 (16)0.98859 (14)0.0385 (4)
O50.0660 (2)0.33271 (19)0.92439 (14)0.0414 (4)
H5A0.14540.36720.93920.085 (11)*
H5B0.01680.30240.98830.084 (11)*
O60.07494 (19)0.08117 (19)0.86706 (15)0.0437 (4)
H6A0.16730.10300.83650.071 (10)*
H6B0.04740.01820.88530.081 (11)*
C10.4836 (3)0.1428 (2)0.79908 (19)0.0312 (5)
C20.4575 (2)0.0191 (2)0.85488 (17)0.0258 (4)
C30.5858 (3)0.1354 (2)0.89906 (19)0.0304 (5)
H30.69060.11670.89870.036*
C40.5589 (3)0.2856 (2)0.94576 (18)0.0294 (5)
C50.2696 (2)0.1773 (2)0.89586 (17)0.0266 (4)
C60.2058 (3)0.4826 (3)0.7282 (2)0.0450 (6)
H60.20160.49590.80280.054*
C70.3352 (3)0.5805 (3)0.6641 (3)0.0534 (7)
H70.41570.65650.69620.064*
C80.3428 (3)0.5639 (3)0.5547 (3)0.0506 (7)
H80.42730.62990.51100.061*
C90.2226 (3)0.4470 (3)0.5079 (2)0.0409 (6)
C100.2204 (3)0.4214 (3)0.3930 (2)0.0508 (7)
H100.30200.48490.34580.061*
C110.1026 (4)0.3072 (3)0.3523 (2)0.0518 (7)
H110.10450.29260.27760.062*
C120.0259 (3)0.2076 (3)0.4220 (2)0.0427 (6)
C130.1512 (4)0.0871 (3)0.3838 (2)0.0521 (7)
H130.15340.06810.30990.062*
C140.2700 (3)0.0023 (3)0.4549 (2)0.0525 (7)
H140.35470.08170.43000.063*
C150.2621 (3)0.0277 (3)0.5655 (2)0.0439 (6)
H150.34310.03420.61380.053*
C160.0279 (3)0.2301 (3)0.53475 (19)0.0343 (5)
C170.0985 (3)0.3524 (2)0.57867 (19)0.0329 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02175 (18)0.03294 (19)0.0356 (2)0.00587 (13)0.00776 (14)0.00124 (14)
N10.0201 (9)0.0290 (9)0.0327 (10)0.0066 (7)0.0040 (7)0.0010 (7)
N20.0263 (9)0.0241 (9)0.0415 (11)0.0077 (7)0.0084 (8)0.0008 (8)
N30.0267 (10)0.0351 (10)0.0387 (11)0.0079 (8)0.0068 (8)0.0029 (8)
N40.0300 (10)0.0404 (10)0.0362 (11)0.0080 (8)0.0044 (8)0.0048 (9)
O10.0251 (8)0.0330 (8)0.0610 (11)0.0081 (7)0.0124 (7)0.0117 (7)
O20.0238 (9)0.0409 (9)0.0900 (14)0.0128 (7)0.0162 (9)0.0134 (9)
O30.0240 (8)0.0351 (8)0.0431 (9)0.0116 (6)0.0060 (7)0.0026 (7)
O40.0276 (8)0.0280 (8)0.0585 (11)0.0045 (6)0.0166 (7)0.0006 (7)
O50.0368 (9)0.0515 (10)0.0428 (10)0.0209 (8)0.0032 (8)0.0105 (8)
O60.0266 (9)0.0398 (10)0.0637 (12)0.0115 (7)0.0110 (8)0.0022 (8)
C10.0237 (11)0.0313 (11)0.0374 (13)0.0075 (9)0.0050 (9)0.0011 (9)
C20.0211 (10)0.0297 (10)0.0268 (11)0.0063 (8)0.0028 (8)0.0046 (8)
C30.0213 (11)0.0303 (11)0.0401 (13)0.0079 (9)0.0066 (9)0.0031 (9)
C40.0254 (11)0.0298 (11)0.0338 (12)0.0055 (9)0.0067 (9)0.0069 (9)
C50.0242 (11)0.0298 (11)0.0265 (11)0.0070 (8)0.0030 (9)0.0052 (9)
C60.0357 (14)0.0430 (14)0.0547 (16)0.0043 (11)0.0076 (12)0.0096 (12)
C70.0371 (14)0.0415 (14)0.077 (2)0.0003 (11)0.0107 (14)0.0080 (14)
C80.0368 (14)0.0400 (14)0.073 (2)0.0092 (11)0.0255 (13)0.0083 (13)
C90.0365 (13)0.0380 (13)0.0495 (15)0.0170 (10)0.0175 (11)0.0083 (11)
C100.0535 (16)0.0579 (16)0.0433 (16)0.0286 (14)0.0259 (13)0.0189 (13)
C110.0628 (18)0.0657 (18)0.0334 (14)0.0306 (15)0.0145 (13)0.0025 (13)
C120.0473 (15)0.0529 (15)0.0341 (14)0.0268 (12)0.0046 (11)0.0022 (11)
C130.0637 (18)0.0646 (17)0.0367 (15)0.0308 (15)0.0069 (13)0.0155 (13)
C140.0529 (17)0.0530 (16)0.0520 (17)0.0133 (13)0.0118 (14)0.0193 (13)
C150.0381 (14)0.0452 (14)0.0460 (15)0.0065 (11)0.0009 (11)0.0088 (12)
C160.0335 (12)0.0402 (12)0.0323 (13)0.0184 (10)0.0046 (10)0.0006 (10)
C170.0290 (12)0.0359 (12)0.0355 (13)0.0160 (9)0.0076 (10)0.0034 (10)
Geometric parameters (Å, º) top
Mn1—O12.1231 (15)C2—C31.356 (3)
Mn1—O62.1439 (15)C3—C41.416 (3)
Mn1—O52.1852 (16)C3—H30.9300
Mn1—N12.2686 (16)C6—C71.396 (3)
Mn1—N32.2880 (18)C6—H60.9300
Mn1—N42.2979 (19)C7—C81.356 (4)
N1—C51.348 (3)C7—H70.9300
N1—C21.366 (2)C8—C91.401 (4)
N2—C41.375 (3)C8—H80.9300
N2—C51.378 (3)C9—C171.402 (3)
N2—H20.8600C9—C101.435 (4)
N3—C61.323 (3)C10—C111.344 (4)
N3—C171.355 (3)C10—H100.9300
N4—C151.323 (3)C11—C121.432 (4)
N4—C161.356 (3)C11—H110.9300
O1—C11.256 (2)C12—C131.399 (4)
O2—C11.229 (2)C12—C161.405 (3)
O3—C51.250 (2)C13—C141.362 (4)
O4—C41.248 (2)C13—H130.9300
O5—H5A0.8500C14—C151.392 (4)
O5—H5B0.8500C14—H140.9300
O6—H6A0.8499C15—H150.9300
O6—H6B0.8501C16—C171.442 (3)
C1—C21.531 (3)
O1—Mn1—O6157.87 (6)O4—C4—N2119.95 (18)
O1—Mn1—O587.31 (6)O4—C4—C3125.78 (19)
O6—Mn1—O588.81 (6)N2—C4—C3114.26 (18)
O1—Mn1—N174.55 (6)O3—C5—N1123.06 (18)
O6—Mn1—N185.75 (6)O3—C5—N2118.06 (18)
O5—Mn1—N1106.65 (6)N1—C5—N2118.87 (17)
O1—Mn1—N3116.16 (6)N3—C6—C7122.6 (3)
O6—Mn1—N385.65 (6)N3—C6—H6118.7
O5—Mn1—N390.50 (6)C7—C6—H6118.7
N1—Mn1—N3160.61 (6)C8—C7—C6119.6 (3)
O1—Mn1—N489.63 (7)C8—C7—H7120.2
O6—Mn1—N4101.40 (7)C6—C7—H7120.2
O5—Mn1—N4159.04 (7)C7—C8—C9119.7 (2)
N1—Mn1—N492.45 (6)C7—C8—H8120.1
N3—Mn1—N472.31 (7)C9—C8—H8120.1
C5—N1—C2117.78 (17)C8—C9—C17117.0 (2)
C5—N1—Mn1129.53 (13)C8—C9—C10123.6 (2)
C2—N1—Mn1112.58 (12)C17—C9—C10119.4 (2)
C4—N2—C5125.27 (17)C11—C10—C9121.2 (2)
C4—N2—H2117.4C11—C10—H10119.4
C5—N2—H2117.4C9—C10—H10119.4
C6—N3—C17118.0 (2)C10—C11—C12121.0 (2)
C6—N3—Mn1125.65 (16)C10—C11—H11119.5
C17—N3—Mn1116.18 (14)C12—C11—H11119.5
C15—N4—C16118.1 (2)C13—C12—C16117.5 (2)
C15—N4—Mn1126.10 (16)C13—C12—C11123.3 (2)
C16—N4—Mn1115.76 (15)C16—C12—C11119.2 (2)
C1—O1—Mn1120.96 (13)C14—C13—C12120.0 (2)
Mn1—O5—H5A117.0C14—C13—H13120.0
Mn1—O5—H5B121.2C12—C13—H13120.0
H5A—O5—H5B106.8C13—C14—C15118.7 (2)
Mn1—O6—H6A119.7C13—C14—H14120.6
Mn1—O6—H6B117.1C15—C14—H14120.6
H6A—O6—H6B105.6N4—C15—C14123.4 (2)
O2—C1—O1124.9 (2)N4—C15—H15118.3
O2—C1—C2118.71 (18)C14—C15—H15118.3
O1—C1—C2116.29 (17)N4—C16—C12122.2 (2)
C3—C2—N1124.23 (19)N4—C16—C17117.9 (2)
C3—C2—C1120.98 (18)C12—C16—C17119.9 (2)
N1—C2—C1114.78 (17)N3—C17—C9123.0 (2)
C2—C3—C4119.51 (18)N3—C17—C16117.71 (19)
C2—C3—H3120.2C9—C17—C16119.2 (2)
C4—C3—H3120.2
O1—Mn1—N1—C5176.35 (19)C5—N2—C4—O4178.6 (2)
O6—Mn1—N1—C513.84 (18)C5—N2—C4—C32.7 (3)
O5—Mn1—N1—C5101.32 (18)C2—C3—C4—O4179.8 (2)
N3—Mn1—N1—C550.0 (3)C2—C3—C4—N21.1 (3)
N4—Mn1—N1—C587.41 (18)C2—N1—C5—O3178.39 (19)
O1—Mn1—N1—C27.66 (13)Mn1—N1—C5—O35.8 (3)
O6—Mn1—N1—C2162.15 (14)C2—N1—C5—N20.6 (3)
O5—Mn1—N1—C274.67 (14)Mn1—N1—C5—N2175.20 (13)
N3—Mn1—N1—C2133.99 (19)C4—N2—C5—O3179.11 (19)
N4—Mn1—N1—C296.60 (14)C4—N2—C5—N11.8 (3)
O1—Mn1—N3—C6101.28 (19)C17—N3—C6—C71.0 (3)
O6—Mn1—N3—C674.74 (19)Mn1—N3—C6—C7175.60 (18)
O5—Mn1—N3—C614.03 (19)N3—C6—C7—C80.6 (4)
N1—Mn1—N3—C6138.6 (2)C6—C7—C8—C91.2 (4)
N4—Mn1—N3—C6178.2 (2)C7—C8—C9—C170.3 (3)
O1—Mn1—N3—C1784.04 (15)C7—C8—C9—C10179.7 (2)
O6—Mn1—N3—C1799.94 (15)C8—C9—C10—C11179.8 (2)
O5—Mn1—N3—C17171.29 (15)C17—C9—C10—C110.7 (4)
N1—Mn1—N3—C1736.1 (3)C9—C10—C11—C120.4 (4)
N4—Mn1—N3—C173.49 (14)C10—C11—C12—C13180.0 (2)
O1—Mn1—N4—C1560.93 (19)C10—C11—C12—C160.1 (4)
O6—Mn1—N4—C1599.75 (19)C16—C12—C13—C140.5 (4)
O5—Mn1—N4—C15142.4 (2)C11—C12—C13—C14179.6 (2)
N1—Mn1—N4—C1513.59 (19)C12—C13—C14—C150.8 (4)
N3—Mn1—N4—C15178.6 (2)C16—N4—C15—C140.4 (3)
O1—Mn1—N4—C16120.22 (15)Mn1—N4—C15—C14178.45 (18)
O6—Mn1—N4—C1679.11 (15)C13—C14—C15—N40.4 (4)
O5—Mn1—N4—C1638.7 (3)C15—N4—C16—C120.7 (3)
N1—Mn1—N4—C16165.26 (15)Mn1—N4—C16—C12178.23 (16)
N3—Mn1—N4—C162.52 (14)C15—N4—C16—C17179.66 (19)
O6—Mn1—O1—C119.9 (3)Mn1—N4—C16—C171.4 (2)
O5—Mn1—O1—C1100.05 (18)C13—C12—C16—N40.3 (3)
N1—Mn1—O1—C18.05 (17)C11—C12—C16—N4179.6 (2)
N3—Mn1—O1—C1170.71 (16)C13—C12—C16—C17179.9 (2)
N4—Mn1—O1—C1100.69 (18)C11—C12—C16—C170.0 (3)
Mn1—O1—C1—O2175.75 (19)C6—N3—C17—C92.0 (3)
Mn1—O1—C1—C26.9 (3)Mn1—N3—C17—C9177.10 (16)
C5—N1—C2—C32.1 (3)C6—N3—C17—C16179.21 (19)
Mn1—N1—C2—C3174.40 (17)Mn1—N3—C17—C164.1 (2)
C5—N1—C2—C1176.54 (18)C8—C9—C17—N31.4 (3)
Mn1—N1—C2—C17.0 (2)C10—C9—C17—N3178.1 (2)
O2—C1—C2—C31.8 (3)C8—C9—C17—C16179.9 (2)
O1—C1—C2—C3179.4 (2)C10—C9—C17—C160.6 (3)
O2—C1—C2—N1176.8 (2)N4—C16—C17—N31.8 (3)
O1—C1—C2—N10.7 (3)C12—C16—C17—N3178.55 (19)
N1—C2—C3—C41.2 (3)N4—C16—C17—C9179.33 (19)
C1—C2—C3—C4177.38 (19)C12—C16—C17—C90.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.972.831 (2)177
O5—H5A···O4ii0.852.002.829 (2)164
O5—H5B···O3iii0.851.952.769 (2)162
O6—H6A···O2iv0.851.792.627 (2)170
O6—H6B···O30.851.922.675 (2)147
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2; (iii) x, y, z+2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C5H2N2O4)(C12H8N2)(H2O)2]
Mr425.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3173 (2), 8.9875 (2), 11.9509 (3)
α, β, γ (°)78.278 (1), 82.910 (1), 74.744 (1)
V3)841.58 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.886, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
9718, 2950, 2539
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.05
No. of reflections2950
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O12.1231 (15)Mn1—N12.2686 (16)
Mn1—O62.1439 (15)Mn1—N32.2880 (18)
Mn1—O52.1852 (16)Mn1—N42.2979 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.972.831 (2)177
O5—H5A···O4ii0.852.002.829 (2)164
O5—H5B···O3iii0.851.952.769 (2)162
O6—H6A···O2iv0.851.792.627 (2)170
O6—H6B···O30.851.922.675 (2)147
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2; (iii) x, y, z+2; (iv) x1, y, z.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Draper, J. D., Larkins, D. L., Frost, B. J. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 2538–2546.  Web of Science CSD CrossRef CAS Google Scholar
First citationHambley, T. W., Christopherson, R. I. & Zvargulis, E. S. (1995). Inorg. Chem. 34, 6550–6552.  CSD CrossRef CAS Web of Science Google Scholar
First citationLieberman, I., Kornberg, A. & Simms, E. S. (1955). J. Biol. Chem. 215, 403–415.  PubMed CAS Web of Science Google Scholar
First citationMukhopadhyay, S., Mandal, S. K., Bhaduri, S. & Armstrong, W. H. (2004). Chem. Rev. 104, 3981–4026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNepveu, F., Gaultier, N., Korber, N., Jaud, J. & Castan, P. (1995). J. Chem. Soc. Dalton Trans. 1, pp. 4005–4012.  CSD CrossRef Web of Science Google Scholar
First citationRen, Y. W., Li, J., Wu, A. Z., Li, S. N. & Zhang, F. X. (2005). Acta Chimica Sinica, 63, 919–923.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m500-m501
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds