organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-[(E)-({4-[N-(3,4-di­methyl­isoxazol-5-yl)sulfamo­yl]phen­yl}iminio)meth­yl]phenolate

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cGovernment College University, Department of Chemistry, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 February 2008; accepted 25 February 2008; online 27 February 2008)

The title compound, C18H16ClN3O4S, is a Schiff base ligand in which the H atom of the hydr­oxy group has moved to the N atom of the imine group, resulting in a zwitterion. The structure is stabilized by an intra­molecular (N—H⋯O) and five inter­molecular (C—H⋯O, C—H⋯N and N—H⋯O) hydrogen bonds. The mol­ecules are linked to each other by hydrogen bonds and form a three-dimensional polymeric network. In addition, the aromatic rings are also involved in ππ inter­actions [centroid–centroid distance between aromatic rings = 3.7525 (11) Å].

Related literature

For related literature, see: Chatterjee et al. (1982[Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1982). Acta Cryst. B38, 1845-1847.]); Chohan et al. (2008[Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64 Submitted.]); Hämäläinen et al. (1986[Hämäläinen, R., Lehtinen, M. & Turpeinen, U. (1986). Arch. Pharm. 319, 415-420.]); Nishimori et al. (2005[Nishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenz, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3828-3833.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16ClN3O4S

  • Mr = 405.85

  • Monoclinic, P 21 /n

  • a = 15.1871 (6) Å

  • b = 7.2555 (3) Å

  • c = 16.6267 (7) Å

  • β = 94.081 (2)°

  • V = 1827.45 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.886, Tmax = 0.935

  • 18429 measured reflections

  • 4669 independent reflections

  • 3443 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.04

  • 3443 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.87 (2) 1.85 (2) 2.574 (2) 140 (2)
C7—H7⋯N3i 0.93 2.54 3.429 (3) 161
C12—H12⋯O2i 0.93 2.59 3.391 (3) 145
C17—H17C⋯O3ii 0.96 2.57 3.516 (3) 168
C17—H17B⋯O1iii 0.96 2.38 3.276 (3) 156
N2—H2⋯O1iii 0.79 (2) 2.06 (2) 2.846 (2) 173 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides have been found to possess a wide range of medicinal properties such as antibacterial, antitumor, diuretic, anti-carbonic anhydrase, hypoglycaemic, anti-thyroid and protease inhibitor (Nishimori et al., 2005). In view of the versatile chemistry of various derivatives of sulfonamides, a continuous effort of synthesizing Schiff base ligands of substituted halogen salicylaldehyde and various sulfonamides (Chohan et al., 2008) is in progress. In the same context, we herein report the structure of the title compound, (I), derived from the reaction of sulfisoxazole [N-(3,4-dimethyl-5-isoxazol)sulfanilamide] and 5-chlorosalicylaldehyde. The crystal structures of sulfisoxazole (Chatterjee et al., 1982) and a bromo analog of (I) (Hämäläinen et al., 1986) have already been published; the later is isomorphous with (I).

In the solid state the H-atom bonded to hydroxy group in (I) has shifted to N-atom of the Schiff base moiety, resulting in the formation of a zwitterion (Fig. 1). The bond distance C2—O1 [1.302 (2) Å] in (I) compares well with 1.295 (10) Å reported for the corresponding distance in the bromo-analog. The bond lengths in the aromatic rings in (I) are similar to the corresonding bond lengths reported in its bromo-isomorph. The range of bond angles around S-atom [104.86 (10)°-121.02 (11)°] in (I) is also the same as reported [104.5 (4)°-121.2 (4)°] in the bromo-analog (Hämäläinen et al., 1986). The structure is stabilized by an intramolecular and five intermolecular H-bondings, the details of H-bonds are given in Table 1. The molecules linked to each other by H-bonds form a three-dimensional polymeric network (Fig. 2). In addition, π-π interactions between aromatic rings C8—C13 (ring A) and C1—C6 (ring B) are also observed with distance between the centers of gravity for the two rings CgA···CgBiv (iv = x, y - 1, z) being Å. There also exists a π interaction between five-membered heterocyclic ring (ring C) and Cl1 with Cl1···CgCv [v = x - 1/2, -y - 1/2, z - 1/2] distance of 3.5371 (11) Å. The dihedral angles between the rings A/B, A/C, B/C have values of 5.84 (9), 43.37 (11), and 43.29 (11)°, respectively.

Related literature top

For related literature, see: Chatterjee et al. (1982); Chohan et al. (2008); Hämäläinen et al. (1986); Nishimori et al. (2005).

Experimental top

An ethanol solution (15 ml) of sulfisoxazole (0.5346 g, 2 mmol) was added to a solution of 5-chlorosalicylaldehyde (0.3131 g, 2 mmol) in ethanol (10 ml). The reaction mixture was refluxed for 3 h. The solution was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 13 days, after which orange-red crystals were obtained (m.p. 509 K).

Refinement top

The coordinates of H-atoms attached to N-atoms were refined. The rest of the H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The intramolecular H-bonding is shown by dashed lines.
[Figure 2] Fig. 2. The unit cell packing of (I) (Spek, 2003) showing the interamolecular and intermolecular H-bonds leading to three-dimensional network.
4-Chloro-2-[(E)-({4-[N-(3,4-dimethylisoxazol-5- yl)sulfamoyl]phenyl}iminio)methyl]phenolate top
Crystal data top
C18H16ClN3O4SF(000) = 840
Mr = 405.85Dx = 1.475 Mg m3
Monoclinic, P21/nMelting point: 509 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 15.1871 (6) ÅCell parameters from 2465 reflections
b = 7.2555 (3) Åθ = 2.2–28.7°
c = 16.6267 (7) ŵ = 0.35 mm1
β = 94.081 (2)°T = 296 K
V = 1827.45 (13) Å3Prismatic, red
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4669 independent reflections
Radiation source: fine-focus sealed tube3443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.6°, θmin = 1.8°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.886, Tmax = 0.935l = 2222
18429 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.5575P]
where P = (Fo2 + 2Fc2)/3
3443 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H16ClN3O4SV = 1827.45 (13) Å3
Mr = 405.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1871 (6) ŵ = 0.35 mm1
b = 7.2555 (3) ÅT = 296 K
c = 16.6267 (7) Å0.30 × 0.25 × 0.20 mm
β = 94.081 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4669 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3443 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.935Rint = 0.028
18429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
3443 reflectionsΔρmin = 0.23 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.87797 (4)0.43370 (8)0.58505 (4)0.06440 (19)
S10.60762 (4)0.99136 (7)0.32843 (3)0.04563 (15)
O10.62180 (10)0.1417 (2)0.64974 (8)0.0504 (4)
O20.68281 (11)1.0347 (2)0.28554 (11)0.0678 (5)
O30.56667 (13)1.1279 (2)0.37529 (10)0.0676 (5)
O40.59283 (10)0.8115 (2)0.14720 (8)0.0529 (4)
N10.67536 (10)0.3239 (2)0.52967 (9)0.0368 (3)
H10.6445 (13)0.312 (3)0.5715 (13)0.044*
N20.52879 (11)0.9215 (2)0.26153 (10)0.0400 (4)
H20.4845 (15)0.908 (3)0.2832 (13)0.048*
N30.59687 (15)0.6461 (3)0.10209 (12)0.0666 (6)
C10.73875 (12)0.0376 (3)0.57297 (11)0.0378 (4)
C20.68045 (13)0.0167 (3)0.63625 (11)0.0395 (4)
C30.68941 (15)0.1451 (3)0.68403 (12)0.0471 (5)
H30.65400.16080.72690.057*
C40.74946 (15)0.2786 (3)0.66788 (12)0.0496 (5)
H40.75330.38500.69910.059*
C50.80496 (13)0.2571 (3)0.60509 (12)0.0449 (4)
C60.80079 (12)0.1021 (3)0.55890 (12)0.0438 (4)
H60.83890.08790.51790.053*
C70.73313 (12)0.1937 (3)0.52144 (11)0.0392 (4)
H70.77170.20330.48070.047*
C80.66304 (11)0.4819 (2)0.48013 (10)0.0343 (4)
C90.60243 (11)0.6121 (3)0.50340 (10)0.0360 (4)
H90.57240.59280.54950.043*
C100.58692 (12)0.7701 (3)0.45801 (11)0.0388 (4)
H100.54630.85720.47320.047*
C110.63252 (12)0.7973 (3)0.38967 (10)0.0366 (4)
C120.69331 (13)0.6678 (3)0.36602 (11)0.0425 (4)
H120.72390.68830.32030.051*
C130.70799 (13)0.5089 (3)0.41075 (11)0.0423 (4)
H130.74750.42060.39470.051*
C140.54518 (11)0.7736 (3)0.21080 (10)0.0373 (4)
C150.51814 (13)0.5968 (3)0.20979 (11)0.0417 (4)
C160.55223 (16)0.5232 (3)0.13954 (13)0.0537 (5)
C170.46521 (19)0.4975 (3)0.26793 (16)0.0662 (7)
H17A0.41520.44050.23940.099*
H17B0.44530.58320.30670.099*
H17C0.50100.40450.29520.099*
C180.5413 (2)0.3294 (4)0.10901 (18)0.0851 (9)
H18A0.52630.33130.05190.128*
H18B0.49510.26970.13570.128*
H18C0.59560.26310.11980.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0529 (3)0.0449 (3)0.0932 (5)0.0139 (2)0.0106 (3)0.0027 (3)
S10.0563 (3)0.0317 (2)0.0478 (3)0.0073 (2)0.0044 (2)0.0078 (2)
O10.0551 (8)0.0479 (8)0.0507 (8)0.0055 (7)0.0206 (7)0.0053 (6)
O20.0592 (9)0.0676 (11)0.0756 (11)0.0261 (8)0.0034 (8)0.0294 (9)
O30.1035 (13)0.0312 (8)0.0657 (10)0.0075 (8)0.0100 (9)0.0040 (7)
O40.0582 (9)0.0546 (9)0.0484 (8)0.0151 (7)0.0214 (7)0.0025 (7)
N10.0385 (8)0.0379 (8)0.0343 (7)0.0015 (6)0.0054 (6)0.0063 (6)
N20.0404 (8)0.0388 (9)0.0407 (8)0.0005 (7)0.0033 (7)0.0074 (7)
N30.0833 (14)0.0628 (13)0.0581 (11)0.0124 (11)0.0358 (10)0.0091 (10)
C10.0368 (9)0.0371 (10)0.0389 (9)0.0000 (7)0.0002 (7)0.0046 (7)
C20.0434 (10)0.0396 (10)0.0352 (9)0.0060 (8)0.0006 (7)0.0005 (7)
C30.0613 (12)0.0411 (11)0.0393 (10)0.0094 (9)0.0056 (9)0.0045 (8)
C40.0646 (13)0.0362 (10)0.0456 (11)0.0067 (9)0.0124 (9)0.0088 (8)
C50.0409 (10)0.0388 (10)0.0530 (11)0.0032 (8)0.0103 (8)0.0002 (9)
C60.0382 (9)0.0440 (11)0.0495 (11)0.0044 (8)0.0050 (8)0.0056 (9)
C70.0380 (9)0.0399 (10)0.0402 (9)0.0019 (8)0.0071 (7)0.0053 (8)
C80.0344 (8)0.0353 (9)0.0329 (8)0.0015 (7)0.0004 (7)0.0024 (7)
C90.0369 (9)0.0403 (10)0.0311 (8)0.0004 (7)0.0041 (7)0.0002 (7)
C100.0407 (9)0.0360 (10)0.0396 (9)0.0043 (8)0.0025 (7)0.0031 (7)
C110.0408 (9)0.0318 (9)0.0366 (9)0.0027 (7)0.0019 (7)0.0037 (7)
C120.0440 (10)0.0475 (11)0.0372 (9)0.0026 (8)0.0100 (8)0.0072 (8)
C130.0434 (10)0.0439 (11)0.0407 (9)0.0104 (8)0.0104 (8)0.0051 (8)
C140.0345 (8)0.0433 (10)0.0344 (8)0.0016 (7)0.0049 (7)0.0088 (7)
C150.0440 (10)0.0384 (10)0.0438 (10)0.0004 (8)0.0102 (8)0.0071 (8)
C160.0598 (13)0.0524 (13)0.0509 (12)0.0057 (10)0.0174 (10)0.0027 (10)
C170.0873 (18)0.0405 (12)0.0762 (16)0.0041 (12)0.0425 (14)0.0115 (11)
C180.118 (2)0.0623 (17)0.0799 (18)0.0154 (17)0.0424 (18)0.0195 (14)
Geometric parameters (Å, º) top
Cl1—C51.742 (2)C6—H60.9300
S1—O21.4238 (17)C7—H70.9300
S1—O31.4298 (17)C8—C91.393 (2)
S1—N21.6545 (17)C8—C131.395 (2)
S1—C111.7630 (18)C9—C101.383 (3)
O1—C21.302 (2)C9—H90.9300
O4—C141.351 (2)C10—C111.386 (2)
O4—N31.419 (2)C10—H100.9300
N1—C71.303 (2)C11—C121.393 (3)
N1—C81.416 (2)C12—C131.382 (3)
N1—H10.87 (2)C12—H120.9300
N2—C141.399 (2)C13—H130.9300
N2—H20.79 (2)C14—C151.346 (3)
N3—C161.305 (3)C15—C161.415 (3)
C1—C61.415 (3)C15—C171.487 (3)
C1—C71.419 (3)C16—C181.501 (3)
C1—C21.431 (2)C17—H17A0.9600
C2—C31.419 (3)C17—H17B0.9600
C3—C41.370 (3)C17—H17C0.9600
C3—H30.9300C18—H18A0.9600
C4—C51.396 (3)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.361 (3)
O2—S1—O3121.02 (11)C13—C8—N1122.83 (16)
O2—S1—N2107.38 (10)C10—C9—C8120.05 (16)
O3—S1—N2104.86 (10)C10—C9—H9120.0
O2—S1—C11108.61 (10)C8—C9—H9120.0
O3—S1—C11108.80 (9)C9—C10—C11119.31 (17)
N2—S1—C11105.00 (8)C9—C10—H10120.3
C14—O4—N3106.69 (15)C11—C10—H10120.3
C7—N1—C8126.00 (15)C10—C11—C12121.02 (17)
C7—N1—H1114.5 (14)C10—C11—S1119.21 (14)
C8—N1—H1119.4 (14)C12—C11—S1119.64 (13)
C14—N2—S1119.29 (13)C13—C12—C11119.70 (16)
C14—N2—H2111.7 (17)C13—C12—H12120.1
S1—N2—H2109.3 (16)C11—C12—H12120.1
C16—N3—O4106.39 (16)C12—C13—C8119.50 (17)
C6—C1—C7118.96 (16)C12—C13—H13120.3
C6—C1—C2119.99 (17)C8—C13—H13120.3
C7—C1—C2121.00 (17)C15—C14—O4111.35 (17)
O1—C2—C3121.31 (17)C15—C14—N2132.18 (16)
O1—C2—C1121.30 (17)O4—C14—N2116.35 (16)
C3—C2—C1117.38 (18)C14—C15—C16103.91 (17)
C4—C3—C2120.93 (18)C14—C15—C17129.22 (19)
C4—C3—H3119.5C16—C15—C17126.9 (2)
C2—C3—H3119.5N3—C16—C15111.7 (2)
C3—C4—C5120.87 (18)N3—C16—C18121.8 (2)
C3—C4—H4119.6C15—C16—C18126.5 (2)
C5—C4—H4119.6C15—C17—H17A109.5
C6—C5—C4120.53 (19)C15—C17—H17B109.5
C6—C5—Cl1120.31 (16)H17A—C17—H17B109.5
C4—C5—Cl1119.15 (16)C15—C17—H17C109.5
C5—C6—C1120.25 (18)H17A—C17—H17C109.5
C5—C6—H6119.9H17B—C17—H17C109.5
C1—C6—H6119.9C16—C18—H18A109.5
N1—C7—C1121.81 (16)C16—C18—H18B109.5
N1—C7—H7119.1H18A—C18—H18B109.5
C1—C7—H7119.1C16—C18—H18C109.5
C9—C8—C13120.42 (16)H18A—C18—H18C109.5
C9—C8—N1116.75 (15)H18B—C18—H18C109.5
O2—S1—N2—C1456.27 (16)C9—C10—C11—S1176.02 (14)
O3—S1—N2—C14173.81 (14)O2—S1—C11—C10155.29 (15)
C11—S1—N2—C1459.20 (15)O3—S1—C11—C1021.74 (19)
C14—O4—N3—C160.6 (2)N2—S1—C11—C1090.09 (16)
C6—C1—C2—O1178.92 (18)O2—S1—C11—C1228.85 (19)
C7—C1—C2—O11.5 (3)O3—S1—C11—C12162.40 (16)
C6—C1—C2—C31.4 (3)N2—S1—C11—C1285.77 (17)
C7—C1—C2—C3178.83 (18)C10—C11—C12—C130.6 (3)
O1—C2—C3—C4177.98 (19)S1—C11—C12—C13175.17 (16)
C1—C2—C3—C42.4 (3)C11—C12—C13—C81.4 (3)
C2—C3—C4—C51.5 (3)C9—C8—C13—C121.3 (3)
C3—C4—C5—C60.4 (3)N1—C8—C13—C12179.16 (18)
C3—C4—C5—Cl1178.14 (16)N3—O4—C14—C150.2 (2)
C4—C5—C6—C11.3 (3)N3—O4—C14—N2176.68 (17)
Cl1—C5—C6—C1177.20 (15)S1—N2—C14—C15105.9 (2)
C7—C1—C6—C5177.06 (18)S1—N2—C14—O478.51 (19)
C2—C1—C6—C50.4 (3)O4—C14—C15—C160.2 (2)
C8—N1—C7—C1178.19 (17)N2—C14—C15—C16175.5 (2)
C6—C1—C7—N1177.69 (19)O4—C14—C15—C17179.5 (2)
C2—C1—C7—N10.3 (3)N2—C14—C15—C174.7 (4)
C7—N1—C8—C9174.85 (18)O4—N3—C16—C150.7 (3)
C7—N1—C8—C135.6 (3)O4—N3—C16—C18179.6 (3)
C13—C8—C9—C100.5 (3)C14—C15—C16—N30.6 (3)
N1—C8—C9—C10179.96 (16)C17—C15—C16—N3179.2 (2)
C8—C9—C10—C110.3 (3)C14—C15—C16—C18179.8 (3)
C9—C10—C11—C120.2 (3)C17—C15—C16—C180.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.87 (2)1.85 (2)2.574 (2)140 (2)
C7—H7···N3i0.932.543.429 (3)161
C12—H12···O2i0.932.593.391 (3)145
C17—H17C···O3ii0.962.573.516 (3)168
C17—H17B···O1iii0.962.383.276 (3)156
N2—H2···O1iii0.79 (2)2.06 (2)2.846 (2)173 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H16ClN3O4S
Mr405.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.1871 (6), 7.2555 (3), 16.6267 (7)
β (°) 94.081 (2)
V3)1827.45 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.886, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
18429, 4669, 3443
Rint0.028
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.04
No. of reflections3443
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.87 (2)1.85 (2)2.574 (2)140 (2)
C7—H7···N3i0.932.543.429 (3)161
C12—H12···O2i0.932.593.391 (3)145
C17—H17C···O3ii0.962.573.516 (3)168
C17—H17B···O1iii0.962.383.276 (3)156
N2—H2···O1iii0.79 (2)2.06 (2)2.846 (2)173 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationChatterjee, C., Dattagupta, J. K. & Saha, N. N. (1982). Acta Cryst. B38, 1845–1847.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64 Submitted.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHämäläinen, R., Lehtinen, M. & Turpeinen, U. (1986). Arch. Pharm. 319, 415–420.  Google Scholar
First citationNishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenz, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3828–3833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds