organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hydr­­oxy-8-phenyl-2,3,7,8-tetra­hydro-6H-1,4-dioxino[2,3-f]isoindol-6-one

aChemistry Department, Moscow State University, 119991 Moscow, Russian Federation
*Correspondence e-mail: aslanov@struct.chem.msu.ru

(Received 29 December 2007; accepted 28 January 2008; online 6 February 2008)

In the title compound, C16H13NO4, the indole system is essentially planar, whereas the dioxane ring adopts a twist conformation. The mol­ecules are linked into chains by —O— H⋯O=C— hydrogen bonds and these chains are linked into rods by means of N—H⋯O hydrogen bonds. Exept for weak C—H⋯O inter­actions between the rods, no other inter­molecular contacts of inter­est are present.

Related literature

For details of the appropriate nitrile hydrolysis, see: Moorthy & Singhal (2005[Moorthy, J. N. & Singhal, N. (2005). J. Org. Chem. 70, 1926-1929.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO4

  • Mr = 283.27

  • Monoclinic, P 21 /c

  • a = 8.6001 (17) Å

  • b = 27.005 (5) Å

  • c = 5.7221 (5) Å

  • β = 92.602 (10)°

  • V = 1327.6 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 291 (2) K

  • 0.08 × 0.06 × 0.04 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2892 measured reflections

  • 2653 independent reflections

  • 1784 reflections with I > 2σ(I)

  • Rint = 0.025

  • 2 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.147

  • S = 1.05

  • 2653 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.95 2.725 (3) 158
N7—H7⋯O2ii 0.86 2.09 2.922 (3) 161
C5—H5⋯O4iii 0.93 2.52 3.404 (3) 160
C19—H19⋯O2 0.93 2.40 2.734 (4) 101
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Release 2.1d. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

To investigate mechanisms of intra- and intermolecular reactions of ortho-substituted benzenes we intended to synthesize novel ortho-acyl-substituted benzamides by hydrolysis (Moorthy & Singhal, 2005) of appropriate nitriles. In the case of hydrolysis of 7-benzoyl-2,3-dihydro-1,4-benzodioxine-6-carbonitrile (1) the compound 7-benzoyl-2,3-dihydro-1,4-benzodioxine-6-carboxamide (2) was expected to be produced (Fig. 1). Both the elemental analysis and mass spectroscopic data (M+ 283) of the compound we obtained, were in good agreement with structure (2), but 1H NMR data were not. Although 13 protons were identified in the 1H NMR spectrum, an expected signal for the NH2 group was absent. In addition, two single signals were detected in the 1H NMR spectrum, each corresponding to one proton of large difference in chemical shift (6.70 and 9.02). To determine the structure of the compound, we carried out an X-ray crystallographic analysis, which revealed that hydrolysis of (1), under the conditions specified by Moorthy & Singhal, did not produce the expected compound (2); instead the product was an isomer of compound (2), viz. 8-hydroxy-8-phenyl-2,3,7,8-tetrahydro-6H-[1,4]dioxino [2,3-f]isoindol-6-one, (3) (Fig. 1).

The dihedral angle between the planes defined by the atoms C5/C9/C10/C11/C12/C13 (plane 1) and C8/N7/C6/C10/C11 (plane 2) (Fig. 2) is 1.64 (9)°. The 6-membered dioxane ring adopts a twist conformation, with atoms C3 and C2 displaced out of plane 1 by 0.375 (4) and -0.273 (3) Å, respectively, compared with displacements of -0.012 (3) and 0.010 (3) Å for O4 and O1, respectively (Fig. 2). The torsion angle O2—C8—C14—C19 has rather a small value [16.7 (3)°]. This results from the intramolecular hydrogen bond C19—H19···O2. The packing motif, as shown in Fig.3, can be described as follows: molecules are linked by hydrogen bonds in head-to-tail fashion through oxy- and keto-groups to form infinite chains. The two adjacent chains are linked by N7—H7···O2ii hydrogen bonds, forming infinite rods running along the c axis. Neighbouring rods interact via centrosymmetric C5—H5···O4iii hydrogen bonds. Symmetry codes are listed in Table 1.

Related literature top

For details of the appropriate nitrile hydrolysis, see: Moorthy & Singhal (2005).

Experimental top

A mixture of (1) (1 g, 0.0038 mol), concentrated sulfuric acid (1 ml) and trifluoroacetic acid (4 ml) was boiled under reflux. with stirring, for 5 h. The solution was then poured into ice-water (75 ml). The resulting white precipitate was filtered off, washed with water and recrystallized from acetone.

Refinement top

The positions of the H atoms were determined from Fourier difference maps; they were then placed in calculated positions and allowed to ride on their parent atoms [C—H = 0.93–0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å]. Uiso(H) = xUeq(parent atom), where x = 1.5 for attached O and 1.2 for C and N.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Hydrolysis of (1) did not produce the expected compound, (2) but rather an isomer of (2), viz. compound (3).
[Figure 2] Fig. 2. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular hydrogen bond.
[Figure 3] Fig. 3. The packing motif of the crystal structure. Hydrogen atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Symmetry codes: (i) x, y, z + 1; (ii) x, -y + 3/2, z - 1/2; (iii) -x, -y + 1, -z + 1.
8-Hydroxy-8-phenyl-2,3,7,8-tetrahydro-6H-1,4-dioxino[2,3-f]isoindol-6-one top
Crystal data top
C16H13NO4F(000) = 592
Mr = 283.27Dx = 1.417 Mg m3
Monoclinic, P21/cMelting point = 485–486 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 8.6001 (17) ÅCell parameters from 25 reflections
b = 27.005 (5) Åθ = 26–42°
c = 5.7221 (5) ŵ = 0.85 mm1
β = 92.602 (10)°T = 291 K
V = 1327.6 (4) Å3Prism, colorless
Z = 40.08 × 0.06 × 0.04 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 73.9°, θmin = 3.3°
Graphite monochromatorh = 1010
Non–profiled ω scansk = 032
2892 measured reflectionsl = 07
2653 independent reflections2 standard reflections every 120 min
1784 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4104P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2653 reflectionsΔρmax = 0.23 e Å3
192 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (6)
Crystal data top
C16H13NO4V = 1327.6 (4) Å3
Mr = 283.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.6001 (17) ŵ = 0.85 mm1
b = 27.005 (5) ÅT = 291 K
c = 5.7221 (5) Å0.08 × 0.06 × 0.04 mm
β = 92.602 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
2892 measured reflections2 standard reflections every 120 min
2653 independent reflections intensity decay: none
1784 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2653 reflectionsΔρmin = 0.24 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3338 (2)0.50617 (7)1.1457 (3)0.0654 (5)
O20.3093 (2)0.70474 (6)0.9980 (3)0.0549 (5)
H20.23700.69061.05850.082*
O30.1250 (2)0.65694 (7)0.3005 (3)0.0568 (5)
O40.1351 (3)0.48070 (7)0.7532 (4)0.0737 (6)
N70.2877 (2)0.68919 (8)0.5922 (3)0.0498 (5)
H70.29720.71820.53210.060*
C20.2445 (4)0.46150 (12)1.1374 (6)0.0810 (10)
H2A0.14630.46711.21000.097*
H2B0.30030.43601.22590.097*
C30.2138 (5)0.44427 (12)0.8942 (7)0.0878 (11)
H3A0.31170.43610.82600.105*
H3B0.15100.41440.89560.105*
C50.1581 (3)0.56216 (9)0.6119 (4)0.0536 (6)
H50.09370.55410.48260.064*
C60.2011 (3)0.65333 (9)0.4881 (4)0.0467 (6)
C80.3642 (3)0.67510 (9)0.8154 (4)0.0455 (6)
C90.3521 (3)0.58711 (9)1.0021 (4)0.0498 (6)
H90.41630.59551.13130.060*
C100.2183 (3)0.60935 (9)0.6404 (4)0.0467 (6)
C110.3138 (3)0.62151 (9)0.8321 (4)0.0446 (5)
C120.1965 (3)0.52745 (10)0.7811 (5)0.0542 (6)
C130.2925 (3)0.53960 (9)0.9759 (4)0.0510 (6)
C140.5399 (3)0.68000 (9)0.8127 (4)0.0458 (6)
C150.6197 (3)0.66247 (10)0.6231 (4)0.0555 (6)
H150.56360.64990.49370.067*
C160.7790 (3)0.66338 (11)0.6228 (5)0.0645 (7)
H160.83010.65140.49460.077*
C170.8631 (4)0.68214 (12)0.8136 (5)0.0683 (8)
H170.97120.68290.81430.082*
C180.7876 (3)0.69959 (11)1.0011 (5)0.0678 (8)
H180.84490.71211.12970.081*
C190.6268 (3)0.69889 (10)1.0022 (4)0.0561 (7)
H190.57670.71121.13070.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0765 (13)0.0525 (11)0.0666 (12)0.0020 (9)0.0039 (10)0.0182 (9)
O20.0654 (12)0.0516 (10)0.0488 (10)0.0046 (8)0.0138 (8)0.0083 (8)
O30.0575 (11)0.0718 (12)0.0406 (9)0.0020 (9)0.0038 (8)0.0054 (8)
O40.0847 (15)0.0480 (11)0.0870 (15)0.0136 (10)0.0131 (12)0.0040 (10)
N70.0603 (13)0.0463 (11)0.0421 (10)0.0032 (9)0.0049 (9)0.0071 (9)
C20.097 (3)0.0529 (18)0.093 (2)0.0106 (16)0.0003 (19)0.0230 (17)
C30.107 (3)0.0513 (18)0.104 (3)0.0006 (18)0.011 (2)0.0065 (18)
C50.0578 (15)0.0547 (15)0.0480 (13)0.0073 (12)0.0020 (11)0.0051 (12)
C60.0464 (13)0.0567 (15)0.0371 (11)0.0029 (11)0.0021 (10)0.0008 (10)
C80.0575 (14)0.0446 (13)0.0343 (11)0.0017 (11)0.0001 (10)0.0005 (9)
C90.0564 (14)0.0511 (14)0.0417 (12)0.0030 (11)0.0005 (10)0.0034 (11)
C100.0512 (13)0.0500 (14)0.0388 (11)0.0035 (11)0.0017 (10)0.0004 (10)
C110.0505 (13)0.0459 (13)0.0373 (12)0.0014 (10)0.0022 (10)0.0010 (10)
C120.0608 (16)0.0454 (14)0.0565 (15)0.0078 (12)0.0027 (12)0.0041 (12)
C130.0556 (14)0.0469 (14)0.0506 (13)0.0001 (11)0.0042 (11)0.0074 (11)
C140.0567 (14)0.0436 (13)0.0370 (11)0.0025 (11)0.0011 (10)0.0021 (10)
C150.0610 (16)0.0649 (17)0.0407 (12)0.0025 (13)0.0027 (11)0.0039 (12)
C160.0606 (16)0.074 (2)0.0594 (17)0.0007 (14)0.0109 (13)0.0030 (15)
C170.0570 (16)0.076 (2)0.0716 (19)0.0002 (14)0.0011 (14)0.0022 (16)
C180.0635 (18)0.076 (2)0.0624 (17)0.0039 (15)0.0152 (14)0.0050 (15)
C190.0672 (17)0.0599 (16)0.0404 (12)0.0001 (13)0.0040 (11)0.0032 (11)
Geometric parameters (Å, º) top
O1—C131.362 (3)C8—C111.515 (3)
O1—C21.430 (4)C8—C141.518 (3)
O2—C81.415 (3)C9—C111.374 (3)
O2—H20.8200C9—C131.387 (3)
O3—C61.236 (3)C9—H90.9300
O4—C121.375 (3)C10—C111.380 (3)
O4—C31.424 (4)C12—C131.396 (3)
N7—C61.344 (3)C14—C191.386 (3)
N7—C81.460 (3)C14—C151.393 (3)
N7—H70.8600C15—C161.370 (4)
C2—C31.480 (5)C15—H150.9300
C2—H2A0.9700C16—C171.378 (4)
C2—H2B0.9700C16—H160.9300
C3—H3A0.9700C17—C181.363 (4)
C3—H3B0.9700C17—H170.9300
C5—C121.376 (4)C18—C191.384 (4)
C5—C101.382 (3)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C101.477 (3)
C13—O1—C2114.4 (2)C13—C9—H9120.9
C8—O2—H2109.5C11—C10—C5121.3 (2)
C12—O4—C3113.5 (2)C11—C10—C6108.5 (2)
C6—N7—C8114.7 (2)C5—C10—C6130.2 (2)
C6—N7—H7122.6C9—C11—C10121.1 (2)
C8—N7—H7122.6C9—C11—C8129.1 (2)
O1—C2—C3111.7 (3)C10—C11—C8109.8 (2)
O1—C2—H2A109.3O4—C12—C5117.7 (2)
C3—C2—H2A109.3O4—C12—C13121.2 (2)
O1—C2—H2B109.3C5—C12—C13121.0 (2)
C3—C2—H2B109.3O1—C13—C9116.9 (2)
H2A—C2—H2B107.9O1—C13—C12122.7 (2)
O4—C3—C2112.1 (3)C9—C13—C12120.4 (2)
O4—C3—H3A109.2C19—C14—C15117.8 (2)
C2—C3—H3A109.2C19—C14—C8121.7 (2)
O4—C3—H3B109.2C15—C14—C8120.3 (2)
C2—C3—H3B109.2C16—C15—C14121.5 (3)
H3A—C3—H3B107.9C16—C15—H15119.2
C12—C5—C10117.9 (2)C14—C15—H15119.2
C12—C5—H5121.0C15—C16—C17119.6 (3)
C10—C5—H5121.0C15—C16—H16120.2
O3—C6—N7126.1 (2)C17—C16—H16120.2
O3—C6—C10127.7 (2)C18—C17—C16119.9 (3)
N7—C6—C10106.23 (19)C18—C17—H17120.0
O2—C8—N7110.3 (2)C16—C17—H17120.0
O2—C8—C11112.82 (19)C17—C18—C19120.7 (3)
N7—C8—C11100.69 (18)C17—C18—H18119.7
O2—C8—C14108.89 (19)C19—C18—H18119.7
N7—C8—C14112.20 (19)C18—C19—C14120.4 (3)
C11—C8—C14111.8 (2)C18—C19—H19119.8
C11—C9—C13118.2 (2)C14—C19—H19119.8
C11—C9—H9120.9
C13—O1—C2—C340.4 (4)C3—O4—C12—C5162.9 (3)
C12—O4—C3—C245.2 (4)C3—O4—C12—C1318.1 (4)
O1—C2—C3—O457.6 (4)C10—C5—C12—O4179.4 (2)
C8—N7—C6—O3179.2 (2)C10—C5—C12—C130.3 (4)
C8—N7—C6—C101.7 (3)C2—O1—C13—C9167.3 (3)
C6—N7—C8—O2117.5 (2)C2—O1—C13—C1213.5 (4)
C6—N7—C8—C111.8 (3)C11—C9—C13—O1179.3 (2)
C6—N7—C8—C14120.9 (2)C11—C9—C13—C120.1 (4)
C12—C5—C10—C110.1 (4)O4—C12—C13—O11.5 (4)
C12—C5—C10—C6178.4 (3)C5—C12—C13—O1179.5 (2)
O3—C6—C10—C11179.9 (2)O4—C12—C13—C9179.3 (2)
N7—C6—C10—C110.8 (3)C5—C12—C13—C90.4 (4)
O3—C6—C10—C51.3 (4)O2—C8—C14—C1916.7 (3)
N7—C6—C10—C5177.8 (3)N7—C8—C14—C19139.1 (2)
C13—C9—C11—C100.2 (4)C11—C8—C14—C19108.6 (3)
C13—C9—C11—C8178.9 (2)O2—C8—C14—C15167.4 (2)
C5—C10—C11—C90.2 (4)N7—C8—C14—C1545.1 (3)
C6—C10—C11—C9178.9 (2)C11—C8—C14—C1567.2 (3)
C5—C10—C11—C8179.0 (2)C19—C14—C15—C160.5 (4)
C6—C10—C11—C80.3 (3)C8—C14—C15—C16175.6 (2)
O2—C8—C11—C964.5 (3)C14—C15—C16—C170.2 (4)
N7—C8—C11—C9178.0 (2)C15—C16—C17—C180.1 (5)
C14—C8—C11—C958.6 (3)C16—C17—C18—C190.3 (5)
O2—C8—C11—C10116.3 (2)C17—C18—C19—C140.5 (5)
N7—C8—C11—C101.2 (3)C15—C14—C19—C180.6 (4)
C14—C8—C11—C10120.5 (2)C8—C14—C19—C18175.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.952.725 (3)158
N7—H7···O2ii0.862.092.922 (3)161
C5—H5···O4iii0.932.523.404 (3)160
C19—H19···O20.932.402.734 (4)101
Symmetry codes: (i) x, y, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NO4
Mr283.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.6001 (17), 27.005 (5), 5.7221 (5)
β (°) 92.602 (10)
V3)1327.6 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.08 × 0.06 × 0.04
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2892, 2653, 1784
Rint0.025
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.147, 1.05
No. of reflections2653
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.952.725 (3)158.0
N7—H7···O2ii0.862.092.922 (3)161.4
C5—H5···O4iii0.932.523.404 (3)159.5
C19—H19···O20.932.402.734 (4)101.3
Symmetry codes: (i) x, y, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.
 

References

First citationBrandenburg, K. (2000). DIAMOND. Release 2.1d. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMoorthy, J. N. & Singhal, N. (2005). J. Org. Chem. 70, 1926–1929.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds