organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(benz­yl­oxy)-2-tert-butyl­benzene

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn

(Received 24 January 2008; accepted 31 January 2008; online 22 February 2008)

The title compound, C24H26O2, was obtained unintentionally as the product of an attempted synthesis of a new chiral cobalt salen catalyst. There are no classical hydrogen bonds; inter­molecular C—H⋯π stacking inter­actions between aromatic rings help to establish the mol­ecular conformation.

Related literature

For related literature, see: Annis & Jacobsen (1999[Annis, D. A. & Jacobsen, E. N. (1999). J. Am. Chem. Soc. 121, 4147-4154.]); Kwon & Kim (2003[Kwon, M. A. & Kim, G. J. (2003). Catal. Today, 87, 145-151.]); Ready & Jacobsen (2001[Ready, J. M. & Jacobsen, E. N. (2001). J. Am. Chem. Soc. 123, 2687-2688.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26O2

  • Mr = 346.45

  • Monoclinic, P 21 /c

  • a = 6.5570 (13) Å

  • b = 23.772 (5) Å

  • c = 12.924 (3) Å

  • β = 93.21 (3)°

  • V = 2011.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.986

  • 4285 measured reflections

  • 3935 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.162

  • S = 1.02

  • 3935 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg3i 0.93 2.96 3.725 141
C15—H15CCg3ii 0.96 2.87 3.818 168
C24—H24⋯Cg2iii 0.93 2.71 3.560 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) x-1, y, z. Cg2 is the centroid of atoms C8–C13 and Cg3 is the centroid of atoms C19–C24.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chiral Co(salen) complexes are widely used in the Hydrolytic Kinetic Resolution of terminal epoxides, such as epichlorohydrin (Annis & Jacobsen, 1999). Bis–phenols, such as 2–tert–butyl–hydroquinone, are useful as starting materials for the synthesis of salicylaldehyde (Ready & Jacobsen, 2001), especially in the synthesis of polymeric salen complexes (Kwon & Kim, 2003). We here report the molecular and crystal structure of the title compound (I).

The atom–numbering scheme of (I) is shown in Fig. 1. A l l bond lengths and angles are within normal ranges (Allen et al., 1987). The molecule contains three phenyl rings - ring 1 (C1–C6), ring 2 (C8–C13), ring 3 (C19—C24), which are planar. The dihedral angle between ring 1 and ring 2 is 48.5 (4)°. There are no typical hydrogen bonds, while intermolecular C—H···π stacking interactions between aromatic rings help to stabilize the molecular conformation of compound (I).

Related literature top

For related literature, see: Annis & Jacobsen (1999); Kwon & Kim (2003); Ready & Jacobsen (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

Under N2 atmosphere, a mixture of 5.5 g (33 mmol) of 2–tert–butyl–hydroquinone, 2.25 g anhydrous potassium carbonate (16.0 mmol) in 75 ml dry acetonitrile were stirred for half an hour at room temperature. Subsequently 8.2 g (66 mmol) of benzyl chloride and 600 mg (3.6 mmol) of potassium iodide were added to the reaction mixture and was refluxed for 3 h in inert atmosphere. The mixture was cooled to room temperature and was filtrated and the solvent was removed under reduced pressure. The crude product was purified with n–hexane solution. Crystals of (I) suitable for X–ray diffraction were further recrystallized by slow evaporation of acetone. 1H NMR (CDCl3, δ, p.p.m.) 7.45 (q, 10H), 7.00 (s, 1H), 6.89 (d, 1H), 6.74 (d, 1H), 5.05 (s, 2H), 4.99 (S, 2H), 1.38 (s, 9H).

Refinement top

During the refinement, the phenyl rings were treated as rigid hexagons with C–C bond lengths of 1.39 Å. H atoms were positioned geometrically (C—H = 0.930, 0.970 and 0.960Å for aromatic, methylene and methyl H atoms respectively) and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram of (I) showing the intermolecular C—H···π interactions (dashed lines). The H atoms not involved in H–bonds are omitted for clarity. Cg2 and Cg3 denote the centroids of the C8–C13 and C19–C24 phenyl rings respectively. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y + 1, -z; (iii) x - 1, y, z.]
1,4-Bis(benzyloxy)-2-tert-butylbenzene top
Crystal data top
C24H26O2F(000) = 744
Mr = 346.45Dx = 1.144 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.5570 (13) Åθ = 9–13°
b = 23.772 (5) ŵ = 0.07 mm1
c = 12.924 (3) ÅT = 293 K
β = 93.21 (3)°Block, colourless
V = 2011.3 (7) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 029
Tmin = 0.969, Tmax = 0.986l = 1515
4285 measured reflections3 standard reflections every 200 reflections
3935 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0054P)2 + 4.1075P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3935 reflectionsΔρmax = 0.35 e Å3
188 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0384 (15)
Crystal data top
C24H26O2V = 2011.3 (7) Å3
Mr = 346.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5570 (13) ŵ = 0.07 mm1
b = 23.772 (5) ÅT = 293 K
c = 12.924 (3) Å0.40 × 0.30 × 0.20 mm
β = 93.21 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2336 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.969, Tmax = 0.9863 standard reflections every 200 reflections
4285 measured reflections intensity decay: none
3935 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
3935 reflectionsΔρmin = 0.33 e Å3
188 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0565 (4)0.27733 (12)0.5023 (3)0.0843 (15)
H11.16450.25230.51330.101*
C21.0574 (4)0.31573 (15)0.4212 (3)0.0931 (17)
H21.16610.31640.37800.112*
C30.8960 (4)0.35314 (12)0.4048 (2)0.0765 (13)
H30.89660.37880.35050.092*
C40.7335 (4)0.35215 (11)0.4694 (2)0.0582 (11)
C50.7326 (4)0.31375 (13)0.55046 (19)0.0719 (13)
H50.62390.31310.59370.086*
C60.8941 (5)0.27634 (11)0.5669 (2)0.0777 (14)
H60.89340.25060.62120.093*
C70.5631 (7)0.3943 (2)0.4568 (3)0.0746 (14)
H7A0.45140.38310.49840.090*
H7B0.61120.43090.48060.090*
C80.3396 (3)0.43592 (8)0.32489 (12)0.0461 (9)
C90.2627 (2)0.43853 (6)0.22256 (11)0.0447 (8)
C100.1057 (2)0.47575 (8)0.19454 (11)0.0475 (9)
H100.05430.47750.12610.057*
C110.0255 (3)0.51035 (8)0.26886 (14)0.0486 (9)
C120.1024 (3)0.50774 (8)0.37119 (13)0.0530 (10)
H120.04870.53090.42090.064*
C130.2594 (3)0.47053 (9)0.39920 (10)0.0547 (10)
H130.31080.46880.46770.066*
C140.3591 (3)0.40301 (9)0.13571 (14)0.0655 (10)
C150.2469 (4)0.41208 (13)0.02966 (13)0.0934 (18)
H15A0.25070.45120.01180.140*
H15B0.10740.40020.03260.140*
H15C0.31230.39050.02180.140*
C160.3501 (8)0.34034 (19)0.1595 (4)0.0885 (16)
H16A0.42010.33310.22540.133*
H16B0.41450.31970.10650.133*
H16C0.21010.32880.16160.133*
C170.5827 (6)0.4212 (2)0.1272 (4)0.0834 (15)
H17A0.65650.41560.19270.125*
H17B0.58750.46020.10850.125*
H17C0.64390.39900.07510.125*
C180.2037 (6)0.58533 (19)0.3026 (3)0.0689 (13)
H18A0.09480.60940.33070.083*
H18B0.26100.56530.35960.083*
C190.3651 (2)0.61998 (7)0.24720 (11)0.0528 (10)
C200.3295 (3)0.67607 (6)0.2238 (2)0.0705 (12)
H200.20360.69230.24220.085*
C210.4821 (3)0.70793 (7)0.1730 (2)0.0846 (15)
H210.45830.74550.15740.102*
C220.6703 (3)0.68368 (9)0.14560 (14)0.0824 (15)
H220.77240.70500.11160.099*
C230.7060 (2)0.62759 (9)0.1690 (2)0.0797 (14)
H230.83190.61140.15060.096*
C240.5534 (2)0.59573 (8)0.21979 (18)0.0636 (11)
H240.57720.55820.23540.076*
O10.4937 (3)0.39766 (9)0.35168 (17)0.0581 (7)
O20.1255 (2)0.54656 (6)0.23203 (9)0.0577 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (3)0.083 (4)0.107 (4)0.019 (3)0.014 (3)0.000 (3)
C20.056 (3)0.102 (4)0.123 (5)0.014 (3)0.013 (3)0.024 (4)
C30.061 (3)0.078 (3)0.089 (3)0.009 (2)0.002 (2)0.021 (3)
C40.058 (2)0.070 (2)0.055 (2)0.013 (2)0.0180 (19)0.015 (2)
C50.076 (3)0.084 (3)0.056 (3)0.013 (3)0.001 (2)0.003 (2)
C60.096 (4)0.070 (3)0.065 (3)0.014 (3)0.014 (3)0.008 (2)
C70.081 (3)0.082 (3)0.058 (3)0.032 (3)0.023 (2)0.013 (2)
C80.0405 (19)0.051 (2)0.046 (2)0.0003 (17)0.0038 (15)0.0029 (17)
C90.0414 (19)0.049 (2)0.0437 (19)0.0036 (17)0.0049 (15)0.0008 (16)
C100.0413 (19)0.061 (2)0.0397 (19)0.0004 (18)0.0004 (15)0.0006 (17)
C110.0343 (18)0.058 (2)0.053 (2)0.0001 (17)0.0006 (16)0.0002 (18)
C120.057 (2)0.057 (2)0.044 (2)0.0122 (19)0.0000 (17)0.0064 (18)
C130.055 (2)0.066 (3)0.041 (2)0.015 (2)0.0061 (17)0.0015 (18)
C140.065 (2)0.075 (3)0.057 (2)0.002 (2)0.0035 (17)0.0086 (19)
C150.100 (4)0.131 (5)0.049 (3)0.039 (3)0.004 (2)0.020 (3)
C160.114 (4)0.071 (3)0.081 (3)0.001 (3)0.009 (3)0.021 (3)
C170.065 (3)0.112 (4)0.076 (3)0.001 (3)0.028 (2)0.009 (3)
C180.066 (3)0.090 (3)0.051 (2)0.032 (2)0.001 (2)0.004 (2)
C190.051 (2)0.063 (3)0.045 (2)0.0094 (19)0.0053 (17)0.0049 (18)
C200.069 (3)0.066 (3)0.076 (3)0.012 (2)0.000 (2)0.012 (2)
C210.109 (4)0.054 (3)0.091 (4)0.011 (3)0.005 (3)0.008 (3)
C220.077 (3)0.096 (4)0.073 (3)0.032 (3)0.000 (3)0.010 (3)
C230.050 (3)0.107 (4)0.082 (3)0.002 (3)0.003 (2)0.004 (3)
C240.054 (2)0.066 (3)0.072 (3)0.002 (2)0.008 (2)0.007 (2)
O10.0566 (16)0.0708 (18)0.0461 (14)0.0190 (14)0.0045 (12)0.0035 (13)
O20.0476 (15)0.0733 (18)0.0516 (15)0.0168 (13)0.0015 (12)0.0063 (13)
Geometric parameters (Å, º) top
C1—C21.3900C14—C161.523 (5)
C1—C61.3900C14—C151.5341
C1—H10.9300C14—C171.539 (5)
C2—C31.3900C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.3900C15—H15C0.9600
C3—H30.9300C16—H16A0.9600
C4—C51.3900C16—H16B0.9600
C4—C71.503 (4)C16—H16C0.9600
C5—C61.3900C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—O11.411 (4)C18—O21.413 (4)
C7—H7A0.9700C18—C191.492 (4)
C7—H7B0.9700C18—H18A0.9700
C8—O11.3888C18—H18B0.9700
C8—C91.3900C19—C201.3900
C8—C131.3900C19—C241.3900
C9—C101.3900C20—C211.3900
C9—C141.5657C20—H200.9300
C10—C111.3900C21—C221.3900
C10—H100.9300C21—H210.9300
C11—O21.3766C22—C231.3900
C11—C121.3900C22—H220.9300
C12—C131.3900C23—C241.3900
C12—H120.9300C23—H230.9300
C13—H130.9300C24—H240.9300
C2—C1—C6120.0C15—C14—C9111.8
C2—C1—H1120.0C17—C14—C9108.9 (2)
C6—C1—H1120.0C14—C15—H15A109.5
C1—C2—C3120.0C14—C15—H15B109.5
C1—C2—H2120.0H15A—C15—H15B109.5
C3—C2—H2120.0C14—C15—H15C109.5
C4—C3—C2120.0H15A—C15—H15C109.5
C4—C3—H3120.0H15B—C15—H15C109.5
C2—C3—H3120.0C14—C16—H16A109.5
C5—C4—C3120.0C14—C16—H16B109.5
C5—C4—C7119.0 (3)H16A—C16—H16B109.5
C3—C4—C7120.9 (3)C14—C16—H16C109.5
C4—C5—C6120.0H16A—C16—H16C109.5
C4—C5—H5120.0H16B—C16—H16C109.5
C6—C5—H5120.0C14—C17—H17A109.5
C5—C6—C1120.0C14—C17—H17B109.5
C5—C6—H6120.0H17A—C17—H17B109.5
C1—C6—H6120.0C14—C17—H17C109.5
O1—C7—C4109.9 (3)H17A—C17—H17C109.5
O1—C7—H7A109.7H17B—C17—H17C109.5
C4—C7—H7A109.7O2—C18—C19108.9 (3)
O1—C7—H7B109.7O2—C18—H18A109.9
C4—C7—H7B109.7C19—C18—H18A109.9
H7A—C7—H7B108.2O2—C18—H18B109.9
O1—C8—C9119.10C19—C18—H18B109.9
O1—C8—C13120.88H18A—C18—H18B108.3
C9—C8—C13120.0C20—C19—C24120.0
C10—C9—C8120.0C20—C19—C18120.7 (2)
C10—C9—C14118.6C24—C19—C18119.3 (2)
C8—C9—C14121.2C21—C20—C19120.0
C11—C10—C9120.0C21—C20—H20120.0
C11—C10—H10120.0C19—C20—H20120.0
C9—C10—H10120.0C20—C21—C22120.0
O2—C11—C10115.07C20—C21—H21120.0
O2—C11—C12124.91C22—C21—H21120.0
C10—C11—C12120.0C21—C22—C23120.0
C13—C12—C11120.0C21—C22—H22120.0
C13—C12—H12120.0C23—C22—H22120.0
C11—C12—H12120.0C24—C23—C22120.0
C12—C13—C8120.0C24—C23—H23120.0
C12—C13—H13120.0C22—C23—H23120.0
C8—C13—H13120.0C23—C24—C19120.0
C16—C14—C15107.2 (2)C23—C24—H24120.0
C16—C14—C17109.7 (3)C19—C24—H24120.0
C15—C14—C17108.0 (2)C8—O1—C7117.9 (2)
C16—C14—C9111.2 (2)C11—O2—C18117.68 (19)
C6—C1—C2—C30.0C10—C9—C14—C16124.7 (3)
C1—C2—C3—C40.0C8—C9—C14—C1659.3 (3)
C2—C3—C4—C50.0C10—C9—C14—C154.9
C2—C3—C4—C7176.5 (3)C8—C9—C14—C15179.1
C3—C4—C5—C60.0C10—C9—C14—C17114.4 (2)
C7—C4—C5—C6176.6 (3)C8—C9—C14—C1761.6 (2)
C4—C5—C6—C10.0O2—C18—C19—C20107.8 (3)
C2—C1—C6—C50.0O2—C18—C19—C2472.8 (3)
C5—C4—C7—O1135.2 (3)C24—C19—C20—C210.0
C3—C4—C7—O148.2 (4)C18—C19—C20—C21179.40 (18)
O1—C8—C9—C10178.7C19—C20—C21—C220.0
C13—C8—C9—C100.0C20—C21—C22—C230.0
O1—C8—C9—C145.3C21—C22—C23—C240.0
C13—C8—C9—C14176.0C22—C23—C24—C190.0
C8—C9—C10—C110.0C20—C19—C24—C230.0
C14—C9—C10—C11176.1C18—C19—C24—C23179.41 (18)
C9—C10—C11—O2178.3C9—C8—O1—C7177.5 (3)
C9—C10—C11—C120.0C13—C8—O1—C71.2 (4)
O2—C11—C12—C13178.2C4—C7—O1—C8178.2 (3)
C10—C11—C12—C130.0C10—C11—O2—C18176.0 (2)
C11—C12—C13—C80.0C12—C11—O2—C182.3 (3)
O1—C8—C13—C12178.7C19—C18—O2—C11179.7 (2)
C9—C8—C13—C120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg3i0.932.963.725141
C15—H15C···Cg3ii0.962.873.818168
C24—H24···Cg2iii0.932.713.560153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H26O2
Mr346.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.5570 (13), 23.772 (5), 12.924 (3)
β (°) 93.21 (3)
V3)2011.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4285, 3935, 2336
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.162, 1.03
No. of reflections3935
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg3i0.932.963.725141
C15—H15C···Cg3ii0.962.873.818168
C24—H24···Cg2iii0.932.713.560153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnnis, D. A. & Jacobsen, E. N. (1999). J. Am. Chem. Soc. 121, 4147–4154.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKwon, M. A. & Kim, G. J. (2003). Catal. Today, 87, 145–151.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationReady, J. M. & Jacobsen, E. N. (2001). J. Am. Chem. Soc. 123, 2687–2688.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds