organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,5S)-5(3)-Carb­­oxy-3,4,5,6-tetra­hydro-2H-1,4-thia­zin-4-ium-3(5)-carboxyl­ate

aChemistry Department, University of Rome I "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy, and bInstitute of Crystallography, CNR, Trieste Outstation, Area Science Park-Basovizza, S.S.14 Km 163.5, I-34012 Trieste, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 12 February 2008; accepted 22 February 2008; online 27 February 2008)

The molecule of the zwitterionic title compound, C6H9NO4S, which lies on a mirror plane, shows a puckered chair conformation of the six-membered ring with the S and N atoms out of the mean plane of the other four C atoms by 0.929 (2) and 0.647 (2) Å, respectively. The ionized carboxyl group is equatorially oriented. The hydrogen-bonding network includes very short O—H⋯O [2.470 (2) Å] and N—H⋯S [3.471 (2) and 3.416 (2) Å] inter­molecular contacts.

Related literature

For the detection of 1,4-thio­morpholine-3,5-dicarboxylic acid (THT) as a normal component in bovine brains and human urine, see: Cavallini, Pecci et al. (1985[Cavallini, D., Pecci, L., Matarese, R. M., Ricci, G. & Achilli, M. (1985). J. Biol. Chem. 260, 15577-15579.]); Cavallini, Matarese et al. (1985[Cavallini, D., Matarese, R. M., Pecci, L. & Ricci, G. (1985). FEBS Lett. 192, 247-250.]); Matarese et al. (1987[Matarese, R. M., Pecci, L., Ricci, G., Nardini, M., Antonucci, A. & Cavallini, D. (1987). Proc. Natl Acad. Sci. USA, 84, 5111-5114.]); Cavallini et al. (1991[Cavallini, D., Ricci, G., Dupré, S., Pecci, L., Costa, M., Matarese, R. M., Pensa, B., Antonucci, A., Salinas, S. P. & Fontana, M. (1991). Eur. J. Biochem. 202, 217-223.]). For the previous structure determination of the (3R,5R) epimer of THT, see: Portalone et al. (1993[Portalone, G., Cassetta, A., Pagani Zecchini, G. & Torrini, I. (1993). Acta Cryst. C49, 976-978.]). For related literature, see: Allen et al. (1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696-701.]); Paglialunga Paradisi et al. (1990[Paglialunga Paradisi, M., Pagani Zecchini, G., Torrini, I. & Lucente, G. (1990). J. Heterocycl. Chem. 27, 1661-1664.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9NO4S

  • Mr = 191.21

  • Orthorhombic, P b n m

  • a = 6.1641 (8) Å

  • b = 9.323 (1) Å

  • c = 12.760 (1) Å

  • V = 733.29 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Huber CS four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.916, Tmax = 0.958

  • 1840 measured reflections

  • 1060 independent reflections

  • 998 reflections with I > 2σ(I)

  • Rint = 0.02

  • 3 standard reflections every 97 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.07

  • 1060 reflections

  • 76 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 1.24 1.24 2.4704 (19) 180
N4—H41⋯S1ii 0.87 (3) 2.60 (3) 3.4713 (15) 179 (3)
N4—H42⋯S1iii 0.80 (3) 2.72 (3) 3.4155 (16) 147 (3)
Symmetry codes: (i) -x, -y-1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: XCS (Colapietro et al., 1992[Colapietro, M., Cappuccio, G., Marciante, C., Pifferi, A., Spagna, R. & Helliwell, J. R. (1992). J. Appl. Cryst. 25, 192-194.]); cell refinement: XCS; data reduction: XCS; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX.

Supporting information


Comment top

The detection of 1,4-thiomorpholine-3,5-dicarboxylic acid (THT) as normal component in bovin brain (Cavallini, Pecci et al., 1985) and human urine (Matarese et al., 1987) has stimulated the investigation of the biological role played by this unusual cyclic, sulfur containing imino acid (Cavallini et al., 1991). Here we report the x-ray structure determination of the (3R,5S) epymer (THTC). The asymmetric unit of the title compound comprises a half-zwitterion disposed about a mirror plane along the line joining atoms S1 and N4 and perpendicular to the plane formed by C2, C3, C2ì and C3ì [symmetry code: (i) x, y, -z + 1/2]. From Fig. 1 it appears that the six-membered ring adopts a puckered chair conformation with the carboxyl group in equatorial position. The hydrogen-bonding network (Fig. 2) includes very short O—-H···O and N—-H···S (Allen et al., 1997) intermolecular contacts (Table 1).

Related literature top

For the detection of 1,4-thiomorpholine-3,5-dicarboxylic acid (THT) as a normal component in bovine brains and human urine, see: Cavallini, Pecci et al. (1985); Cavallini, Matarese et al. (1985); Matarese et al. (1987); Cavallini et al. (1991). For the previous structure determination of the (3R,5R) epymer of THT, see: Portalone et al. (1993). For related literature, see: Allen et al. (1997); Paglialunga Paradisi et al. (1990).

Experimental top

(3R,5S)-tetrahydro-2H-1,4-thiazine-3,5-dicarboxylic acid was obtained as described previously (Paglialunga Paradisi et al., 1990). Crystals were grown from a water solution (0.1 mmol in ca 6 ml) by slow evaporation of the solvent.

Refinement top

All H atoms were found in a difference Fourier map. Positional and thermal parameters of all H atoms but H1, which lies in special position and for which Uiso value was set equal to 2.0 Ueq(O1), were refined isotropically.

Computing details top

Data collection: XCS (Colapietro et al., 1992); cell refinement: XCS (Colapietro et al., 1992); data reduction: XCS (Colapietro et al., 1992); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular component in the title compound showing the zwitterion lying on a crystallographic mirror plane and the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed approximately down the a axis. H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H21, H22, H41 and H42 are omitted. H bonding is indicated by dashed lines.
(3R,5S)-5(3)-carboxy-3,4,5,6-tetrahydro-2H-1,4-thiazin-4-ium- 3(5)-carboxylate top
Crystal data top
C6H9NO4SF(000) = 400
Mr = 191.21Dx = 1.732 Mg m3
Orthorhombic, PbnmMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2c 2abCell parameters from 87 reflections
a = 6.1641 (8) Åθ = 20–25°
b = 9.323 (1) ŵ = 0.41 mm1
c = 12.760 (1) ÅT = 298 K
V = 733.29 (14) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Huber CS four-circle
diffractometer
998 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.02
Graphite monochromatorθmax = 30.0°, θmin = 3.2°
ω scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.916, Tmax = 0.958l = 017
1840 measured reflections3 standard reflections every 97 reflections
1060 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.064P)2 + 0.2054P]
where P = (Fo2 + 2Fc2)/3
1060 reflections(Δ/σ)max < 0.001
76 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C6H9NO4SV = 733.29 (14) Å3
Mr = 191.21Z = 4
Orthorhombic, PbnmMo Kα radiation
a = 6.1641 (8) ŵ = 0.41 mm1
b = 9.323 (1) ÅT = 298 K
c = 12.760 (1) Å0.20 × 0.15 × 0.10 mm
Data collection top
Huber CS four-circle
diffractometer
998 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.02
Tmin = 0.916, Tmax = 0.9583 standard reflections every 97 reflections
1840 measured reflections intensity decay: 2%
1060 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1060 reflectionsΔρmin = 0.28 e Å3
76 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04543 (7)0.05914 (4)0.25000.01738 (15)
O10.04198 (17)0.42620 (10)0.07779 (8)0.0235 (2)
H10.00000.50000.00000.049*
O20.04168 (16)0.23791 (11)0.03208 (7)0.0233 (2)
N40.0505 (2)0.27615 (15)0.25000.0152 (3)
H410.077 (5)0.316 (4)0.25000.046 (9)*
H420.129 (5)0.344 (3)0.25000.035 (7)*
C20.0797 (2)0.06777 (12)0.14454 (10)0.0191 (3)
H210.232 (3)0.105 (2)0.1441 (12)0.031 (4)*
H220.054 (3)0.012 (2)0.0759 (16)0.029 (5)*
C30.08019 (18)0.19183 (12)0.15032 (9)0.0154 (2)
H30.232 (3)0.1555 (18)0.1489 (11)0.019 (4)*
C70.05172 (18)0.29148 (12)0.05503 (10)0.0167 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (2)0.0108 (2)0.0160 (2)0.00097 (13)0.0000.000
O10.0403 (6)0.0134 (4)0.0170 (4)0.0028 (3)0.0010 (4)0.0023 (3)
O20.0352 (5)0.0204 (5)0.0142 (4)0.0015 (4)0.0003 (3)0.0006 (3)
N40.0220 (7)0.0109 (6)0.0127 (6)0.0010 (5)0.0000.000
C20.0275 (6)0.0142 (5)0.0156 (5)0.0037 (4)0.0027 (4)0.0009 (4)
C30.0211 (5)0.0126 (4)0.0124 (5)0.0003 (4)0.0012 (4)0.0006 (4)
C70.0198 (5)0.0156 (5)0.0146 (5)0.0008 (4)0.0011 (4)0.0026 (4)
Geometric parameters (Å, º) top
S1—C21.8043 (12)N4—H410.87 (3)
S1—C2i1.8043 (12)N4—H420.80 (3)
O1—C71.2905 (14)C2—C31.5211 (16)
O1—H11.2352C2—H211.00 (2)
O2—C71.2201 (16)C2—H221.03 (2)
N4—C3i1.5064 (13)C3—C71.5403 (16)
N4—C31.5064 (13)C3—H30.997 (17)
C2—S1—C2i96.46 (8)S1—C2—H22106.5 (11)
C7—O1—H1111.77H21—C2—H22108.4 (13)
C3i—N4—C3115.20 (12)N4—C3—C2111.04 (10)
C3i—N4—H41109.5 (10)N4—C3—C7109.75 (9)
C3—N4—H41109.5 (10)C2—C3—C7110.28 (9)
C3i—N4—H42109.9 (9)N4—C3—H3107.9 (8)
C3—N4—H42109.9 (9)C2—C3—H3110.5 (10)
H41—N4—H42102 (3)C7—C3—H3107.3 (9)
C3—C2—S1112.75 (8)O2—C7—O1126.95 (11)
C3—C2—H21110.2 (12)O2—C7—C3118.55 (11)
S1—C2—H21109.9 (10)O1—C7—C3114.50 (10)
C3—C2—H22108.9 (10)
C2i—S1—C2—C356.74 (12)N4—C3—C7—O2170.39 (11)
C3i—N4—C3—C259.40 (16)C2—C3—C7—O247.76 (14)
C3i—N4—C3—C7178.42 (8)N4—C3—C7—O19.90 (14)
S1—C2—C3—N461.40 (12)C2—C3—C7—O1132.53 (11)
S1—C2—C3—C7176.73 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1ii1.241.242.4704 (19)180 (1)
N4—H41···S1iii0.87 (3)2.60 (3)3.4713 (15)179 (3)
N4—H42···S1iv0.80 (3)2.72 (3)3.4155 (16)147 (3)
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC6H9NO4S
Mr191.21
Crystal system, space groupOrthorhombic, Pbnm
Temperature (K)298
a, b, c (Å)6.1641 (8), 9.323 (1), 12.760 (1)
V3)733.29 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerHuber CS four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.916, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
1840, 1060, 998
Rint0.02
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.07
No. of reflections1060
No. of parameters76
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: XCS (Colapietro et al., 1992), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i1.241.242.4704 (19)180.00 (9)
N4—H41···S1ii0.87 (3)2.60 (3)3.4713 (15)179 (3)
N4—H42···S1iii0.80 (3)2.72 (3)3.4155 (16)147 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z.
 

Acknowledgements

We thank MIUR (Rome) for 2006 financial support of the project `X-ray diffractometry and spectrometry'.

References

First citationAllen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696–701.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCavallini, D., Matarese, R. M., Pecci, L. & Ricci, G. (1985). FEBS Lett. 192, 247–250.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCavallini, D., Pecci, L., Matarese, R. M., Ricci, G. & Achilli, M. (1985). J. Biol. Chem. 260, 15577–15579.  CAS PubMed Web of Science Google Scholar
First citationCavallini, D., Ricci, G., Dupré, S., Pecci, L., Costa, M., Matarese, R. M., Pensa, B., Antonucci, A., Salinas, S. P. & Fontana, M. (1991). Eur. J. Biochem. 202, 217–223.  CrossRef PubMed CAS Web of Science Google Scholar
First citationColapietro, M., Cappuccio, G., Marciante, C., Pifferi, A., Spagna, R. & Helliwell, J. R. (1992). J. Appl. Cryst. 25, 192–194.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMatarese, R. M., Pecci, L., Ricci, G., Nardini, M., Antonucci, A. & Cavallini, D. (1987). Proc. Natl Acad. Sci. USA, 84, 5111–5114.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPaglialunga Paradisi, M., Pagani Zecchini, G., Torrini, I. & Lucente, G. (1990). J. Heterocycl. Chem. 27, 1661–1664.  CAS Google Scholar
First citationPortalone, G., Cassetta, A., Pagani Zecchini, G. & Torrini, I. (1993). Acta Cryst. C49, 976–978.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds